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SUMMARY

Mid-infrared (MIR) spectroscopy has been recognized as an important analytical
technique, and is widely applied for qualitative and quantitative analysis of materials with
an increasing interest in addressing complex organic or biologic constituents. In the
presented thesis, (a) the fundamental principles for IR spectroscopic applications via in
vivo catheters in combination with multivariate data analysis technique were developed,
and (b) the combination with a second analytical technique — scanning electrochemical
microscopy (SECM) - for enhancing the information obtained at complex or frequently

changing matrices was demonstrated.

The first part of this thesis focused on the combination of different MIR measurement
techniques with specific focus on evanescent field absorption spectroscopy along with
multivariate data analysis methods, for the discrimination of atherosclerotic and normal
rabbit aorta tissues. Atherosclerotic and normal rabbit aorta tissues are characterized by
marked differences in chemical composition governed by their water, lipid, and protein
content. Strongly overlapping infrared absorption features of the different constituents
and the complexity of the tissue matrix render the direct evaluation of molecular
spectroscopic characteristics obtained from IR measurements challenging for
classification. We have successfully applied multivariate data analysis and classification
techniques based on principal component analysis (PCA), partial least squares regression
(PLS), and linear discriminant analysis (LDA) to IR spectroscopic data obtained by

infrared attenuated total reflectance (IR-ATR) measurements, reflection IR microscopy,

XX



and a recently developed IR-ATR catheter prototype for future in vivo diagnostic
applications. Training and test data were collected ex vivo at atherosclerotic and normal
rabbit aorta samples. The successful classification results at atherosclerotic and normal
aorta samples utilizing the developed data evaluation routines reveals the potential of IR
spectroscopy combined with multivariate classification strategies for in vitro, and — in

future - in vivo applications.

The second part of this thesis aimed at the development of a novel multifunctional
analytical platform by combining SECM with single-bounce IR-ATR spectroscopy for in
situ studies of electrochemically active or electrochemically induced processes at the IR
waveguide surface via simultaneous evanescent field absorption spectroscopy. The utility
of the developed SECM-IR-ATR platform was demonstrated by spectroscopically
monitoring microstructured polymer depositions induced via feedback mode SECM
experiments using a 25um Pt disk ultramicroelectrode (UME). The surface of a ZnSe
ATR crystal was coated with a thin layer of 2,5-di-(2-thienyl)-pyrrole (SNS), which was
then polymerized in a Ru(bpy)s;*"-mediated feedback mode SECM experiment. The
polymerization reaction was simultaneously spectroscopically monitored by recording the
absorption intensity changes of specific IR bands characteristic for SNS, thereby
providing information on the polymerization progress, mechanism, and level of surface

modification.

Furthermore, a novel current-independent approach mechanism for positioning the UME

in aqueous electrolyte solution was demonstrated by monitoring IR absorption changes of

xx1



borosilicate glass (BSG) shielding the UME, and of water within the penetration depth of
the evanescent field. The experimental results demonstrated that the UME penetrates into
the exponentially decaying evanescent field extending several um above the ATR crystal
surface resulting in correlated intensity changes of the absorption spectra characteristic
for borosilicate glass or water. Consequently, current-independent positioning of the
UME close to the substrate surface and as required for SECM experiments is enabled

with the developed SECM-IR-ATR platform.

xxii



CHAPTER 1

INTRODUCTION

Thesis Objectives:

The objectives of this thesis were the development and application of mid-infrared
attenuated total reflection spectroscopy (IR-ATR) techniques for the in sifu analysis of
biological/biomedical samples, and their combination with scanning electrochemical
microscopy (SECM) for simultaneously obtaining localized -electrochemical and

spectroscopic information.

Original Contributions of This Thesis:

e Hollow waveguide IR-ATR (HWG-IR-ATR) and reflection IR spectroscopy were
combined with multivariate data analysis techniques for the classification of aorta
tissue samples, and was successfully applied to the identification of lesion and
normal rabbit aorta tissues. (Chapter 3)

e JR-ATR spectroscopy was combined with scanning electrochemical microscopy
(SECM), and the analytical capabilities of this combination were demonstrated by
simultaneous in situ optical monitoring of locally induced polymerization
processes of dithiophenylpyrrole (SNS) by feedback mode SECM. (Chapter 4)

e IR-ATR spectroscopy was introduced as a novel mechanism for determining the

distance between ultramicro electrodes and IR transparent substrates. (Chapter 5)



1.1 Chapter Overview
Chapter 2 of this thesis provides an overview on the background and theory of IR

spectroscopy and IR-ATR sensing principles.

