Absorption and Scattering of Light by Small Particles

Absorption and Scattering of Light by Small Particles

CRAIG F. BOHREN

Distinguished Professor of Meteorology The Pennsylvania State University

DONALD R. HUFFMAN

Regents Professor of Physics The University of Arizona

Wiley-VCH Verlag GmbH & Co. KGaA

All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.: Applied for

British Library Cataloging-in-Publication Data: A catalogue record for this book is available from the British Library

Bibliographic information published by Die Deutsche Bibliothek

Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data is available in the Internet at http://dnb.db.de.

© 1983 by John Wiley & Sons, Inc. Wiley Professional Paperback Edition Published 1998 © 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – nor transmitted or translated into machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Printed in the Federal Republic of Germany Printed on acid-free paper

Printing Strauss GmbH, Mörlenbach Bookbinding Litges & Dopf Buchbinderei GmbH, Heppenheim

ISBN-13: 978-0-471-29340-8 **ISBN-10:** 0-471-29340-7 To our families

When asked during the writing of this book what topic could divert us for so long from the pleasures of a normal life we would answer: "It is about how small particles absorb and scatter light." "My goodness," would be the response, "who could possibly be interested in that?" As it happens, scientists and engineers from a surprising variety of disciplines-solid-state physics, electrical engineering, meteorology, chemistry, biophysics, astronomy-make forays into this field, some never to escape. To completely satisfy such diverse groups, each with its peculiar conventions, notation, terminology, and canons, is an impossible task: physicists prefer the language of elementary excitations-phonons, plasmons, and all that; electrical engineers are more comfortable with the language of antennas and waveguides; chemists and biophysicists might not like either. We have therefore striven for the middle ground with the hope of, if not pleasing everyone, at least not antagonizing anyone. Ultimately, however, our point of view is that of physicists. Quantummechanical concepts are introduced where they serve to elucidate physical phenomena, but otherwise our approach is primarily classical.

Like so many other books, this one began its existence as lecture notes. Separately and jointly we have given lectures to graduate students and researchers with the kinds of diverse backgrounds and interests we expect our readers will have. Although more of an advanced monograph than a textbook, this book has a pedagogical flavor because of its origins. Indeed, many of the topics covered are in direct response to questions asked either in classrooms or by our colleagues.

There is one important idea, the *raison d'être* of this book, that we should like to implant firmly in the minds of our readers: scattering theory divorced from the optical properties of bulk matter is incomplete. Solving boundary-value problems in electromagnetic theory may be great fun and often requires considerable skill; but the full physical ramifications of mathematical solutions are hidden to those with little knowledge of how refractive indices of various solids and liquids depend on frequency, the values they take, and the constraints imposed on them. Accordingly, this book is divided into three parts.

Part 1, Chapters 1 through 8, is primarily scattering theory. After an introduction there is a chapter on those topics from electromagnetic theory essential to an understanding of the succeeding six chapters on exact and

approximate solutions to various scattering problems. Because uninterrupted strings of mathematical formulas tend to pall, computational and experimental results are interspersed throughout these chapters.

Bulk matter, rather than particles, is the subject of Part 2. In Chapter 9 we discuss classical theories of optical properties based on idealized models. Such models rarely conform strictly to reality, however, so Chapter 10 presents measurements for three representative materials over a wide range of frequencies, from radio to ultraviolet: aluminum, a metal; magnesium oxide, an insulator; and water, a liquid.

Part 3 is a marriage of Parts 1 and 2, the offspring of which are chapters on extinction (Chapter 11), surface modes (Chapter 12), and angular scattering (Chapter 13). Applications are not totally absent from the first thirteen chapters, but there is a greater concentration of them in Chapter 14.

We did not attempt an exhaustive list of references, even assuming that were possible. Instead, we concentrated on the years since publication of Kerker's book (1969), which cites nearly a thousand references. Even with this restriction we were selective, guided by our tastes rather than some ideal notion of completeness.

We avoided irritating statements such as "it can be shown"; while implying calm, they usually signal rough sailing ahead. Of course, we do not give all the details of lengthy derivations, but we do provide enough guideposts so that a reader can, with a bit of effort, duplicate our results. We always chose the simplest derivations, preferring physical plausibility over mathematical rigor. Those who demand the latter are reminded that one man's rigor is another man's mortis.

This book was not written with scissors: all derivations are our own, as are most of the figures, many of them generated with the computer programs in the appendixes. Even much of the experimental data was taken with an eye toward examples for the book. Any errors, therefore, are solely ours.

