THERMODYNAMIC QUANTITIES FOR THE IONIZATION REACTIONS OF BUFFERS IN WATER

Robert N. Goldberg, Nand Kishore, and Rebecca M. Lennen

This table contains selected values for the $\mathrm{p} K$, standard molar enthalpy of reaction $\Delta_{\mathrm{r}} H^{\circ}$, and standard molar heat-capacity change $\Delta_{\mathrm{r}} C_{p}^{\circ}$ for the ionization reactions of 64 buffers many of which are relevant to biochemistry and to biology. ${ }^{1}$ The values pertain to the temperature $T=298.15 \mathrm{~K}$ and the pressure $p=0.1 \mathrm{MPa}$. The standard state is the hypothetical ideal solution of unit molality. These data permit one to calculate values of the $\mathrm{p} K$ and of $\Delta_{\mathrm{r}} H^{\circ}$ at temperatures in the vicinity $\{T \approx(274 \mathrm{~K}$ to 350 K$)\}$ of the reference temperature $\theta=298.15 \mathrm{~K}$ by using the following equations ${ }^{2}$

$$
\begin{align*}
& \Delta_{\mathrm{r}} G_{T}^{\circ}=-R T \ln K_{T}=\ln (10) \cdot R T \cdot \mathrm{p} K_{T} \tag{1}\\
& R \ln K_{T}=-\left(\Delta_{\mathrm{r}} G_{\theta}^{\circ} / \theta\right)+\Delta_{\mathrm{r}} H_{\theta}^{\circ}\{(1 / \theta)-(1 / T)\}+ \\
& \quad \Delta_{\mathrm{r}} C_{p \theta}^{\circ}\{(\theta / T)-1+\ln (T / \theta)\}, \tag{2}\\
& \Delta_{\mathrm{r}} H_{T}^{\circ}=\Delta_{\mathrm{r}} H_{\theta}^{\circ}+\Delta_{\mathrm{r}} C_{p \theta}^{\circ}(T-\theta) . \tag{3}
\end{align*}
$$

Here, $\Delta_{r} G^{\circ}$ is the standard molar Gibbs energy change and K is the equilibrium constant for a reaction; R is the gas constant (8.314 $472 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$). The subscripts T and θ denote the temperature to which a quantity pertains, the subscript p denotes constant pres-
sure, and the subscript r denotes that the quantity refers to a reaction. Combination of equations (1) and (2) yields the following equation that gives $\mathrm{p} K$ as a function of temperature:

$$
\begin{gather*}
\mathrm{p} K_{T}=-\{R \cdot \ln (10)\}^{-1}\left[-\left\{\ln (10) \cdot R T \cdot \mathrm{p} K_{\theta} / \theta\right\}+\Delta_{\mathrm{r}} H_{\theta}^{\circ}\{(1 / \theta)-(1 / T)\}\right. \\
\left.+\Delta_{\mathrm{r}} \mathrm{C}_{p \theta}^{\circ}\{(\theta / T)-1+\ln (T / \theta)\}\right] . \tag{4}
\end{gather*}
$$

The above equations neglect higher order terms that involve temperature derivatives of $\Delta_{\mathrm{r}} C_{p}^{\circ}$. Also, it is important to recognize that the values of $\mathrm{p} K$ and $\Delta_{\mathrm{r}} H^{\circ}$ effectively pertain to ionic strength $I=0$. However, the values of $\mathrm{p} K$ and $\Delta_{\mathrm{r}} H^{\circ}$ are almost always dependent on the ionic strength and the actual composition of the solution. These issues are discussed in Reference 1, which also gives an approximate method for making appropriate corrections.

References

1. Goldberg, R. N., Kishore, N., and Lennen, R. M., "Thermodynamic Quantities for the Ionization Reactions of Buffers," J. Phys. Chem. Ref. Data, 31, 231, 2002.
2. Clarke, E. C. W., and Glew, D. N., Trans. Faraday Soc., 62, 539-547, 1966.