Chapter 3 focuses on IR-ATR applications for the identification of atherosclerotic and

normal rabbit aorta tissue samples.

Chapter 4 describes the combination of SECM with IR-ATR spectroscopy, and
demonstrates the analytical capabilities of this analytical platform by studying the

dithiophenylpyrrole polymerization process as sample system.

Chapter 5 presents the concept of controlling the distance between UME and optically
transparent substrates via IR-ATR; mathematical modeling of the obtained signals along
with experiments spectroscopically monitoring the UME approach in air and liquid are

provided.

Chapter 6 summarizes the contributions of the presented studies, and provides an

outlook for the continuation of this work.

1.2 Biomedical Diagnosis by Optical Spectroscopy

Biological species usually comprise DNA/RNA, proteins, carbohydrates, lipids, and
water as main molecular constituents, which can be characterized by distinct features in
the optical spectral regime.'* Some prominent IR vibrational bands frequently

determined in biological samples are tentatively assigned and listed in Table 1.1."



Table 1.1: Assignment of vibrational bands frequently determined in biological FT-IR
1-3
spectra.

Frequency regime )
(em™) Assignment
~3800-3000 N-H str of proteins, O-H str of hydroxyl groups (eg. from water)
~3000-2900 C-H str (asym) of -CH,- and -CH; (eg. from lipids)
~2900-2800 C-H str (sym) of -CH,- and -CHj; (eg. from lipids)
~1800-1680 >C=0 str (eg. from DNA, carbonic acids and lipid esters)
~1700-1600 Amide I of proteins
~1600-1500 Amide II of proteins
~1350-1240 Amide III of proteins
~1250-1220 P=0 str (asym) of >PO,” phosphodiesters of DNA
~1200-900 C-0 and C-C str; C-O-H and C-O-C deformation of carbohydrates
~1090-1085 P=0 str (sym) of >PO,” phosphodiesters of DNA
~720 C-H rocking of >CH,

*str — stretching; asym — asymmetric; sym — symmetric.

The chemical composition and structure of cells, tissues, and the components of bio-
fluids of biological entities are subject to variations at the molecular level, if affected by
environmental factors, diseases, cancers, or other pathologies/abnormalities. Optical
spectroscopy not only differentiates cells and tissues based on their characteristic spectral
properties reflecting the chemical composition and structure, but has the potential to
serve as a diagnostic tool for detecting and discriminating different diseases or disease
progression due to the induced changes of chemical composition and structure in the
biological matrix. Conventional biomedical diagnostics such as studies of cancerous cell
or tissue are usually time consuming and labor intensive, and require expertise in sample
preparation, as well as in cytology, histology, and pathology. In contrast to these

traditional techniques, optical spectroscopy holds promise as a rapid, label-free analytical



strategy, which is potentially labor- and time- saving, and requires a minimum amount of
training, in particular if appropriate data processing and mining is an integral component
of a diagnostic system. The most widely applied optical spectroscopy techniques in

biomedical diagnosis are briefly described in the following text.

1.2.1 Fluorescence Spectroscopy

Fluorescence spectroscopy has been used to identify cells and tissues based on
endogenous or exogenous chromophores, either in vitro or in vivo.” It is currently
considered the most sensitive optical technique, with the potential for single-molecule

detection. '* !

However, fluorescence techniques provide limited discriminatory
information due to broad and frequently overlapping absorption and emission spectra

obtained from tissue chromophores, and therefore usually require distinct labeling of the

constituents of interest.*

1.2.2 Raman Spectroscopy

Raman spectroscopy is a viable alternative to IR spectroscopic techniques with
substantial advantages for aqueous or hydrated biological samples. '*'® While MIR
absorption spectroscopy is strongly affected by the vibrational signature of water,
aqueous matrices show negligible scattering effects, which is the fundamental mechanism
giving rise to Raman signatures in the same spectral regime providing signatures
complementary to IR data. However, Raman techniques are usually less sensitive, and

significantly slower in collecting high-resolution data.'’

