HINDERED INTERNAL ROTATION

I. Ozier and N. Moazzen-Ahmadi

In asymmetric tops like methyl alcohol, CH_3OH , and symmetric rotors like CH_3SiH_3 , the methyl group can undergo internal rotation relative to the rest of the molecule, traditionally called the frame (LS59, OM07). Although various different tops are considered here, all have three-fold symmetry. In such cases, the potential *V* hindering the internal rotation can be written:

$$V(\alpha) = V_3(\frac{1}{2})(1 - \cos 3\alpha) + V_6(\frac{1}{2})(1 - \cos 6\alpha) + V_9(\frac{1}{2})(1 - \cos 9\alpha) + \dots,$$

where α is the deviation from equilibrium of the angle between the top and frame that measures the torsional motion. If only the first two terms are retained, then V_3 is the height of the hindering potential and V_6 is the shape parameter. For symmetric tops like CH_3CH_3 where the top and frame are identical, α is replaced by 2γ and the origin for γ is often taken as the eclipsed configuration. In the expansion, $-\cos 6n\gamma$ is then replaced by $(-1)^{n+1}\cos 6n\gamma$, where n= 1,2,... In cases where different forms of the expansion have been used in the original works, the values of the parameters published there have been converted to the conventions defined here.

In Tables 1 and 2, values are given for V_3 for a selection of asymmetric and symmetric tops, respectively. In cases where the higher order parameters have been determined, these are given in the Comments column. Where appropriate, this column also indicates the specific top, isomer, state, and/or isotopomer that has been studied. For ethane, three symmetric top isotopomer are listed to illustrate the isotopic dependence of V_3 and V_6 . In all other cases, only one isotopomer is listed, even if several have been studied. In all but one of these cases, the isotopomer reported is the one with the highest natural abundance. However, CH₃OCDO is listed because the results obtained are more precise than for CH₃OCHO. The molecules are listed alphabetically in Hill order according to the molecular formula.

The determinations listed for the potential parameters are effective values that incorporate to varying degrees effects from other molecular parameters. For example, the apparent value of V_3 can be changed significantly if the reduced rotational constant F is calculated from the structure, rather than being determined independently (LS59). Other examples include such mechanisms as coupling to excited skeletal vibrations (OM07) and redundancies connecting some of the torsional parameters (LB68, MO87). The experimental uncertainties quoted are taken from the original works; no attempt has been made to standardize the definitions. All the potential parameters are given in cm⁻¹. Where the original work has reported these values in other units, the conversion to cm⁻¹ has been carried out using standard factors (LB02):

1 calorie = 4.1868 joules; 1 calorie/mole = 0.34998915 cm⁻¹.

A variety of different methods have been used to measure $V_{3'}$ $V_{6'}$ and V_{9} (LS59, OM07); only a few of the more important will be discussed here. For asymmetric rotors, both the pure rotational spectrum and its torsion-rotation counterpart are electric dipole allowed and are affected in lowest order by the leading terms in the torsional Hamiltonian. Both types of spectra have been used extensively to determine V_3 (LS59). For symmetric tops with a single torsional degree of freedom, either the permanent electric dipole moment vanishes, as in CH₃CH₃, or the normal rotational spectrum is independent of V_3 in lowest order, as in CH₃SiH₄. In the latter case, the molecular beam avoided crossing method can often be used (OM07). The torsion-rotation spectrum is forbidden in lowest order, but becomes weakly allowed through interactions with the infrared active skeletal vibrations (OM07). By employing long absorption path lengths, this spectrum has been used to determine V_3 in a number of molecules. For both asymmetric and symmetric tops, the most precise determinations of the molecular parameters have been made in cases where both rotational and torsion-rotation spectra have been investigated.