Selected Values of Thermodynamic Quantities for the Ionization Reactions of Buffers in Water at $T=298.15 \mathrm{~K}$ and $p=0.1 \mathrm{MPa}$

			$\Delta_{r} H^{\circ}$	$\Delta_{\mathrm{r}} \mathrm{C}_{p}^{\circ}$
Buffer	Reaction	$\mathrm{p} K$	kJ mol ${ }^{-1}$	$\mathrm{J} \mathrm{mol}^{-1} \mathbf{K}^{-1}$
ACES	$\mathrm{HL}^{ \pm}=\mathrm{H}^{+}+\mathrm{L}^{-},\left(\mathrm{HL}=\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}\right)$	6.847	30.43	-49
Acetate	$\mathrm{HL}=\mathrm{H}^{+}+\mathrm{L}^{-},\left(\mathrm{HL}=\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}\right)$	4.756	-0.41	-142
ADA	$\mathrm{H}_{3} \mathrm{~L}^{+}=\mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{~L}^{ \pm},\left(\mathrm{H}_{2} \mathrm{~L}=\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{5}\right)$	1.59		
	$\mathrm{H}_{2} \mathrm{~L}^{+}=\mathrm{H}^{+}+\mathrm{HL}^{-}$	2.48	16.7	
	$\mathrm{HL}^{-}=\mathrm{H}^{+}+\mathrm{L}^{2-}$	6.844	12.23	-144
2-Amino-2-methyl-1,3-propanediol	$\mathrm{HL}^{+}=\mathrm{H}^{+}+\mathrm{L},\left(\mathrm{L}=\mathrm{C}_{4} \mathrm{H}_{11} \mathrm{NO}_{2}\right)$	8.801	49.85	-44
2-Amino-2-methyl-1-propanol	$\mathrm{HL}^{+}=\mathrm{H}^{+}+\mathrm{L},\left(\mathrm{L}=\mathrm{C}_{4} \mathrm{H}_{11} \mathrm{NO}\right)$	9.694	54.05	≈-21
3-Amino-1-propanesulfonic acid	$\mathrm{HL}=\mathrm{H}^{+}+\mathrm{L}^{-},\left(\mathrm{HL}=\mathrm{C}_{3} \mathrm{H}_{9} \mathrm{NO}_{3} \mathrm{~S}\right)$	10.2		
Ammonia	$\mathrm{NH}_{4}^{+}=\mathrm{H}^{+}+\mathrm{NH}_{3}$	9.245	51.95	8
AMPSO	$\mathrm{HL}^{ \pm}=\mathrm{H}^{+}+\mathrm{L}^{-},\left(\mathrm{HL}=\mathrm{C}_{7} \mathrm{H}_{17} \mathrm{NO}_{5} \mathrm{~S}\right)$	9.138	43.19	-61
Arsenate	$\mathrm{H}_{3} \mathrm{AsO}_{4}=\mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{AsO}_{4}^{-}$	2.31	-7.8	
	$\mathrm{H}_{2} \mathrm{AsO}_{4}^{-}=\mathrm{H}^{+}+\mathrm{HAsO}^{-}$	7.05	1.7	
	$\mathrm{HAsO}_{4}^{2-}=\mathrm{H}^{+}+\mathrm{AsO}^{3-4}$	11.9	15.9	
Barbital	$\mathrm{H}_{2} \mathrm{~L}=\mathrm{H}^{+}+\mathrm{HL}^{-},\left(\mathrm{H}_{2}^{4} \mathrm{~L}=\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}\right)$	7.980	24.27	-135
	$\mathrm{HL}^{-}=\mathrm{H}^{+}+\mathrm{L}^{2-}$	12.8		
BES	$\mathrm{HL}^{ \pm}=\mathrm{H}^{+}+\mathrm{L}^{-},\left(\mathrm{HL}=\mathrm{C}_{6} \mathrm{H}_{15} \mathrm{NO}_{5} \mathrm{~S}\right)$	7.187	24.25	-2
Bicine	$\mathrm{H}_{2} \mathrm{~L}^{+}=\mathrm{H}^{+}+\mathrm{HL}^{ \pm},\left(\mathrm{HL}=\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{NO}_{4}\right)$	2.0		
	$\mathrm{HL}^{ \pm}=\mathrm{H}^{+}+\mathrm{L}^{-}$	8.334	26.34	0
Bis-tris	$\mathrm{H}_{3} \mathrm{~L}^{+}=\mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{~L}^{ \pm},\left(\mathrm{H}_{2} \mathrm{~L}=\mathrm{C}_{8} \mathrm{H}_{19} \mathrm{NO}_{5}\right)$	6.484	28.4	27
Bis-tris propane	$\mathrm{H}_{2} \mathrm{~L}^{2+}=\mathrm{H}^{+}+\mathrm{HL}^{+},\left(\mathrm{L}=\mathrm{C}_{11} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{6}\right)$	6.65		
	$\mathrm{HL}^{+}=\mathrm{H}^{+}+\mathrm{L}$	9.10		
Borate	$\mathrm{H}_{3} \mathrm{BO}_{3}=\mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{BO}_{3}^{-}$	9.237	13.8	≈-240
Cacodylate	$\mathrm{H}_{2} \mathrm{~L}^{+}=\mathrm{H}^{+}+\mathrm{HL},\left(\mathrm{HL}=\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{AsO}_{2}\right)$	1.78	-3.5	
	$\mathrm{HL}=\mathrm{H}^{+}+\mathrm{L}^{-}$	6.28	-3.0	-86
CAPS	$\mathrm{HL}^{ \pm}=\mathrm{H}^{+}+\mathrm{L}^{-},\left(\mathrm{HL}=\mathrm{C}_{9} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{~S}\right)$	10.499	48.1	57
CAPSO	$\mathrm{HL}^{ \pm}=\mathrm{H}^{+}+\mathrm{L}^{-},\left(\mathrm{HL}=\mathrm{C}_{9} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{~S}\right)$	9.825	46.67	21
Carbonate	$\mathrm{H}_{2} \mathrm{CO}_{3}=\mathrm{H}^{+}+\mathrm{HCO}_{3}^{-}$	6.351	9.15	-371
	$\mathrm{HCO}_{3}^{-}=\mathrm{H}^{+}+\mathrm{CO}^{2-}$	10.329	14.70	-249
CHES	$\mathrm{HL}^{ \pm}=\mathrm{H}^{+}+\mathrm{L}^{-},\left(\mathrm{HLL}=\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{~S}\right)$	9.394	39.55	9