> CRAIG F. BOHREN DONALD R. HUFFMAN

University Park, Pennsylvania Tucson, Arizona January 1983 During much of the writing of this book I was a wandering scholar. At each institution I visited I widened the circle of those to whom I am indebted for suggestions, comments, and encouragement. Although fading memory prevents me from adequately expressing my gratitude to all of them, there are many whose contributions remain fixed in my mind.

Daya Gilra, my office-mate in the Department of Applied Mathematics and Astronomy at University College, Cardiff, Wales, suggested that I give a course of lectures on light scattering, the notes for which subsequently formed some of the raw material for this book. For this suggestion and for much more, I am grateful. My thanks also go to those who faithfully attended these lectures, particularly Harry Abadi and Indra Dayawansa, my collaborators, and Joachim Köppen. I would be remiss if I did not acknowledge the assistance of two members of the Pure Mathematics-Department at Cardiff, W. D. (Des) Evans and George Greaves.

Louis Battan provided me with a haven for over a year in the Institute of Atmospheric Physics at the University of Arizona, and his support of my endeavors has never flagged, although I have not always followed his sage advice. Sean Twomey was an incisive critic, a fertile source of ideas, and an arbiter of disputes. Without his constant goading—"how many pages did you write today, Craig?"—the writing of this book would have continued into the hereafter. Margaret Sanderson Rae patiently answered hundreds of questions about matters of style and scrutinized some of the first chapters to keep me from straying too far from good usage. E. Philip Krider and Michael Box also read parts of the manuscript, and I thank them for their suggestions.

At Arizona I was partly supported by the Department of Physics through the generosity of Robert Parmenter. I am also indebted to other members of this department, particularly John Kessler, Michael Scadron, Bernard Bell, Rein Kilkson, and William Bickel.

A grant from the Institute of Occupational and Environmental Health in Montreal, obtained through the kind assistance of George Wright, enabled me to return to Wales, where I worked with Vernon Timbrell in the Medical Research Council Pneumoconiosis Unit at Llandough Hospital. It was there that most of Chapter 8 was written as well as the first version of Appendix C.

ACKNOWLEDGMENTS

Further work on this book was undertaken at Los Alamos Scientific Laboratory, for which I must thank Paul Mullaney. I am also grateful to Gary Salzman, who helped in many ways, and to Sally Wilkins, who inspected the programs in the appendixes and made several suggestions for improving them; she is not, however, responsible for the numbers they produce.

My colleagues at Pennsylvania State University, Alistair Fraser, John Olivero, and Timothy Nevitt, are to be thanked for helping me to keep this book as free from errors as possible.

Others who deserve a word of thanks are Alfred Holland and Arlon Hunt.

At Wiley, Beatrice Shube, in the words of the Beatles, "was like a mum to us."

My gratitude is deepest, however, to Nanette Malott Bohren, who followed me without complaint on my wanderings, was neglected for over three years, but who nevertheless read every page of the manuscript—several times thereby improving its readability.

C.F.B.

For helping me to learn about the interaction of light with small particles I sincerely thank the other students and co-workers who have been my colleagues over the years: James L. Stapp, Terry Steyer, Roger Perry, Janice Rathmann, Otto Edoh, Lin Oliver, Wolfgang Krätschmer, and Kenrick Day. Special thanks are due to Arlon Hunt for the work we shared in the days when everything about small particles was new to us, exciting, and occasionally explosive.

D.R.H.

Contents

PART 1-BASIC THEORY

Chapter 1. Introduction, 3

1.1	Physical Basis for Scattering and Absorption	3
1.2	Scattering by Fluctuations and by Particles	4
1.3	Physics of Scattering by a Single Particle	7
1.4	Collections of Particles	9
1.5	The Direct and Inverse Problem	9
	Notes and Comments	11

Chapter 2. Electromagnetic Theory, 12

2.1	Field Vectors and the Maxwell Equations	12
2.2	Time-Harmonic Fields	14
2.3	Frequency-Dependent Phenomenological Coefficients	15
2.4	Spatial Dispersion	22
2.5	Poynting Vector	23
2.6	Plane-Wave Propagation in Unbounded Media	25
2.7	Reflection and Transmission at a Plane Boundary	30
2.8	Reflection and Transmission by a Slab	36
2.9	Experimental Determination of Optical Constants	41
2.10	The Analogy Between a Slab and a Particle	42
2.11	Polarization	44
	Notes and Comments	56

Chapter 3. Absorption and Scattering by an Arbitrary Particle, 57

3.1	General Formulation of the Problem	57
3.2	The Amplitude Scattering Matrix	61
3.3	Scattering Matrix	63
3.4	Extinction, Scattering, and Absorption	69
	Notes and Comments	81