References

- ALA97 Antolínez, S., López, J. C., and Alonso, J. L., J. Chem. Soc., Faraday Trans. 93, 1291, 1997.
- ALB97 Alonso, J. L., López, J. C., Blanco, S., and Guarnieri, A., J. Mol. Spectrosc. 182, 148, 1997.
- ALL97 Alonso, J. L., Lesarri, A., López, J. C., Blanco, S., Kleiner, I., and Demaison, J., Molec. Phys. 91, 731, 1997.
- BL85 Bestmann, G., Lalowski, W., and Dreizler, H., Z. Naturforsch. A 40, 271, 1985.
- BM07 Borvayeh, L., Moazzen-Ahmadi, N., and Horneman, V.-M., J. Mol. Spectrosc. 242, 77, 2007.
- BW64 Butcher, S. S., and Wilson, E. B., J. Chem. Phys. 40, 1671, 1964.
- CA96 Charro, M. E., and Alonso, J. L., J. Mol. Spectrosc. 176, 251, 1996.
- CB61 Cahill, P., and Butcher, S., J. Chem. Phys. 35, 2255, 1961.
- DG87 Durig, J. R., Guirgis, G. A., and Van Der Veken, B. J., *J. Raman Spectrosc.* 18, 549, 1987.
- DL73 Durig, J. R., Li, Y. S., Carreira, L. A., and Odom, J. D., *J. Amer. Chem. Soc.* 95, 2491, 1973.
- DM87 Demaison, J., Maes, H., van Eijck, B. P., Wlodarczak, G., and Lasne, M. C., J. Mol. Spectrosc. 125, 214, 1987.
- DS81 Dreizler, H., and Scappini, F., Z. Naturforsch. A 36, 1187, 1981.
- EG96 Eltayeb, S., Guirgis, G. A., Fanning, A. R., and Durig, J. R., *J. Raman Spectrosc.* 27, 111, 1996.
- FD83 Fliege, E., Dreizler, H., Demaison, J., Boucher, D., Burie, J., and Dubrulle A., J. Chem. Phys. 78, 3541, 1983.
- G00 Groner, P., J. Mol. Structure 550-551, 473, 2000.
- GA89 Groner, P., Attia, G. M., Mohamad, A. B., Sullivan, J. F., Li, Y. S., and Durig, J. R., *J. Chem. Phys.* 91, 1434, 1989.
- GG04 Groner, P., Gillies, C. W., Gillies, J. Z., Zhang, Y., and Block, E., J. Mol. Spectrosc. 226, 169, 2004.
- GH02 Grabow, J.-U., Hartwig, H., Heineking, N., Jäger, W., Mäder, H., Nicolaisen, H. W., and Stahl, W., *J. Mol. Structure* 612, 349, 2002.
- IA03 Ilyushin, V. V., Alekseev, E. A., Dyubko, S. F., and Kleiner, I., J. Mol. Spectrosc. 220, 170, 2003.
- K60 Krisher, L. C., J. Chem. Phys. 33, 1237, 1960.
- KD86 Kasten, W., and Dreizler, H., Z. Naturforsch. A 41, 944, 1986.
- KH96 Kleiner, I., Hougen, J. T., Grabow, J.-U., Belov, S. P., Tretyakov, M. Yu., and Cosléou, J., *J. Mol. Spectrosc.* 179, 41, 1996.
- KL67 Kuczkowski, R. L., and Lide, D. R., J. Chem. Phys. 46, 357, 1967.
- KW74 Krisher, L. C., Watson, W. A., and Morrison, J. A., J. Chem. Phys. 61, 3429, 1974.
- L59 Laurie, V. W., J. Chem. Phys. 30, 1210, 1959.
- LB68 Lees, R. M., and Baker, J. G., J. Chem. Phys. 48, 5299, 1968.
- LB97 di Lauro, C., Bunker, P. R., Johns, J. W. C., and McKellar, A. R. W., J. Mol. Spectrosc. 184, 177, 1997.
- LB02 Demaison, J., and Wlodarczak, G., Hindered rotation-Asymmetric top molecules, in: Hüttner, W. (Ed), Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology, New Series: Group II: Molecules and Radicals, volume 24, subvolume C, Molecular Constants Mostly from Microwave, Molecular Beam, and Sub-Doppler Laser Spectroscopy, Springer-Verlag, Heidelberg, 2002.
- LE97 de Luis, A., Eugenia Sanz, M., Lorenzo, F. J., López, J. C., and Alonso, J. L., *J. Mol. Spectrosc.* 184, 60, 1997.