			$\Delta_{r} H^{\text {o }}$	$\Delta_{\mathrm{r}} \mathrm{C}_{p}^{\circ}$
Buffer	Reaction	$\mathrm{p} K$	kJ mol ${ }^{-1}$	$\mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$
Citrate	$\mathrm{H}_{3} \mathrm{~L}=\mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{~L}^{-},\left(\mathrm{H}_{3} \mathrm{~L}=\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}\right)$	3.128	4.07	-131
	$\mathrm{H}_{2} \mathrm{~L}^{-}=\mathrm{H}^{+}+\mathrm{HL}^{2-}$	4.761	2.23	-178
	$\mathrm{HL}^{2-}=\mathrm{H}^{+}+\mathrm{L}^{3-}$	6.396	-3.38	-254
L-Cysteine	$\mathrm{H}_{3} \mathrm{~L}^{+}=\mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{~L},\left(\mathrm{H}_{2} \mathrm{~L}=\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}_{2} \mathrm{~S}\right)$	1.71	≈-0.6	
	$\mathrm{H}_{2} \mathrm{~L}=\mathrm{H}^{+}+\mathrm{HL}^{-}$	8.36	36.1	~-66
	$\mathrm{HL}^{-}=\mathrm{H}^{+}+\mathrm{L}^{2-}$	10.75	34.1	≈-204
Diethanolamine	$\mathrm{HL}^{+}=\mathrm{H}^{+}+\mathrm{L},\left(\mathrm{L}=\mathrm{C}_{4} \mathrm{H}_{11} \mathrm{NO}_{2}\right)$	8.883	42.08	36
Diglycolate	$\mathrm{H}_{2} \mathrm{~L}=\mathrm{H}^{+}+\mathrm{HL}^{-},\left(\mathrm{H}_{2} \mathrm{~L}=\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{5}\right)$	3.05	-0.1	≈-142
	$\mathrm{HL}^{-}=\mathrm{H}^{+}+\mathrm{L}^{2-}$	4.37	-7.2	≈-138
3,3-Dimethylglutarate	$\mathrm{H}_{2} \mathrm{~L}=\mathrm{H}^{+}+\mathrm{HL},\left(\mathrm{H}_{2} \mathrm{~L}=\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}_{4}\right)$	3.70		
	$\mathrm{HL}^{-}=\mathrm{H}^{+}+\mathrm{L}^{2-}$	6.34		
DIPSO	$\mathrm{HL}^{ \pm}=\mathrm{H}^{+}+\mathrm{L}^{-},\left(\mathrm{HL}=\mathrm{C}_{7} \mathrm{H}_{17} \mathrm{NO}_{6} \mathrm{~S}\right)$	7.576	30.18	42
Ethanolamine	$\mathrm{HL}^{+}=\mathrm{H}^{+}+\mathrm{L},\left(\mathrm{L}=\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{NO}\right)$	9.498	50.52	26
N-Ethylmorpholine	$\mathrm{HL}^{+}=\mathrm{H}^{+}+\mathrm{L},\left(\mathrm{L}=\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{NO}\right)$	7.77	27.4	
Glycerol 2-phosphate	$\mathrm{H}_{2} \mathrm{~L}=\mathrm{H}^{+}+\mathrm{HL}^{-},\left(\mathrm{H}_{2} \mathrm{~L}=\mathrm{C}_{3} \mathrm{H}_{9} \mathrm{NO}_{6} \mathrm{P}\right)$	1.329	-12.2	-330
	$\mathrm{HL}^{-}=\mathrm{H}^{+}+\mathrm{L}^{2-}$	6.650	-1.85	-212
Glycine	$\mathrm{H}_{2} \mathrm{~L}^{+}=\mathrm{H}^{+}+\mathrm{HL}^{ \pm},\left(\mathrm{HL}=\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NO}_{2}\right)$	2.351	4.00	-139
	$\mathrm{HL}^{ \pm}=\mathrm{H}^{+}+\mathrm{L}^{-}$	9.780	44.2	-57
Glycine amide	$\mathrm{HL}^{+}=\mathrm{H}^{+}+\mathrm{L},\left(\mathrm{L}=\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}\right)$	8.04	42.9	
