
∆rH° ∆rC°p
Buffer Reaction pK kJ mol–1 J mol–1 K–1

ACES HL± = H+ + L–, (HL = C4H10N2O4S) 6 .847 30 .43 –49
Acetate HL = H+ + L–, (HL = C2H4O2) 4 .756 –0 .41 –142
ADA H3L

+ = H+ + H2L
±, (H2L

 = C6H10N2O5) 1 .59
H2L

± = H+ + HL– 2 .48 16 .7
HL- = H+ + L2– 6 .844 12 .23 –144

2-Amino-2-methyl-1,3-propanediol HL+ = H+ + L, (L = C4H11NO2) 8 .801 49 .85 –44
2-Amino-2-methyl-1-propanol HL+ = H+ + L, (L = C4H11NO) 9 .694 54 .05 ≈–21
3-Amino-1-propanesulfonic acid HL = H+ + L–, (HL = C3H9NO3S) 10 .2
Ammonia NH +4 = H+ + NH3 9 .245 51 .95 8
AMPSO HL± = H+ + L–, (HL = C7H17NO5S) 9 .138 43 .19 –61
Arsenate H3AsO4 = H+ + H2AsO–

4 2 .31 –7 .8
H2AsO-

4 = H+ + HAsO2– 7 .05 1 .7
HAsO2-

4 = H+ + AsO3– 11 .9 15 .9
Barbital H2L = H+ + HL–, (H2L = C8H12N2O3) 7 .980 24 .27 –135

HL- = H+ + L2– 12 .8
BES HL± = H+ + L–, (HL = C6H15NO5S) 7 .187 24 .25 –2
Bicine H2L

+ = H+ + HL±, (HL = C6H13NO4) 2 .0
HL± = H+ + L– 8 .334 26 .34 0

Bis-tris H3L
+ = H+ + H2L

±, (H2L
 = C8H19NO5) 6 .484 28 .4 27

Bis-tris propane H2L
2+ = H+ + HL+, (L = C11H26N2O6) 6 .65

HL+ = H+ + L 9 .10
Borate H3BO3 = H+ + H2BO-–

3 9 .237 13 .8 ≈–240
Cacodylate H2L

+ = H+ + HL, (HL = C2H6AsO2) 1 .78 –3 .5
HL = H+ + L– 6 .28 –3 .0 –86

CAPS HL± = H+ + L–, (HL = C9H19NO3S) 10 .499 48 .1 57
CAPSO HL± = H+ + L–, (HL = C9H19NO4S) 9 .825 46 .67 21
Carbonate H2CO3 = H+ + HCO--–

3 6 .351 9 .15 –371
HCO-

3 = H+ + CO2– 10 .329 14 .70 –249
CHES HL± = H+ + L–, (HL = C8H17NO3S) 9 .394 39 .55 9
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This table contains selected values for the pK, standard molar 
enthalpy of reaction ∆rH°, and standard molar heat-capacity change 
∆rC°p for the ionization reactions of 64 buffers many of which are 
relevant to biochemistry and to biology .1 The values pertain to the 
temperature T = 298 .15 K and the pressure p = 0 .1 MPa .  The stan-
dard state is the hypothetical ideal solution of unit molality .  These 
data permit one to calculate values of the pK and of ∆rH° at tem-
peratures in the vicinity {T ≈ (274 K to 350 K)} of the reference tem-
perature θ = 298 .15 K by using the following equations2

 ∆rG°T = –RT lnKT = ln(10)·RT·pKT
 , (1)

 RlnKT = –(∆rG°θ /θ) + ∆rH°θ {(1/θ) – (1/T)} +  
  ∆rC°pθ {(θ/T) – 1 + ln(T/θ)},  (2)

 ∆rH°T = ∆rH°θ + ∆rC°pθ (T – θ) . (3)