- LJ72 Lide, D. R., Johnson, D. R., Sharp, K. G., and Coyle, T. D., *J. Chem. Phys.* 57, 3699, 1972.
- LS59 Lin, C. C., and Swalen, J. D., Rev. Mod. Phys. 31, 841 1959.
- MK66 Moloney, M. J., and Krisher, L. C., J. Chem. Phys. 45, 3277, 1966.
- MM96 Marstokk, K.-M., Møllendal, H., and Samdal, S., J. Mol. Structure 376, 11, 1996.
- MM01 Marstokk, K.-M., Mollendal, H., Samdal, S., and Steinborn, D., J. Mol. Structure 567, 41, 2001.
- MO87 Moazzen-Ahmadi, N., and Ozier, I., J. Mol. Spectrosc. 126, 99, 1987.
- MS02 Merke, I., Stahl, W., Kassi, S., Petitprez, D., and Wlodarczak, G., J. Mol. Spectrosc. 216, 437, 2002.
- ND06 Nair, K. P. R., Demaison, J., Wlodarczak, G., and Merke, I., *J. Mol. Spectrosc.* 237, 137, 2006.
- NH02 Niide, Y., and Hayashi, M., J. Mol. Spectrosc. 216, 61, 2002.
- NH04 Niide, Y., and Hayashi, M., J. Mol. Spectrosc. 223, 152, 2004.
- NY85 Nakagawa, J., Yamada, K., Bester, M., and Winnewisser, G., J. Mol. Spectrosc. 110, 74, 1985.
- OH07 Ohashi, N., and Hougen, J. T., J. Mol. Spectrosc. 243, 162, 2007.
- OK75 Odom, J. D., Kalasinsky, V. F., and Durig, J. R., *Inorg. Chem*. 14, 2837, 1975.
- OM07 Ozier, I., and Moazzen-Ahmadi, N., Internal rotation in symmetric tops, in: Arimondo, E., Berman, P. R., and Lin, C. C., (Eds.), *Advances in Atomic, Molecular and Optical Physics*, vol. 54, p. 423, Elsevier, Amsterdam, 2007.

PK59 Pierce, L., and Krisher, L. C., J. Chem. Phys. 31, 875, 1959.

S75 Stiefvater, O. L., J. Chem. Phys. 62, 233, 1975.

- SD04 Suenram, R. D., DaBell, R. S., Hight Walker, A. R., Lavrich, R. J., Plusquellic, D. F., Ellzy, M. W., Lochner, J. M., Cash, L., Jensen, J. O., and Samuels, A. C., *J. Mol. Spectrosc.* 224, 176, 2004.
- SG05 Schnell, M., Grabow, J.-U., Hartwig, H, Heineking, N., Meyer, M., Stahl, W., and Caminati, W., *J. Mol. Spectrosc.* 229, 1, 2005.
- SH82 Shiki, Y., Hasegawa, A., and Hayashi, M., *J. Mol. Structure* 78, 185, 1982.
- SH86 Sastry, K. V. L. N., Herbst, E., Booker, R. A., and De Lucia, F. C., J. Mol. Spectrosc. 116, 120, 1986.
- SL02 Suenram, R. D., Lovas, F. J., Plusquellic, D. F., Lesarri, A., Kawashima, Y., Jensen, J. O., and Samuels, A. C., J. Mol. Spectrosc. 211, 110, 2002.
- SL06 Suenram, R. D., Lovas, F. J., Plusquellic, D. F., Ellzy, M. W., Lochner, J. M., Jensen, J. O., and Samuels, A. C., J. Mol. Spectrosc. 235, 18, 2006.
- ST06 Styger, C., Ozier, I., Wang, S.-X., and Bauder, A., *J. Mol. Spectrosc.* 239, 115, 2006.
- TB86 Typke, V., Botskor, I., and Wiedenmann, K.-H., *J. Mol. Spectrosc.* 120, 435, 1986.
- TH86 Tyblewksi, M., Ha, T.-K., and Bauder, A., J. Mol. Spectrosc. 115, 353, 1986.
- VD88 Vormann, K., and Dreizler, H., Z. Naturforsch. A 43, 338, 1988.
- VG96 Voges, K., Gripp, J., Hartwig, H., and Dreizler, H., *Z. Naturforsch*. A 51, 299, 1996.
- VR75 Varma, R., Ramaprasad, K. R., and Nelson, J. F., J. Chem. Phys. 63, 915, 1975.
- WA02 Wang, S.-X., Schroderus, J., Ozier, I., Moazzen-Ahmadi, N., Horneman, V.-M., Ilyushyn, V. V., Alekseev, E. A., Katrich, A. A., and Dyubko, S. F., J. Mol. Spectrosc. 214, 69, 2002.