Glycylglycine	$\mathrm{H}_{2} \mathrm{~L}^{+}=\mathrm{H}^{+}+\mathrm{HL}^{ \pm},\left(\mathrm{HL}=\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{3}\right)$	3.140	0.11	-128
	$\mathrm{HL}^{ \pm}=\mathrm{H}^{+}+\mathrm{L}^{-}$	8.265	43.4	-16
Glycylglycylglycine	$\mathrm{H}_{2} \mathrm{~L}^{+}=\mathrm{H}^{+}+\mathrm{HL}^{ \pm},\left(\mathrm{HL}=\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{4}\right)$	3.224	0.84	
	$\mathrm{HL}^{ \pm}=\mathrm{H}^{+}+\mathrm{L}^{-}$	8.090	41.7	
HEPES	$\mathrm{H}_{2} \mathrm{~L}^{+}=\mathrm{H}^{+}+\mathrm{HL}^{ \pm},\left(\mathrm{HL}=\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}\right)$	≈ 3.0		
	$\mathrm{HL}^{ \pm}=\mathrm{H}^{+}+\mathrm{L}^{-}$	7.564	20.4	47
HEPPS	$\mathrm{HL}^{ \pm}=\mathrm{H}^{+}+\mathrm{L}^{-},\left(\mathrm{HL}=\mathrm{C}_{6} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}\right)$	7.957	21.3	48
HEPPSO	$\mathrm{HL}^{ \pm}=\mathrm{H}^{+}+\mathrm{L}^{-},\left(\mathrm{HL}=\mathrm{C}_{9} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}\right)$	8.042	23.70	47
L-Histidine	$\mathrm{H}_{3} \mathrm{~L}^{++}=\mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{~L}^{+},\left(\mathrm{HL}=\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{2}\right)$	1.54	3.6	
	$\mathrm{H}_{2} \mathrm{~L}^{+}=\mathrm{H}^{+}+\mathrm{HL}$	6.07	29.5	176
	$\mathrm{HL}=\mathrm{H}^{+}+\mathrm{L}^{-}$	9.34	43.8	-233
Hydrazine	$\mathrm{H}_{2} \mathrm{~L}^{2+}=\mathrm{H}^{+}+\mathrm{HL}^{+},\left(\mathrm{L}=\mathrm{H}_{4} \mathrm{~N}_{2}\right)$	-0.99	38.1	
	$\mathrm{HL}^{+}=\mathrm{H}^{+}+\mathrm{L}$	8.02	41.7	
Imidazole	$\mathrm{HL}^{+}=\mathrm{H}^{+}+\mathrm{L},\left(\mathrm{L}=\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~N}_{2}\right)$	6.993	36.64	-9
Maleate	$\mathrm{H}_{2} \mathrm{~L}=\mathrm{H}^{+}+\mathrm{HL}^{-},\left(\mathrm{H}_{2} \mathrm{~L}=\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}\right)$	1.92	1.1	≈-21
	$\mathrm{HL}^{-}=\mathrm{H}^{+}+\mathrm{L}^{2-}$	6.27	-3.6	≈-31
2-Mercaptoethanol	$\mathrm{HL}=\mathrm{H}^{+}+\mathrm{L}^{-},\left(\mathrm{HL}=\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}\right)$	9.75	26.2	
MES	$\mathrm{HL}^{ \pm}=\mathrm{H}^{+}+\mathrm{L}^{-},\left(\mathrm{HL}=\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{NO}_{4} \mathrm{~S}\right)$	6.270	14.8	5
Methylamine	$\mathrm{HL}^{+}=\mathrm{H}^{+}+\mathrm{L},\left(\mathrm{L}=\mathrm{CH}_{5} \mathrm{~N}\right)$	10.645	55.34	33
2-Methylimidazole	$\mathrm{HL}^{+}=\mathrm{H}^{+}+\mathrm{L},\left(\mathrm{L}=\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{~N}_{2}\right)$	8.01	36.8	
