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64 Modern Analytical Chemistry

4B.3 Error and Uncertainty

error Analytical chemists make a distinction between error and uncertainty.” Error is the
A measure of bias in 3 result of difference between a single measurement or result and its true value. In other
measurement. words, error is a measure of bias. As discussed earlier, error can be divided into de-

terminate and indeterminate sources. Although we can correct for determinate

error, the indeterminate portion of the error remains. Statistical significance testing,

which is discussed later in this chapter, provides a way to determine whether a bias
o resulting from determinate error might be present.

‘uncersalnty Uncertainty expresses the range of possible values that a measurement or result
:‘;;::'f‘;:’:?‘“ib" e might reasonably be expected to have. Note that this definition of uncertainty is not

the same as that for precision. The precision of an analysis, whether reported as a
range or a standard deviation, is calculated from experimental data and provides an
estimation of indeterminate error affecting measurements, Uncertainty accounts for
all errors, both determinate and indeterminate, that might affect our result. Al-
though we always try to correct determinate errors, the correction itself is subject to
random effects or indeterminate errors.

To illustrate the difference between precision and un-
y . - certainty, consider the use of a class A 10-mL pipet for de-
iELIERR Experimentally Determined livering solutions. A pipet’s uncertainty is the range of
' Volumes Delivered by a 10-mL volumes in which its true volume is expected to lie. Sup-
ClassAPipet pose you purchase a 10-mL class A pipet from a labora-
Vol Volite tory supply company and use it without calibration. The

Dellvarad Delivered pipet’s tolerance v:flue o.f +0.02 mL (sce ?jahle 4.2)>r-=pre-
sents your uncertainty since your best estimate of its vol-
Trial (mL) Trial (mL) 2 SRR §

ume is 10.00 mL +0.02 mL. Precision is determined ex-

1 10.002 6 9.983 perimentally by using the pipet several times, measuring
2 9.993 7 9.991 the volume of solution delivered each time. Table 4.8
3 9.984 8 9.990 shows results for ten such trials that have a mean of 9.992
4 9.9% 9 9.988 mL and a standard deviation of 0.006. This standard devi-
5 9.989 10 9.999 ation represents the precision with which we expect 1o be

able to deliver a given solution using any class A 10-mL
pipet. In this case the uncertainty in using a pipet is worse
than its precision. Interestingly, the data in Table 4.8 allow
us to calibrate this specific pipet's delivery volume as 9.992 mL. If we use this vol-
ume as a better estimate of this pipet’s true volume, then the uncertainty is £0.006.
As expected, calibrating the pipet allows us to lower its uncertainty.

E Propagation of Uncertainty

Suppose that you nced to add a reagent to a flask by several successive transfers
using a class A 10-mL pipet. By calibrating the pipet (see Table 4.8), you know that
it delivers a volume of 9.992 mL with a standard deviation of 0.006 mL. Since the
pipet is calibrated, we can use the standard deviation as a measure of uncertainty.
This uncertainty tells us that when we use the pipet to repetitively deliver 10 mL of
solution, the volumes actually delivered are randomly scattered around the mean of
9.992 mL.

If the uncertainty in using the pipet once is 9.992 + 0.006 mL, what is the un-
certainty when the pipet is used twice? As a first guess, we might simply add the un-
certainties for each delivery; thus

(9.992 mL + 9.992 mL) £ (0.006 mL + 0.006 mL) = 19.984 + 0.012 mL
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It is easy to see that combining uncertainties in this way overestimates the total un-
certainty. Adding the uncertainty for the first delivery to that of the second delivery
assumes that both volumes are either greater than 9.992 mL or less than 9.992 mL.
At the other extreme, we might assume that the two deliveries will always be on op-
posite sides of the pipet’s mean volume, In this case we subtract the uncertainties
for the two deliveries,

(9.992 mL + 9.992 mL) + (0.006 mL — 0.006 mL) = 19.984 £ 0.000 mL

underestimating the total uncertainty.

So what is the total uncertainty when using this pipet to deliver two successive
volumes of solution? From the previous discussion we know that the total uncer-
tainty is greater than +0.000 mL and less than £0.012 mL. To estimate the cumula-
tive effect of multiple uncertainties, we use a mathematical technique known as the
propagation of uncertainty, Our treatment of the propagation of uncertainty is
based on a few simple rules that we will not derive. A more thorough treatment can
be found elsewhere.*

4C.1 AFew Symbols

Propagation of uncertainty allows us to estimate the uncertainty in a calculated re-
sult from the uncertainties of the measurements used to calculate the result. In the
equations presented in this section the result is represented by the symbol R and the
measurements by the symbols A, B, and C. The corresponding uncertainties are sg,
54, 3p, and sc. The uncertainties for A, B, and C can be reported in several ways, in-
cluding calculated standard deviations or estimated ranges, as long as the same form
is used for all measurements.