TABLE 1. Asymmetric Top Potential Parameters

	Name	Molecular Formula	Line Formula	Ref.	V_{3}/cm^{-1}	Comments
1	Trifluoromethanethiol	CHF₃S	CF ₃ SH	LB02	500.83 ± 0.03	
2	Methylphosphonic difluoride	CH ₃ F ₂ OP	$CH_{3}P(=O)F_{2}$	SL06	676 ± 25	
3	Methanol	CH_4O	CH ₃ OH	LB02	373.594 ± 0.007	$V_6 = -1.597 \pm 0.051$
						$V_9 = 1.04 \pm 0.20$
4	Methanethiol	CH_4S	CH ₃ SH	SH86	443.029 ± 0.070	$V_6\!=-1.6451\pm 0.0144$
5	Methyldisulfane	CH_4S_2	CH ₃ SSH	TH86	609.0 ± 14.0	
6	Trifluoromethyl isocyanate	C_2F_3NO	CF ₃ N=C=O	LB02	47.8769 ± 0.0051	
7	Trifluoroacetaldehyde	C ₂ HF ₃ O	$CF_{3}C(H)=O$	DG87	298 ± 10	
8	Pentafluoroethane	C_2HF_5	CF ₃ CHF ₂	EG96	1190 ± 4	
9	Acetyl bromide	C ₂ H ₃ BrO	$CH_{3}C(Br)=O$	K60	456.7 ± 10.5	
10	1-Chloro-1,1-difluoroethane	$C_2H_3ClF_2$	CH ₃ CClF ₂	ALB97	1311.8 ± 1.4	
11	Acetyl chloride	C ₂ H ₃ ClO	$CH_{3}C(Cl)=O$	LB02	442.74 ± 1.05	³⁵ Cl
12	Acetyl fluoride	C ₂ H ₃ FO	$CH_{3}C(F)=O$	PK59	364.3 ± 2.1	
13	Methyl fluoroformate	$C_2H_3FO_2$	$CH_{3}OC(F)=O$	LB02	374.1 ± 0.2	
14	Methyl trifluoromethyl ether	$C_2H_3F_3O$	CH ₃ OCF ₃	LB02	382 ± 10	CH ₃
15	Acetyl iodide	C ₂ H ₃ IO	CH ₃ C(=O)I	MK66	455.3 ± 10.5	
16	Methyl cyanate	C ₂ H ₃ NO	CH ₃ OC≡N	LB02	399.0 ± 17.5	
17	1-Chloro-1-fluoroethane	C_2H_4ClF	CH ₃ CHClF	LB02	1334.9 ± 3.8	
18	1,1-Difluoroethane	$C_2H_4F_2$	CH ₃ CHF ₂	LB02	1163.0 ± 2.5	
19	Acetaldehyde	C_2H_4O	$CH_{3}C(H)=O$	KH96	407.716 ± 0.010	$V_6\!=\!-12.068\pm 0.037$
20	Thioacetaldehyde S-oxide	C_2H_4OS	$CH_{3}C(H)=S=O$	LB02	285.6 ± 0.3	Z isomer
21	Acetic acid	$C_2H_4O_2$	CH ₃ COOH	IA03	170.1742 ± 0.0002	$V_6\!=-6.4725\pm 0.0001$
22	Methyl formate	$C_2H_3DO_2$	CH ₃ OC(D)=O	LB02	400.60 ± 0.03	deuterated
23	Fluoroethane	C_2H_5F	CH ₃ CH ₂ F	FD83	1172.1 ± 1.4	
24	Nitrosoethane	C ₂ H ₅ NO	CH ₃ CH ₂ N=O	LB02	903 ± 25	gauche conformer
		C_2H_5NO	CH ₃ CH ₂ N=O	LB02	911 ± 25	cis conformer
25	Acetamide	C ₂ H ₅ NO	$CH_3C(NH_2)=O$	LB02	24.949 ± 0.008	
26	Difluorodimethylsilane	$C_2H_6F_2Si$	(CH ₃) ₂ SiF ₂	SG05	439.4 ± 2.5	