1.2.3 Near-Infrared Spectroscopy



Near-infrared (NIR) spectroscopy is among the most common IR techniques currently
applied in biomedical diagnostic studies.'® NIR spectroscopy ideally complements mid-
infrared ' spectroscopy, as the absorption bands in the NIR regime ranging from
approximately 13,000-4000 cm™ result from overtones or combinations of the
fundamental vibrational modes excited in the MIR spectral range with the results that
NIR is usually much weaker and has unspecific features compared to mid-infrared
spectroscopy. 2° Water is the major molecular component within biological matrices, and
strongly affects the utility of selected electromagnetic spectral regimes due to strong O-H
absorptions, especially in the MIR region. However, water has a relatively broad
transmission window in the NIR, thereby enabling direct measurements of biological
specimen. However, despite the merits of operating in the NIR regime, the information
content and data interpretation of biological NIR spectra are frequently affected by

relatively weak and highly convoluted absorption features.*

1.2.4 Mid-Infrared Spectroscopy

MIR spectroscopy is based on the absorption of radiation in the range of approximately
4000-400 cm™”, and is currently considered among the most promising optical
spectroscopic techniques for applications requiring direct molecular selectivity in
biomedical diagnostics.”’ In contrast to NIR, fundamental vibrational transitions rather
than overtones are addressed in the MIR, providing inherently higher signal intensities
given the increased absorption cross-section. Furthermore, at wavelengths larger than 10
pum — also called the “fingerprint” regime - individual and combination vibrations of

molecular species provide unique absorption patterns for each constituent, which enable



direct constituent identification at a molecular level. A wide variety of MIR spectroscopy
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techniques have been applied to biomedical studies, including transmission and

reflection IR spectroscopy/microscopy,”* IR-ATR  techniques, °**' MIR

% and finally, fiber-optic evanescent wave (FEW)

mapping/imaging microscopy,
spectroscopic techniques utilizing IR-transparent fibers coupled to FT-IR spectrometers
or lasers.**! A potential disadvantage in the MIR regime results from rather pronounced
water absorptions prevalent in the 3-20 um spectral range. IR-ATR is a surface sensitive
analytical technique detecting molecular species via absorption spectroscopy within an
exponentially decaying evanescent field generated at the surface of an appropriate total
internal reflection (TIR) element.>® Hence, only molecules present within the analytical
volume probed in vicinity of the TIR element surface are detected. The volume is
determined by penetration depths of evanescent field extending up to a few micrometers
into the contacted sample surface or adjacent medium at MIR wavelengths. Of all MIR
techniques, IR-ATR is the most promising strategy to mitigate water matrix effects
without requiring sample dehydration, water signal subtraction, or the preparation of thin
sample slices for hydrated specimens. While this technology is certainly also useful in the
NIR regime, penetration depths at 1.5 um and below in the NIR significantly reduce the
analytically probed volume at the waveguide surface. The relative similarity of the
refractive index of commonly used NIR waveguide materials, such as e.g., silica, vs. the
adjacent aqueous sample matrix also contribute to this effect. Thus, ATR techniques in

the MIR appear particularly promising for studying biological samples with a minimum,

or ideally without any sample pretreatment.



With the development of more advanced optical fibers and waveguide technologies for

33,54 The combination of

radiation delivery and as active sensor heads in the MIR region,
IR-ATR with MIR waveguides has the potential to be applicable for in vivo diagnostics,

providing spectroscopic guidance during e.g., laser surgery.
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CHAPTER 2

BACKGROUND

In this Chapter, the fundamental principles of mid-infrared spectroscopy and attenuated

total reflection infrared (IR-ATR) spectroscopy are introduced.

2.1 Fundamentals of Mid-Infrared Spectroscopy

Optical spectroscopy utilizes the interaction of electromagnetic radiation with matter. The
MIR spectral range covers the electromagnetic frequency regime from approx. 4000 -
400 cm™', which enables excitation of vibrational or vibrational-rotational transitions of
molecules involving transitions from/to rotational and/or vibrational levels in the same
ground electronic state. ' MIR spectra are frequently characteristic of various functional
groups within a molecule, particularly in the so-called “fingerprint” regime (approx. 1200
- 400 cm ™), the vibrations of the related specific bonds show absorption patterns that are
highly substance specific. Consequently, MIR spectra can be used to determine the
chemical nature and molecular structure of a constituent. Since its introduction, MIR
spectroscopy has increasingly been recognized as an important analytical technique, and
has been applied widely in qualitative and quantitative analysis of materials including

organic, inorganic, and biological substances.