MOPS	$\mathrm{HL}^{ \pm}=\mathrm{H}^{+}+\mathrm{L}^{-},\left(\mathrm{HL}=\mathrm{C}_{7} \mathrm{H}_{15} \mathrm{NO}_{4} \mathrm{~S}\right)$	7.184	21.1	25
MOPSO	$\mathrm{H}_{2} \mathrm{~L}^{+}=\mathrm{H}^{+}+\mathrm{HL}^{ \pm},\left(\mathrm{HL}=\mathrm{C}_{7} \mathrm{H}_{15} \mathrm{NO}_{5} \mathrm{~S}\right)$	0.060		
	$\mathrm{HL}^{ \pm}=\mathrm{H}^{+}+\mathrm{L}^{-}$	6.90	25.0	≈ 38
Oxalate	$\mathrm{H}_{2} \mathrm{~L}=\mathrm{H}^{+}+\mathrm{HL}^{-},\left(\mathrm{H}_{2} \mathrm{~L}=\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4}\right)$	1.27	-3.9	~-231
	$\mathrm{HL}^{-}=\mathrm{H}^{+}+\mathrm{L}^{2-}$	4.266	7.00	-231
Phosphate	$\mathrm{H}_{3} \mathrm{PO}_{4}=\mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$	2.148	-8.0	-141
	$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}=\mathrm{H}^{+}+\mathrm{HPO}_{4}^{2-}$	7.198	3.6	-230
	$\mathrm{HPO}_{4}^{2-}=\mathrm{H}^{+}+\mathrm{PO}_{4}^{3-}$	12.35	16.0	-242
Phthalate	$\mathrm{H}_{2} \mathrm{~L}=\mathrm{H}^{+}+\mathrm{HL}^{-},\left(\mathrm{H}_{2} \mathrm{~L}=\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{O}_{4}\right)$	2.950	-2.70	-91
	$\mathrm{HL}^{-}=\mathrm{H}^{+}+\mathrm{L}^{2-}$	5.408	-2.17	-295
Piperazine	$\mathrm{H}_{2} \mathrm{~L}^{2+}=\mathrm{H}^{+}+\mathrm{HL}^{+},\left(\mathrm{L}=\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{~N}_{2}\right)$	5.333	31.11	86
	$\mathrm{HL}^{+}=\mathrm{H}^{+}+\mathrm{L}$	9.731	42.89	75
PIPES	$\mathrm{HL}^{ \pm}=\mathrm{H}^{+}+\mathrm{L}^{-},\left(\mathrm{HL}=\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{2}\right)$	7.141	11.2	22
POPSO	$\mathrm{HL}^{ \pm}=\mathrm{H}^{+}+\mathrm{L}^{-},\left(\mathrm{HL}=\mathrm{C}_{10} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~S}_{2}\right)$	≈ 8.0		
Pyrophosphate	$\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{7}=\mathrm{H}^{+}+\mathrm{H}_{3} \mathrm{P}_{2} \mathrm{O}_{7}^{-}$	0.83	-9.2	~-90
	$\mathrm{H}_{3} \mathrm{P}_{2} \mathrm{O}_{7}^{-}=\mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{P}_{2} \mathrm{O}_{7}^{2-}$	2.26	-5.0	≈-130
	$\mathrm{H}_{2} \mathrm{P}_{2} \mathrm{O}_{7}^{2-}=\mathrm{H}^{+}+\mathrm{HP}_{2} \mathrm{O}_{7}^{3-}$	6.72	0.5	-136
	$\mathrm{HP}_{2} \mathrm{O}_{7}^{3}=\mathrm{H}^{+}+\mathrm{P}_{2} \mathrm{O}_{7}^{4+}$	9.46	1.4	-141
Succinate	$\mathrm{H}_{2} \mathrm{~L}=\mathrm{H}^{+}+\mathrm{HL}^{-},\left(\mathrm{H}_{2} \mathrm{~L}=\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{4}\right)$	4.207	3.0	-121
	$\mathrm{HL}^{-}=\mathrm{H}^{+}+\mathrm{L}^{2-}$	5.636	-0.5	-217
Sulfate	$\mathrm{HSO}_{4}^{-}=\mathrm{H}^{+}+\mathrm{SO}_{4}^{2-}$	1.987	-22.4	-258