Hindered Internal Rotation

	N	Molecular		D (T <i>t</i> ()	C
	Name	Formula	Line Formula	Ref.	V_{3}/cm^{-1}	Comments
27	<i>N</i> -Nitrosodimethylamine	$C_2H_6N_2O$	$(CH_3)_2NN=O$	LB02	145.8 ± 0.25	cis CH ₃
		$C_2H_6N_2O$	$(CH_3)_2NN=O$	LB02	737.4 ± 13.3	trans CH ₃
28	Ethanol	C_2H_6O	CH ₃ CH ₂ OH	LB02	1173.76 ± 2.20	trans isomer
29	Dimethyl ether	C_2H_6O	(CH ₃) ₂ O	NH04	926.0 ± 3.5	
30	Dimethyl sulfide	C_2H_6S	$(CH_3)_2S$	NH04	751.1 ± 4.8	
31	Vinylsilane	C ₂ H ₆ Si	$SiH_{3}C(H)=CH_{2}$	SH82	520.1 ± 1.8	
32	Dimethyl disulfide	$C_{2}H_{6}S_{2}$	CH ₃ SSCH ₃	LB02	535.1 ± 1.8	
33	Dimethyl diselenide	$C_2H_6Se_2$	CH ₃ SeSeCH ₃	GG04	395 ± 2	
34	Dimethylsilane	C_2H_8Si	(CH ₃) ₂ SiH ₂	NH04	578.0 ± 3.5	
35	3,3,3-Trifluoropropene	$C_3H_3F_3$	$CF_{3}C(H)=CH_{2}$	ALL97	653.06 ± 0.83	
36	Methyl cyanoformate	$C_3H_3NO_2$	$CH_{3}OC(C=N)=O$	LB02	406.6 ± 1.1	s-trans conformer
37	(Methylthio)acetylene	$C_{3}H_{4}S$	CH ₃ SC=CH	DM87	592.0 ± 3.3	
38	1,1,1-Trifluoropropane	$C_3H_5F_3$	CH ₃ CH ₂ CF ₃	ALA97	922.2 ± 1.4	
39	2-Iodopropene	$C_{3}H_{5}I$	$CH_{3}C(I)=CH_{2}$	LB02	905.8 ± 4.2	
40	Ethyl isocyanide	$C_{3}H_{5}N$	$CH_3CH_2N=C$	LB02	1167.6 ± 18.2	
41	Propene	$C_{3}H_{6}$	$CH_{3}C(H)=CH_{2}$	LB02	697.499 ± 0.048	$V_6 = -13.0$ (fixed)
42	Propanal	$C_{3}H_{6}O$	$CH_3CH_2C(H)=O$	BW64	798 ± 39	cis conformer
43	Acetone	$C_{3}H_{6}O$	(CH ₃) ₂ C=O	G00	251.4 ± 2.6	$V_6 = -6.92 \pm 0.65$
44	(Methylthio)ethene	C ₃ H ₆ S	$CH_{3}SC(H)=CH_{2}$	MM01	1138 ± 13	
45	Propanoic acid	$C_3H_6O_2$	CH ₃ CH ₂ COOH	S75	819.0 ± 10.5	cis conformer
46	Methyl mercaptoacetate	C ₃ H ₆ O ₂ S	CH ₃ OC(=O)C(H ₂)SH	LB02	411 ± 8	state 0+
		C ₃ H ₆ O ₂ S	CH ₃ OC(=O)C(H ₂)SH	LB02	412 ± 9	state 0-
47	2-Bromopropane	C ₃ H ₂ Br	(CH ₃) ₂ CHBr	LB02	1437.0 ± 2.5	⁷⁹ Br
48	1-Chloropropane	C ₃ H ₂ Cl	CH ₃ C(H ₂)C(H ₂)Cl	LE97	1017.8 ± 1.4	gauche conformer