Commonly, IR spectra are measured in transmission-absorption mode with gas, liquid, or

solid phase samples. During the measurement, radiation propagates directly through the
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sample and is absorbed at frequencies where resonant energy transfer occurs. The
wavelength-dependant light reduction is calculated and defined as transmittance (7):

r-L

0

(Eq.2. 1)
where I is the intensity of incident radiation, and / is the intensity of radiation after
passing through the sample. For quantitative applications of IR spectroscopy, Eq. 2.1 is
usually rearranged and expressed as absorbance (4):

A=-log(T) = —log(liJ

0

(Eq.2.2)
For quantitative measurements, absorbance may also be defined by the Lambert-Beer

law:

(Eq. 2.3)
where ¢ is the absorptivity, C is the concentration, / is the thickness of sample (optical
path length of light through the sample). Therefore, equation 2.3 shows a linear
dependence of absorbance on the thickness of the sample, or more generally, the

absorption path length.

2.2 Fundamentals of Attenuated Total Reflection Spectroscopy

2.2.1 Principles of Attenuated Total Reflection Spectroscopy
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Attenuated total reflection (ATR) spectroscopy derives from internal reflection
spectroscopy, and was independently pioneered by Fahrenfort’ and Harrick® in the early
1960’s. When radiation propagates from an optically denser medium (refractive index 7;)
toward an optically rarer medium (refractive index n,, n; > n,), total internal reflection
will occur at the interface of the two media, if the radiation angle of incidence (6) is

exceeding the critical angle (6,.). The critical angle can be defined as a function of the

. 4 n
0. =sin"'| 2
n

At each reflection, an evanescent field is extending into the adjacent optically rarer

refractive indices of two media:

Eq. 2.4

medium. This evanescent field may be described as a standing electric wave normal to
the interface of the two media, and results from the superposition of the electric fields of
the incident and reflected waves. The amplitude of this standing electric wave (E)

exponentially decays with distance from the interface following”:

Eq.2.5
where Ej is the amplitude of the electric field at the interface (z = 0), z is the distance
from the interface, and d, is the penetration depth. The penetration depth (d,) is defined
as the distance where the amplitude of the electric field is 1/e of Ey, which is a function of

refractive indices n; and n,, the incidence angle 6, and the wavelength of the radiation 5
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Eq.2.6

The principle of TIR is schematically shown in Figure 2. 1.

Figure 2. 1: Schematic representation of the TIR principle.

If the optically rarer medium — or constituents therein - is absorbing IR radiation,
attenuated total reflection (ATR) is resulting at characteristic wavelengths corresponding
to the vibrational resonant frequency. One of the main advantages of ATR spectroscopy
is the fact that absorption spectra can be obtained at highly absorptive and/or scattering
samples, such as turbid liquids or powder samples, given the minimal penetration into an

otherwise opaque medium.

2.2.2 IR-ATR Waveguides
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The availability of different IR-ATR waveguide materials and geometries contributes to
the development of a variety of IR-ATR sensing schemes. IR-ATR waveguides
commonly include IR transparent optical fibers and ATR crystals. The former are
typically made from materials including but not limited to silver halides (AgX), sapphire
(AL,03), and chalcogenides (AsSeTe glasses)” *; the latter are typically made from zinc

12 The physical

selenide (ZnSe), zinc sulfide (ZnS), Germanium (Ge), and silicon (Si)
properties and wavelength dependant transmittance of optical waveguides determines or
limits their applicability for certain samples. The geometry and the dimensions (e.g.,
thickness, length, etc.) of optical waveguides can be adjusted to fulfill individual
measurement requirements. In this thesis, prisms and hemispheres made from ZnSe were

utilized for the development of different IR-ATR sensing instruments for a variety of

applications.
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CHAPTER 3
IDENTIFICATION OF ATHEROSCLEROTIC AND NORMAL

RABBIT AORTA TISSUES USING IR SPECTROSCOPY

In this chapter, a custom-built IR-ATR catheter prototype, commercially available
reflectance microspectroscopy and IR-ATR spectroscopy were combined with
multivariate data analysis techniques for the in situ identification of atherosclerotic and
normal rabbit aorta tissues. Also presented is a background on artery atherosclerosis and
specific multivariate data analysis techniques utilized in this thesis, such as principal
component analysis (PCA), principle component regression (PCR), partial least square-

discriminant analysis (PLS-DA), and Mahalanobis distance.