4C.2 Uncertainty When Adding or Subtracting

‘When measurements are added or subtracted, the absolute uncertainty in the result
is the square roat of the sum of the squares of the absolute uncertainties for the in-
dividual measurements. Thus, for the equations R=A + B+ CorR=A+ B-C, or
any other combination of adding and subtracting A, B, and C, the absolute uncer-
tainty in R is

sp =5} +sf + s 4.6

The class A 10-mL pipet characterized in Table 4.8 is used to deliver two
successive volumes. Calculate the absolute and relative uncertainties for the
total delivered volume.

soLution

The total delivered volume is obtained by adding the volumes of each delivery;
thus

Vipr =9.992 mL + 9,992 mL = 19.984 mL

Using the standard deviation as an estimate of uncertainty, the uncertainty in
the total delivered volume is

g = \"‘(0.006)1 +(0.006)" = 0.0085
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Thus, we report the volume and its absolute uncertainty as 19.984 + 0.008 mL.
The relative uncertainty in the total delivered volume is

0.0085
19.984

X 100 = 0.043%

4C.3 Uncertainty When Multiplying or Dividing

When measurements are multiplied or divided, the relative uncertainty in the result
is the square root of the sum of the squares of the relative uncertainties for the indi-
vidual measurements. Thus, for the equations R = A x Bx Cor R = A x B/C, or any
other combination of multiplying and dividing A, B, and C, the relative uncertainty

inRis
s (saY (Y (Y
R = ] 3A 2 2,
) () ()

I* The quantity of charge, Q, in coulombs passing through an electrical circuit is

Q=1Ixt

EXAMPLE 4.6

where I is the current in amperes and ¢ is the time in seconds. When a current
0f 0.15 + 0.01 A passes through the circuit for 120 £ 1 s, the total charge is

Q=(0.15A)x(1205) =18 C

Exam

Calculate the absolute and relative uncertainties for the total charge.
SOLUTION

Since charge is the product of current and time, its relative uncertainty is

fomY (1Y
2o 2 [ | = 200672
k& oas 120
or +6.7%, The absolute uncertainty in the charge is
sp=R % 0.0672 = (18) x (£0.0672) = +1.2

Thus, we report the total chargeas 18C £ 1 C.
|

4C.h Uncertainty for Mixed Operations

Many chemical calculations involve a combination of adding and subtracting, and
multiply and dividing. As shown in the following example, the propagation of un-
certainty is easily calculated by treating each operation separately using equations
4.6 and 4.7 as needed.
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e
X rora concentration technique the relationship between the measured signal
E and an analyte’s concentration is given by equation 4.5
g

Smeas = kCa + Sreag

~
L Calculate the absolute and relative uncertainties for the analyte’s concentration
if Sieas is 24.37 £ 0.02, Sregy i5 0.96  0.02, and k is 0.186 = 0,003 ppm-'.

SOLUTION
Rearranging equation 4.5 and solving for C,

Sincas — Sreag _ 24.37 - 0.96

Ca = ;
k 0.186 ppm”

=125.9 ppm

gives the analyte’s concentration as 126 ppm. To estimate the uncertainty in
Cy, we first determine the uncertainty for the numerator, Smeas — Sreags USing
equation 4.6

s = (0.02)% +(0.02) =0.028

The numerator, therefore, is 23.41 = 0.028 (note that we retain an extra
significant figure since we will use this uncertainty in further calculations). To
complete the calculation, we estimate the relative uncertainty in Cy using

equation 4.7, giving
—
| z 2
sk _ | 0.028 o[ 0003 — 0.0162
R {\23a1) " |oase

or a percent relative uncertainty of 1.6%. The absolute uncertainty in the
analyte’s concentration is

sp=(125.9 ppm) x (0.0162) = £2.0 ppm
giving the analyte’s concentration as 126 + 2 ppm.
—

4C.5 Uncertainty for Other Mathematical Functions

Many other mathematical operations are commonly used in analytical chemistry,
including powers, roots, and logarithms. Equations for the propagation of uncer-
tainty for some of these functions are shown in Table 4.9,

EXAMPLE 4.8

=k The pH of a solution is defined as
pH = —log[H"]

¢ where [H] is the molar concentration of H*. If the pH of a solution is 3.72
with an absolute uncertainty of +0.03, what is the [H*] and its absolute
uncertainty?

67
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SOLUTION
The molar concentration of H* for this pH is
[H']=10PH=1032 =191 x 10*M
or 1.9 x 10~ M to two significant figures. From Table 4.9 the relative
uncertainty in [H*] is

% = 2.303 X 54 = 2.303 x 0.03 = 0.069

and the absolute uncertainty is
{191 % 10 M) % (0.069) = 1.3x 105 M

We report the [H*] and its absolute uncertainty as 1.9 (0.1} x 10~ M.

—
e RN Propagation of Uncertainty
5 for Selected Functions?
Function sg
R=kA SR = iu_,.
R=A+B sw =5k +3h
R=A-B
R=AxB
g
B
R =1In(A)
SA
R = log(A) sp = 04343 %2
R=¢? % =54
R =104 2R = 23035,
R = Ak L, P
R A
Thy i Ssul Aand B are

) assume that thy
uncorrelated; that is, 5, is independent of s

LC.6 Is Calculating Uncertainty Actually Useful?