		C,H,Cl	$CH_{2}C(H_{2})C(H_{2})Cl$	LE97	966.0 ± 7.0	trans conformer
49	2-Chloropropane	C,H,Cl	(CH ₂),CHCl	LB02	1374.03 ± 1.00	³⁵ Cl
50	1-Fluoropropane	C_H_F	$CH_{2}C(H_{2})C(H_{2})F$	KD86	965.3 ± 12.2	gauche conformer
		C_H_F	$CH_{2}C(H_{2})C(H_{2})F$	KD86	948.5 ± 2.8	trans conformer
51	2-Fluoropropane	C_H_F	(CH ₂) ₂ CHF	LB02	1162.79 ± 0.84	
52	Butanenitrile	C.H.N	$CH_C(H_)C(H_)C \equiv N$	VD88	1087.4 ± 8.4	<i>gauche</i> conformer
		C.H.N	3 CH.C(H.)C(H.)C≡N	VD88	1088.5 ± 13.3	trans conformer
53	Propanamide	C H NO	CH CH C(=O)NH	MM96	761 + 42	svn conformer
54	N.N-Dimethylformamide	C.H NO	(CH) NC(H)=0	LB02	366.04 ± 0.26	cis CH.
		C H NO	$(CH_{3})_{2} + C(H) = 0$	LB02	772.4 ± 7.4	trans CH
55	Propane	сн	(CH) CH	BL85	1108.1 + 9.5	3
56	Cvclopropylgermane	C H Ge	$C(H_{a})C(H_{a})C(H)(GeH_{a})$	LB02	466.6 + 16.7	GeH
50	el eleptop) germane	0311800		2002	10010 - 1017	
57	N-Nitrosoethylmethylamine	C ₃ H ₈ N ₂ O	CH ₃ CH ₂ N(CH ₃)N=O	LB02	310 ± 30	<i>N</i> -methyl top, OGM conformer
58	1-Propanol	$C_{_3}H_{_8}O$	$CH_{3}C(H_{2})C(H_{2})OH$	DS81	956 ± 21	trans conformer
59	Cyclopropylsilane	C ₃ H ₈ Si	$C(H_2)C(H_2)C(H)(SiH_3)$	TB86	670.9 ± 1.5	
60	Dimethyl(methylene)silane	$C_{_3}H_{_8}Si$	$(CH_3)_2Si=CH_2$	LB02	351.4 ± 5.9	
61	Dimethyl methylphosphonate	$C_{3}H_{9}O_{3}P$	$(OCH_3)_2P(=O)CH_3$	SL02	662 ± 6	P-methyl top
		$C_{3}H_{9}O_{3}P$	$(OCH_3)_2P(=O)CH_3$	OH07	278.82 ± 0.06	O-methyl top #1
		$C_{3}H_{9}O_{3}P$	$(OCH_3)_2 P(=O)CH_3$	OH07	181.82 ± 0.01	O-methyl top #2
62	But-2-ynoyl fluoride	C_4H_3FO	$CH_{3}C=CC(F)=O$	LB02	2.20 ± 0.12	
63	cis-2-Butenenitrile	C_4H_5N	$CH_{3}C(H)=C(H)C\equiv N$	LB02	485.50 ± 0.25	
64	2-Methylacrylonitrile	C_4H_5N	$CH_2 = C(CH_3)C \equiv N$	LB02	695.2 ± 2.1	
65	2-Methyloxazole	C ₄ H ₅ NO	N=C(CH ₃)OC(H)=C(H)	LB02	251.70 ± 1.17	
66	4-Methyloxazole	C_4H_5NO	$N=C(H)OC(H)=C(CH_3)$	LB02	429.44 ± 0.33	