3.1 Motivation

Hooper et al. have demonstrated an IR-ATR catheter system coupled with a free electron
laser (FEL) emitting in the MIR range that enables in vitro ablation of atherosclerotic
lesion plaques in their natural state, facilitating a controlled ablation depth by evenascent
field penetration. This technique has the potential to deliver MIR laser radiation into the
body for minimally invasive surgical procedures (Figure 3.1)." ? In order to ablate the
lesion spot properly, lesion spot detection technique(s) are necessary to guide positioning
of such IR-ATR catheters. The main components of this system are hollow glass
waveguides (HWGs) and an ATR crystal tip, which are capable, respectively, of
delivering and guiding FEL and IR radiation. By using the evanescent wave for ablation,

the potential for damage to underlying or adjacent tissue is significantly reduced, if not
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eliminated. In addition, IR-ATR is particularly appropriate for the analysis of biological
samples, as previously shown.*** Hence, in principle laser coupled IR-ATR techniques
have the potential to simultaneously ablate lesion spots that were in situ chemically
identified by MIR spectroscopy/sensing during the same procedure. However, strongly
overlapping infrared absorption features of different constituents, and the complexity of
the tissue matrix usually render the direct evaluation of molecular spectroscopic
characteristics obtained from such optical measurements challenging during tissue
identification. Sophisticated multivariate data analysis technique have the power to
deconvolute such complex signatures, and enable extracting the information of interest
from highly convoluted spectra.’ The aim of the studies presented herein was to reveal
the potential of IR spectroscopy combined with multivariate classification strategies for

in situ identification of atherosclerotic and normal aorta tissues during in vitro, and — in

24,25

future - in vivo applications.

Figure 3.1: Scheme of an IR-ATR catheter for atherosclerotic lesion ablation. FEL — free
electron laser; HWG — hollow glass waveguide.

3.2 Introduction
Histochemical analysis is the classical method to study atherosclerotic lesions, and their
pathophysiological progression. However, this method usually requires trained personnel

for the sample preparation, which includes slicing from artery wall tissue, and staining

21



for optical microscopy, thereby rendering this procedure complex, time-consuming, and
limited to in vitro conditions.

In biomedical diagnostics, optical spectroscopy is a powerful characterization tool
sensitive to the variation of the molecular composition of the matrix, and has been
applied for rapid classification of cell and tissue samples.**>” Recent studies have shown
that the vulnerability of the atherosclerotic plaque is largely dependant on its chemical
composition and ultrastructure.®®  Different spectroscopic techniques, including
fluorescence spectroscopy, Raman specrtroscopy, and near-infrared (NIR) spectroscopy
have been used for characterizing normal tissues and plaques in human artery samples.
Fluorescence spectroscopy has been used to study normal and atherosclerotic tissues

. 39-52
based on endogenous or exogenous tissue chromophores

, thereby successfully
classifying normal and plaque artery tissues in vitro. In a more recent study, Marcu’s
group demonstrated a catheter based time-resolved fluorescence spectroscopy technique
that can differentiate and demark macrophage content versus collagen content in a rabbit
atherosclerotic model in vivo™. Lucas group also developed a catheter-based fluorescence
emission analysis technique and detected Russell’s viper venom induced atherosclerotic
plaque disruption in rabbit models both in vitro and in vivo™. The same fluorescence
technique was also utilized by Lucas group for the analysis of quantitative changes in
collagen and elastin during arterial remodeling in rabbit in vivo models™. However,
fluorescence techniques provide limited discriminatory information due to broad and
frequently overlapping absorption and emission spectra obtained from tissue

chromophores. NIR FT-Raman has extensively been applied for qualitative and

quantitative studies on the chemical composition of atherosclerotic plaques, and appears
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to be among the most promising techniques at present for the identification of vulnerable