Chapter 4. Absorption and Scattering by a Sphere, 82

4.1	Solutions to the Vector Wave Equations	83
4.2	Expansion of a Plane Wave in Vector Spherical Harmonics	89
4.3	The Internal and Scattered Fields	93
4.4	Cross Sections and Matrix Elements	101
4.5	Asymmetry Parameter and Radiation Pressure	119
4.6	Radar Backscattering Cross Section	120
4.7	Thermal Emission	123
4.8	Computation of Scattering Coefficients and Cross Sections	126
	Notes and Comments	129

Chapter 5. Particles Small Compared with the Wavelength, 130

5.1	Sphere Small Compared with the Wavelength	130
5.2	The Electrostatics Approximation	136
5.3	Ellipsoid in the Electrostatics Approximation	141
5.4	Coated Ellipsoid	148
5.5	The Polarizability Tensor	150
5.6	Anisotropic Sphere	152
5.7	Scattering Matrix	154

Chapter 6. Rayleigh-Gans Theory, 158

Amplitude Scattering Matrix Elements	158
Homogeneous Sphere	162
Finite Cylinder	163
Notes and Comments	165
	Homogeneous Sphere Finite Cylinder

Chapter 7. Geometrical Optics, 166

7.1	Absorption and Scattering Cross Sections	166
7.2	Angular Distribution of the Scattered Light: Rainbow Angles	174
7.3	Scattering by Prisms: Ice Crystal Haloes	178
	Notes and Comments	180

Chapter 8. A Potpourri of Particles, 181

8.1	Coated Sphere	181
8.2	Anisotropic Sphere	184
8.3	Optically Active Particles	185
8.4	Infinite Right Circular Cylinder	194
8.5	Inhomogeneous Particles: Average Dielectric Function	213
8.6	A Survey of Nonspherical Particles, Regular and Irregular	219
	Notes and Comments	222

CONTENTS

PART 2-OPTICAL PROPERTIES OF BULK MATTER

Chapter 9. Classical Theories of Optical Constants, 227

9.1	The Lorentz Model	228
9.2	The Multiple-Oscillator Model	244
	The Anisotropic Oscillator Model	247
	The Drude Model	251
9.5	The Debye Relaxation Model	259
	General Relationship Between ϵ' and ϵ''	265
	Notes and Comments	267

Chapter 10. Measured Optical Properties, 268

271
273
279
280
281
283

PART 3-OPTICAL PROPERTIES OF PARTICLES

Chapter 11. Extinction, 287

11.1	Extinction = Absorption + Scattering	287
11.2	Extinction Survey	289
11.3	Some Extinction Effects in Insulating Spheres	295
11.4	Ripple Structure	300
11.5	Absorption Effects in Extinction	305
11.6	Extinction Calculations for Nonspherical Particles	310
	Extinction Measurements	316
11.8	Extinction: A Synopsis	323
	Notes and Comments	324

Chapter 12. Surface Modes in Small Particles, 325

12.1	Surface Modes in Small Spheres	326
	Surface Modes in Nonspherical Particles	342
	Vibrational Modes in Insulators	357
12.4	Electronic Modes in Metals	369
	Notes and Comments	380

CONTENTS

Chapter 13. Angular Dependence of Scattering, 381

13.1	Scattering of Unpolarized and Linearly Polarized Light	381
13.2	Techniques of Measurement and Particle Production	389
13.3	Measurements on Single Particles	394
13.4	Some Theoretical and Experimental Results	397
13.5	Particle Sizing	403
13.6	Scattering Matrix Symmetry	406
13.7	Measurement Techniques for the Scattering Matrix	414
13.8	Some Results for the Scattering Matrix	419
13.9	Summary: Applicability of Mie Theory	427
	Notes and Comments	428

Chapter 14. A Miscellany of Applications, 429

14.1	The Problem of Optical Constants	430
14.2	Atmospheric Aerosols	434
14.3	Noctilucent Clouds	448
14.4	Rainfall Measurements with Radar	454
14.5	Interstellar Dust	4 57
14.6	Pressure Dependence of Intrinsic Optical Spectra	
	Using Small Particles	468
14.7	Giaever Immunological Slide	469
14.8	Microwave Absorption by Macromolecules	472

APPENDIXES COMPUTER PROGRAMS

Appendix A. Homogeneous Sphere, 477

Appendix B. Coated Sphere, 483

Appendix C. Normally Illuminated Infinite Cylinder, 491

References, 499

Index, 521