Hindered Internal Rotation

	Namo	Molecular	Line Formula	Dof	V /cm ⁻¹	Commonte
67	5 Mathylayazala		M = C(H)OC(CH) = C(H)	L BOD	V_{3} /cm ⁻¹	Comments
67			$\square = C(\Pi) \cup C(\Pi)$	LD02	477.90 ± 1.34	
68	5-Methylisoxazole	C_4H_5NO	$C(H)=NOC(CH_3)=C(H)$	LB02	272.05 ± 1.00	
69	2-Methylthiazole	C_4H_5NS	$N=C(CH_3)SC(H)=C(H)$	GH02	34.938 ± 0.020	
70	4-Methylisothiazole	C_4H_5NS	$N=C(H)C(CH_3)=C(H)S$	LB02	105.767 ± 0.043	
71	4-Methyl-2-oxetanone	$\mathrm{C_4H_6O_2}$	$OC(=O)C(H_2)C(H)(CH_3)$	LB02	1256.5 ± 10.5	
72	trans-1-Fluoro-2-butene	C_4H_7F	$CH_{3}C(H)=C(H)CH_{2}F$	LB02	596 ± 7	anticlinal conformer
73	1-Isocyanopropane	C_4H_7N	$CH_3C(H_2)C(H_2)N\equiv C$	LB02	1012.3 ± 8.4	gauche conformer
		C ₄ H ₇ N	$CH_{3}C(H_{2})C(H_{2})N\equiv C$	LB02	1033.8 ± 7.7	trans conformer
74	Isobutene	C_4H_8	(CH ₃) ₂ C=CH ₂	LB02	761.58 ± 1.05	
75	cis-2-Butene	C₄H.	CH,CH=CHCH,	LB02	259.89 ± 0.42	
76	3-Methoxy-1-propene	$C_4 H_8 O$	$CH_{3}OC(H_{2})C(H)=CH_{2}$	LB02	728.0 ± 10.5	<i>skew-gauche</i> conformer
		C_H_O	$CH_{2}OC(H_{2})C(H)=CH_{2}$	LB02	829.5 ± 10.5	syn-trans conformer
77	2,2-Dimethyloxirane	C_4H_8O	$OC(CH_3)(CH_3)C(H_2)$	LB02	945.61 ± 0.75	
78	cis-2,3-Dimethyloxirane	C_4H_8O	$OC(H)(CH_3)C(H)(CH_3)$	LB02	577.80 ± 1.84	cis conformer
		C_4H_8O	$OC(H)(CH_3)C(H)(CH_3)$	LB02	862.52 ± 1.84	trans conformer
79	2-Methyloxetane	C_4H_8O	$OC(H_2)C(H_2)C(H)(CH_3)$	LB02	1166.5 ± 4.9	
80	3-Methyloxetane	C_4H_8O	$OC(H_2)C(H)(CH_3)C(H_2)$	LB02	1149.4 ± 4.2	
81	3-Methoxythietane	C ₄ H ₈ OS	SC(H ₂)C(H)(OCH ₃)C(H ₂)	LB02	1071.0 ± 10.5	
82	3-(Methylthio)-1-propene	CHS	CH SC(H)C(H)=CH	LB02	619 ± 28	
83	2,2-Dimethylthiirane	C_4H_8S	$SC(CH_3)(CH_3)C(H_2)$	LB02	1268.3 ± 3.0	
84	Butane	C.H.	CH.C(H.)C(H.)CH.	LB02	948 ± 24	
85	N-Methyl-N-nitrosopropylamine	CHNO	CH C(H)C(H)N(CH)N=0	LB02	320 + 30	N-methyl top.
00		0 ₄ 11 ₁₀ 11 ₂ 0	0130(12)0(12)1(013)100	2202	020 2 00	conformer OMGA
86	Dihydro-3-methyl-2(3 <i>H</i>)-furanone	$C_5H_8O_2$	$OC(=O)C(H)(CH_3)C(H_2)C(H_2)$	LB02	913.8 ± 2.5	
87	Dihydro-4-methyl-2(3H)-furanone	$\mathrm{C_5H_8O_2}$	$OC(=O)C(H_2)C(H)(CH_3)C(H_2)$	CA96	1437.8 ± 8.4	
88	Dihydro-5-methyl-2(3 <i>H</i>)-furanone	$\mathrm{C_5H_8O_2}$	$OC(=O)C(H_2)C(H_2)C(H)(CH_3)$	CA96	1233.0 ± 4.2	
89	tert-Butyl isocyanate	C5H9NO	(CH ₃) ₃ C≡N=C=O	LB02	41.510 ± 0.015	(CH ₃) ₃ C group
90	Methyl <i>tert</i> -butyl ether	$C_{5}H_{12}O$	(CH ₃) ₃ COCH ₃	LB02	498.6 ± 1.5	O-methyl top
91	2-Methylcyclopentanone	$C_6H_{10}O$	$C(=O)C(H)(CH_3)C(H_2)C(H_2)C(H_2)$	LB02	844.2 ± 2.4	
92	3-Methylcyclopentanone	$C_6 H_{10} O$	$C(=O)C(H_2)C(H)(CH_3)C(H_2)C(H_2)$	LB02	1233.8 ± 1.7	
93	<i>tert</i> -Butyl ethyl ether	C,H,O	(CH ₂) ₂ COC(H ₂)CH ₂	LB02	1025 ± 3	ethyl CH,
94	2,4-Difluorotoluene	$C_7 H_6 F_2$	$C(H)=C(CH_3)C(F)=C(H)C(F)=C(H)$	LB02	204.04 ± 0.23	. 5
95	2-Chlorotoluene	C_7H_7Cl	$C(H)=C(H)C(Cl)=C(CH_3)C(H)=C(H)$	ND06	513.8 ± 2.7	³⁵ Cl
96	2,6-Dimethylpyridine	$C_7 H_9 N$	$C(H)=C(H)C(CH_3)=NC(CH_3)=C(H)$	LB02	98.24 ± 0.27	
97	1,2,2-Trimethylpropyl methylphosphonofluoridate	$C_7 H_{16} F O_2 P$	(CH ₃) ₃ CC(H)(CH ₃)OP(O)(F)CH ₃	SD04	821 ± 5	<i>P</i> -methyl top, conformer GD-I
		$C_7H_{16}FO_2P$	(CH ₃) ₃ CC(H)(CH ₃)OP(O)(F)CH ₃	SD04	738 ± 5	<i>P</i> -methyl top, conformer GD-II
98	Germyl azide	GeH ₃ N ₃	GeH ₃ -N=N≡N	GA89	86.598 ± 0.062	
99	Silylphospine	H ₅ PSi	SiH ₃ PH ₂	VR75	537.2 ± 14.0	