Given the complexity of determining a result’s uncertainty when several mea-
surements are involved, it is worth examining some of the reasons why such cal-
culations are useful. A propagation of uncertainty allows us to estimate an ex-
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pected uncertainty for an analysis. Comparing the expected uncertainty to that
which is actually obtained can provide useful information. For example, in de-
termining the mass of a penny, we estimated the uncertainty in measuring mass
as £0.002 g based on the balance’s tolerance. If we measure a single penny’s mass
several times and obtain a standard deviation of £0.020 g, we would have reason
to believe that our measurement process is out of control. We would then try to
identify and correct the problem.

A propagation of uncertainty also helps in deciding how to improve the un-
certainty in an analysis. In Example 4.7, for instance, we calculated the concen-
tration of an analyte, obtaining a value of 126 ppm with an absolute uncertainty
of £2 ppm and a relative uncertainty of 1.6%. How might we improve the analy-
sis so that the absolute uncertainty is only £1 ppm (a relative uncertainty of
0.8%)? Looking back on the calculation, we find that the relative uncertainty is
determined by the relative uncertainty in the measured signal (corrected for the
reagent blank)

G.Uj = 40,0012, or +0.12%
2341
and the relative uncertainty in the method’s sensitivity, k,

0.003
0.186

= 0,016, or +1.6%

Of these two terms, the sensitivity’s uncertainty dominates the total uncertainty.
Measuring the signal more carefully will not improve the overall uncertainty
of the analysis. On the other hand, the desired improvement in uncertainty
<can be achieved if the sensitivity’s absolute uncertainty can be decreased to
=0.0015 ppm-.

As a final example, a propagation of uncertainty can be used to decide which
of several procedures provides the smallest overall uncertainty. Preparing a solu-
tion by diluting a stock solution can be done using several different combina-
tions of volumetric glassware. For instance, we can dilute a solution by a factor
of 10 using a 10-mL pipet and a 100-mL volumetric flask, or by using a 25-mL
pipet and a 250-mL volumetric flask. The same dilution also can be accom-
plished in two steps using a 50-mL pipet and a 100-mL volumetric flask for the
first dilution, and a 10-mL pipet and a 50-mL volumetric flask for the second di-
lution. The overall uncertainty, of course, depends on the uncertainty of the
glassware used in the dilutions. As shown in the following example, we can use
the tol values for vol 1 to determine the optimum dilution
strategy.®

EXAMPLE 4.9

t=4 1.0 M stock solution provides the smallest overall uncertainty?

“ (a) A one-step dilution using a I-mL pipet and a 1000-mL volumetric
flask.

A

(b) A two-step dilution using a 20-mL pipet and a 1000-mL volumetric flask
for the first dilution and a 25-mL pipet and a 500-mL volumetric flask for
the second dilution.

69
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SOLUTION

Letting M, and M, represent the molarity of the final solutions from method
(a} and method (b), we can write the following equations.

(1.0 M)(1.000 mL)

L, = 0.0010M =
1000.0 mL

(1.0 M}{20.00 mL}{25.00 mL)

My =0.0010M =
(1000.0 mL)(500.0 mL})

Using the tolerance values for pipets and volumetric flasks given in Table 4.2,
the overall uncertainties in M, and M, are

| 2 %
R A, \ 1.000 1000.0
s osY (o0sY (o02Y.( 03 )
Rl o= l=| +| == +|==] +|——| =0002
R, Y2000 25.00 500.0 1000.0
Since the relative uncertainty for My, is less than that for M,, we find that the
two-step dilution provides the smaller overall uncertainty.

I The Distribution of Measurements and Results

An analysis, particularly a quantitative analysis, is usually performed on several
replicate samples. How do we report the result for such an experiment when results
for the replicates are scattered around a central value? To complicate matters fur-
ther, the analysis of each replicate usually requires multiple measurements that,
themselves, are scattered around a central value.

Consider, for example, the data in Table 4.1 for the mass of a penny. Reporting
only the mean is insufficient because it fails to indicate the uncertainty in measuring
a penny’s mass. Including the standard deviation, or other measure of spread, pro-
vides the necessary information about the uncertainty in measuring mass. Never-
theless, the central tendency and spread together do not provide a definitive state-
ment about a penny’s true mass. If you are not convinced that this is true, ask
yourself how obtaining the mass of an additional penny will change the mean and
standard deviation.

How we report the result of an experiment is further complicated by the need
to compare the results of different experiments. For example, Table 4.10 shows re-
sults for a second, independent experiment to determine the mass of a U.S. penny
in circulation, Although the results shown in Tables 4.1 and 4.10 are similar, they
are not identical; thus, we are justified in asking whether the results are in agree-
ment. Unfortunately, a definitive comparison between these two sets of data is not
possible based solely on their respective means and standard deviations.

Developing a meaningful method for reporting an experiment’s result requires
the ability to predict the true central value and true spread of the population under
investigation from a limited sampling of that population. In this section we will take
a quantitative look at how individual measurements and results are distributed
around a central value.
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