			$\Delta_{r} H^{\circ}$	$\Delta_{\mathrm{r}} \mathrm{C}_{p}^{\circ}$
Buffer	Reaction	$\mathrm{p} K$	kJ mol ${ }^{-1}$	$\mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$
Sulfite	$\mathrm{H}_{2} \mathrm{SO}_{3}=\mathrm{H}^{+}+\mathrm{HSO}_{3}^{-}$	1.857	-17.80	-272
	$\mathrm{HSO}_{3}^{-}=\mathrm{H}^{+}+\mathrm{SO}_{3}^{2-}$	7.172	-3.65	-262
TAPS	$\mathrm{HL}^{ \pm}=\mathrm{H}^{+}+\mathrm{L}^{-},\left(\mathrm{HL}=\mathrm{C}_{7} \mathrm{H}_{17} \mathrm{NO}_{6} \mathrm{~S}\right)$	8.44	40.4	15
TAPSO	$\mathrm{HL}^{ \pm}=\mathrm{H}^{+}+\mathrm{L}^{-},\left(\mathrm{HL}=\mathrm{C}_{7} \mathrm{H}_{17} \mathrm{NO}_{7} \mathrm{~S}\right)$	7.635	39.09	-16
L(+)-Tartaric acid	$\mathrm{H}_{2} \mathrm{~L}=\mathrm{H}^{+}+\mathrm{HL}^{-},\left(\mathrm{H}_{2} \mathrm{~L}=\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{6}\right)$	3.036	3.19	-147
	$\mathrm{HL}^{-}=\mathrm{H}^{+}+\mathrm{L}^{2-}$	4.366	0.93	-218
TES	$\mathrm{HL}^{ \pm}=\mathrm{H}^{+}+\mathrm{L}^{-},\left(\mathrm{HL}=\mathrm{C}_{6} \mathrm{H}_{15} \mathrm{NO}_{6} \mathrm{~S}\right)$	7.550	32.13	0
Tricine	$\mathrm{H}_{2} \mathrm{~L}^{+}=\mathrm{H}^{+}+\mathrm{HL}^{ \pm},\left(\mathrm{HL}=\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{NO}_{5}\right)$	2.023	5.85	-196
	$\mathrm{HL}^{+}=\mathrm{H}^{+}+\mathrm{L}^{-}$	8.135	31.37	-53
Triethanolamine	$\mathrm{HL}^{+}=\mathrm{H}^{+}+\mathrm{L},\left(\mathrm{L}=\mathrm{C}_{6} \mathrm{H}_{15} \mathrm{NO}_{3}\right)$	7.762	33.6	50
Triethylamine	$\mathrm{HL}^{+}=\mathrm{H}^{+}+\mathrm{L},\left(\mathrm{L}=\mathrm{C}_{6} \mathrm{H}_{15} \mathrm{~N}\right)$	10.72	43.13	151
Tris	$\mathrm{HL}^{+}=\mathrm{H}^{+}+\mathrm{L},\left(\mathrm{L}=\mathrm{C}_{4} \mathrm{H}_{11} \mathrm{NO}_{3}\right)$	8.072	47.45	-59