	Name	Molecular Formula	Line Formula	Ref.	V_3/cm^{-1}	Comments
1	Phosphine-trifluoroborane	BF ₃ H ₃ P	H ₃ PBF ₃	OK75	1169 ± 123	
2	Trihydro(phosphorus trifluoride)boron	BF ₃ H ₃ P	F ₃ PBH ₃	KL67	1134 ± 53	
3	Trihydro(phosphine)boron	BH ₆ P	H ₃ PBH ₃	DL73	864.5 ± 17.5	
4	Trifluoro(trifluoromethyl)silane	CF ₆ Si	CF ₃ SiF ₃	LJ72	489 ± 50	
5	Trifluoromethylgermane	CH ₃ F ₃ Ge	$CF_{3}GeH_{3}$	KW74	448 ± 53	
6	Trifluoromethylsilane	CH ₃ F ₃ Si	CH ₃ SiF ₃	ST06	414.147 ± 0.030	
7	Methylgermane	CH_6Ge	$CH_{3}GeH_{3}$	L59	433.6 ± 8.8	
8	Methylsilane	CH ₆ Si	CH ₃ SiH ₃	OM07	603.3878 ± 0.0037	
9	Methylstannane	CH ₆ Sn	CH ₃ SnH ₃	CB61	227 ± 10	
10	1,1,1-Trifluoroethane	$C_{2}H_{3}F_{3}$	CH ₃ CF ₃	WA02	1112.24 ± 0.16	
11	Ethane	$C_{2}H_{6}$	CH ₃ CH ₃	OM07	1013.28 ± 0.10	$V_6\!=\!8.798\pm 0.041$
12	Ethane-1,1,1 <i>-d</i> ₃	$C_2H_3D_3$	CH ₃ CD ₃	OM07	1001.876 ± 0.023	$V_6 = 9.328 \pm 0.018$
13	Ethane-d ₆	C_2D_6	CD ₃ CD ₃	OM07	989.946 ± 0.090	$V_6 = 9.51 \pm 0.10$
14	1-Silylpropyne	C3H6Si	CH ₃ C≡CSiH ₃	NY85	3.77 ± 0.70	
15	Trimethylchlorosilane	C3H9ClSi	(CH ₃) ₃ SiCl	MS02	576.9 ± 0.9	
16	2-Butyne	C_4H_6	CH ₃ C≡CCH ₃	LB97	6.067 ± 0.040	$V_6 = 0.1240 \pm 0.0144$
						$V_9 = -0.0916 \pm 0.0180$
17	Ethynyltrimethylgermane	$C_5H_{10}Ge$	(CH ₃) ₃ GeC≡CH	VG96	376.2 ± 16.7	
18	Disilane	H ₆ Si ₂	SiH ₃ SiH ₃	BM07	412.033 ± 0.010	

TABLE 2. Symmetric Top Potential Parameters