DETERMINATION OF AN ACID BY TITRATION & POTENTIOMETRY

Sasha Payne N. Dias Quantitative Analysis Laboratory CHEM 334, Section L04 25 December 2035

Titration

Volumetric analysis

• $V_{titrant} M_{titrant} = N_{titrant} = n_{stoichiometry} N_{analyte}$

- Titrant
 - 0.1M NaOH
- Two unknowns
 - $KHC_8H_4O_{4(aq)} + NaOH_{(aq)} \rightarrow KNaC_8H_4O_{4(aq)} + H_2O_{(I)}$
 - $H_3PO_4 + 2NaOH \rightarrow Na_2HPO_4 + 2H_2O$
- Titrating weak acids with a strong base

Potentiometry

- Use of electrodes to measure voltages that provide chemical information
- Indicator electrode
 - Transfers electrons to or from analyte
 - Variable potential
- Reference electrode
 - Fixed composition
 - Constant potential
- Difference between electrodes under zero current flow = cell voltage

Instrumentation

- pH meter
 - Glass electrode
 - Ion-selective electrode
- Two reference electrodes measure electric potential difference across glass membrane
- Rinse and blot between measurements
- Store in aqueous solution to prevent dehydration of glass

J. Diverdi, CHEM 334 Quantitative Analysis Laboratory Handout: Determination of an Acid by Titration & Potentiometry, 2012.

Protocol

- Prepare NaOH solution
 - 50mL of 1M NaOH stock + 450mL DI water
- Standardize NaOH solution against dried KHP with phenolphthalein (3x)
- Calibrate pH meter by immersing into buffer solutions
- Prepare blank and analyte solutions
 - 50mL DI water
 - 0.35g unknown 461 + 50mL DI water
 - 0.5mL of ~1M phosphoric acid + 50mL DI water
- Titrate with pH meter and stir plate
 - Record data points every 0.2 change in pH

NaOH Standardization

- NaOH is not pure
 - $OH^- + CO_2 \rightarrow HCO_3^-$
 - Absorbed water
- Necessitates use of primary standard KHP
 - High purity
 - Low reactivity
 - Low hygroscopicity

NaOH Solution Concentration				
Average Concentration (M)	Propagate d Error (M)	95% C.I.	SD (M)	
0.1029	0.0003	±0.0004	0.0002	

1st and 2nd Derivatives

	Added NaOH at End Points		
	Sample 461	H ₃ PO ₄ 1	H ₃ PO ₄ 2
Graphically derived (mL)	9.33	6.00	12.06
Numerically derived (mL)	9.31	6.00	11.99

Concentration of Sample 461				
Weight %	Error (%)			
51.53	0.18			
Concentration of H ₃ PO ₄				
Concentration (M)	Error (M)			
1.236	0.025			

Discussion

- Advantages to potentiometric titration
 - Elimination of indicators and associated human error
 - Easily automated
- Disadvantages
 - Potentially less accessible than colorimetric titration
 - Time consuming
 - Susceptible to pH meter dysfunction