Here, ∆rG° is the standard molar Gibbs energy change and K is 
the equilibrium constant for a reaction; R is the gas constant (8 .314 
472 J K–1 mol–1) .  The subscripts T and θ denote the temperature to 
which a quantity pertains, the subscript p denotes constant pres-

sure, and the subscript r denotes that the quantity refers to a re-
action . Combination of equations (1) and (2) yields the following 
equation that gives pK as a function of temperature:

pKT = –{R·ln(10)}–1[–{ln(10)·RT·pKθ  /θ } + ∆rH°θ {(1/θ ) – (1/T )}  
 + ∆rC°pθ {(θ /T ) – 1 + ln(T/θ )}] .  (4)

The above equations neglect higher order terms that involve 
temperature derivatives of ∆rC°p .  Also, it is important to recognize 
that the values of pK and ∆rH° effectively pertain to ionic strength  
I = 0 .  However, the values of pK and ∆rH° are almost always de-
pendent on the ionic strength and the actual composition of the 
solution .  These issues are discussed in Reference 1, which also 
gives an approximate method for making appropriate corrections .
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∆rH° ∆rC°p
Buffer Reaction pK kJ mol–1 J mol–1 K–1

Citrate H3L = H+ + H2L
–, (H3L = C6H8O7) 3 .128 4 .07 –131

H2L
- = H+ + HL2– 4 .761 2 .23 –178

HL2- = H+ + L3– 6 .396 –3 .38 –254
l-Cysteine H3L

+ = H+ + H2L, (H2L = C3H7NO2S) 1 .71 ≈–0 .6
H2L = H+ + HL– 8 .36 36 .1 ≈–66
HL- = H+ + L2– 10 .75 34 .1 ≈–204

Diethanolamine HL+ = H+ + L, (L = C4H11NO2) 8 .883 42 .08 36
Diglycolate H2L = H+ + HL–, (H2L = C4H6O5) 3 .05 –0 .1 ≈–142

HL- = H+ + L2– 4 .37 –7 .2 ≈–138
3,3-Dimethylglutarate H2L = H+ + HL-, (H2L = C7H12O4) 3 .70

HL- = H+ + L2– 6 .34
DIPSO HL± = H+ + L–, (HL = C7H17NO6S) 7 .576 30 .18 42
Ethanolamine HL+ = H+ + L, (L = C2H7NO) 9 .498 50 .52 26
N-Ethylmorpholine HL+ = H+ + L, (L = C6H13NO) 7 .77 27 .4
Glycerol 2-phosphate H2L = H+ + HL–, (H2L = C3H9NO6P) 1 .329 –12 .2 –330

HL– = H+ + L2– 6 .650 –1 .85 –212
Glycine H2L

+ = H+ + HL±, (HL = C2H5NO2) 2 .351 4 .00 –139
HL± = H+ + L– 9 .780 44 .2 –57

Glycine amide HL+ = H+ + L, (L = C2H6N2O) 8 .04 42 .9
Glycylglycine H2L

+ = H+ + HL±, (HL = C4H8N2O3) 3 .140 0 .11 –128
HL± = H+ + L– 8 .265 43 .4 –16

Glycylglycylglycine H2L
+ = H+ + HL±, (HL = C6H11N3O4) 3 .224 0 .84

HL± = H+ + L– 8 .090 41 .7
HEPES H2L

+ = H+ + HL±, (HL = C8H18N2O4S) ≈3 .0
HL± = H+ + L– 7 .564 20 .4 47

HEPPS HL± = H+ + L–, (HL = C6H20N2O4S) 7 .957 21 .3 48
HEPPSO HL± = H+ + L–, (HL = C9H20N2O5S) 8 .042 23 .70 47
l-Histidine H3L

2+ = H+ + H2L
+, (HL = C6H9N3O2) 1 .54 3 .6

H2L
+ = H+ + HL 6 .07 29 .5 176

HL = H+ + L- 9 .34 43 .8 –233
Hydrazine H2L

2+ = H+ + HL+, (L = H4N2) –0 .99 38 .1
HL+ = H+ + L 8 .02 41 .7

Imidazole HL+ = H+ + L, (L = C3H4N2) 6 .993 36 .64 –9
Maleate H2L = H+ + HL–, (H2L = C4H4O4) 1 .92 1 .1 ≈–21

HL- = H+ + L2– 6 .27 –3 .6 ≈–31
2-Mercaptoethanol HL = H+ + L–, (HL = C2H6OS) 9 .75 26 .2
MES HL± = H+ + L–, (HL = C6H13NO4S) 6 .270 14 .8 5
Methylamine HL+ = H+ + L, (L = CH5N) 10 .645 55 .34 33
2-Methylimidazole HL+ = H+ + L, (L = C4H6N2) 8 .01 36 .8
MOPS HL± = H+ + L–, (HL = C7H15NO4S) 7 .184 21 .1 25
MOPSO H2L

+ = H+ + HL±, (HL = C7H15NO5S) 0 .060
HL± = H+ + L– 6 .90 25 .0 ≈38

Oxalate H2L = H+ + HL–, (H2L = C2H2O4) 1 .27 –3 .9 ≈–231
HL– = H+ + L2– 4 .266 7 .00 –231

Phosphate H3PO4 = H+ + H2PO-
4 2 .148 –8 .0 –141

H2PO-
4 = H+ + HPO2-

4 7 .198 3 .6 –230
HPO2-

4 = H+ + PO3-
4 12 .35 16 .0 –242

Phthalate H2L = H+ + HL-, (H2L = C8H6O4) 2 .950 –2 .70 –91
HL- = H+ + L2– 5 .408 –2 .17 –295

Piperazine H2L
2+ = H+ + HL+, (L = C4H10N2) 5 .333 31 .11 86

HL+ = H+ + L 9 .731 42 .89 75
PIPES HL± = H+ + L–, (HL = C8H18N2O6S2) 7 .141 11 .2 22
POPSO HL± = H+ + L–, (HL = C10H22N2O8S2) ≈8 .0
Pyrophosphate H4P2O7 = H+ + H3P2O

–
7 0 .83 –9 .2 ≈–90

H3P2O
–

7 = H+ + H2P2O
2-
7 2 .26 –5 .0 ≈–130

H2P2O
2-
7 = H+ + HP2O

3-
7 6 .72 0 .5 –136

HP2O
3-
7 = H+ + P2O

4-
7 9 .46 1 .4 –141

Succinate H2L = H+ + HL–, (H2L = C4H6O4) 4 .207 3 .0 –121
HL– = H+ + L2– 5 .636 –0 .5 –217

Sulfate HSO–
4 = H+ + SO2-

4 1 .987 –22 .4 –258
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∆rH° ∆rC°p
Buffer Reaction pK kJ mol–1 J mol–1 K–1

Sulfite H2SO3 = H+ + HSO–
3 1 .857 –17 .80 –272

HSO–
3 = H+ + SO2-

3 7 .172 –3 .65 –262
TAPS HL± = H+ + L–, (HL = C7H17NO6S) 8 .44 40 .4 15
TAPSO HL± = H+ + L–, (HL = C7H17NO7S) 7 .635 39 .09 –16
l(+)-Tartaric acid H2L = H+ + HL–, (H2L = C4H6O6) 3 .036 3 .19 –147

HL– = H+ + L2– 4 .366 0 .93 –218
TES HL± = H+ + L–, (HL = C6H15NO6S) 7 .550 32 .13 0
Tricine H2L

+ = H+ + HL±, (HL = C6H13NO5) 2 .023 5 .85 –196
HL± = H+ + L– 8 .135 31 .37 –53

Triethanolamine HL+ = H+ + L, (L = C6H15NO3) 7 .762 33 .6 50
Triethylamine HL+ = H+ + L, (L = C6H15N) 10 .72 43 .13 151
Tris HL+ = H+ + L, (L = C4H11NO3) 8 .072 47 .45 –59
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