38, 56-65
plaques™

. Until recently, in vivo Raman spectroscopy techniques have greatly
improved for successful intravascular detection. The group of van der Laarse has
employed commercially available fiber-optic probes (Visionex), and has obtained high
quality in vivo Raman spectra for the characterization of artery walls in lamb and sheep.’”
Further progress on in vivo detection was achieved by the Feld group, which has
developed an optical fiber probe based Raman system.®® They demonstrated the first real-
time collection of Raman spectra of human atherosclerosis in vivo. In addition, a variety
of IR spectroscopic techniques including diffuse reflectance NIR spectroscopy®” ®’,
conventional transmission Fourier transform infrared (FT-IR) spectroscopy’’, IR-ATR
spectroscopy’, and FT-IR microscopy23 have been used for characterizing and identifying
atherosclerotic plaques. Different spectroscopic mapping/imaging techniques including
fluorescence’', Raman’?, reflectance NIR”, transmission FT-IR microscopy’, and IR-
ATR* have also been used to characterize atherosclerotic plaques. Among the imaging
techniques, micro-ATR FT-IR imaging* demonstrated by Colley et al. has the merits of
enhanced sensitivity, and much faster acquisition times compared to Raman imaging, and
much higher resolution compared to other FT-IR imaging techniques. In Colley’s study,
the cross sections of atherosclerotic rabbit arteries were analyzed with a spatial resolution
of 3-4 um at the cellular level. Furthermore, the distribution heterogeneity of cholesterol
esters in plaque was revealed during these studies. Higher concentrations of cholesterol
and its ester in atherosclerotic plaque in contrast to normal artery tissue™ have also been

confirmed by the IR techniques mentioned above. Among these techniques, ATR

methods are of particular interest due to their lack of dependence on the sample
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thickness, which renders them ideal for thick, strongly absorbing, or possibly opaque
materials such as tissue. In addition, ATR techniques are suitable for miniaturization,
providing the potential to obtain spectroscopic signals and diagnostic information in vivo,

if coupled with appropriate fiber optic signal delivery systems.

All data presented in this study were obtained from intact aorta samples, and all spectra
were generated from the inner surface of the intima. Atherosclerotic and normal rabbit
aorta samples show a significant difference in chemical composition governed by the
water, lipid, and protein content.”” However, initial IR studies by our group at rabbit
aorta samples, especially hydrated samples, revealed that the difference between plaque
and normal aorta tissue is very subtle due to the averaging of the spectra across the
measured areas. Therefore, tissue classification by direct evaluation of the spectroscopic
differences is virtually impossible. Principle components analysis (PCA) was combined
with Raman spectroscopy in a study by Deinum et al. to identify three classes of human
coronary artery.®’ Discriminant analysis using Mahalanobis distance was applied on PCA
scores extracted from Raman spectra of human artery tissue, and were classified into
three categories. Dao et al. and Weinmann et al. coupled partial least square (PLS)
regression algorithms with Raman spectroscopy for quantifying the cholesterol and

cholesterol ester concentration in human and rabbit aorta tissue’

, which was suitable
for identifying lipid-rich plaques prone to disruption. In the present study, instead of
evaluating a few individual spectroscopic features for the identification of rabbit aorta

samples, multivariate data analysis strategies were adopted. In particular, we have applied

PCA/PCR, partial least squares discriminant analysis (PLS-DA) and linear discriminant
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analysis (LDA) along with Mahalanobis distance calculations to IR data obtained via an
IR-ATR catheter prototype and IR reflection spectroscopy. In the presented work, we
show that IR-ATR spectroscopy combined with multivariate classification techniques has
the potential for in sifu identification of atherosclerotic and normal aorta tissue, which
provides a sound basis for the development of in vivo IR diagnostic devices integrated

into a catheter format.

3.3 Background

3.3.1 Mechanisms of Atherosclerosis

Atherosclerosis is a disease condition of arteries where the fatty materials and plaque are
deposited at the inner wall of the blood vessel resulting in the narrowing of the arterial
lumen, and eventual blocking of the blood flow.” The top graph in Figure 3.2 shows a
schematic view of an artery wall section, which consists of three layers: inner layer —
intima (endothelium), middle layer - media (muscle cells and elastic fiber), and outer
layer - adventitia (connective tissue, collagen, and elastic fiber). The inner wall of normal
arteries has a smooth texture. During atherosclerotic plaque development, the artery
thickens and becomes less elastic. At the bottom of Figure 3.2, graphs (a — d)
schematically describe atherosclerotic plaque development. At the very early stage (a),
the monocytes move into the intima through injury to the inner lining. Inside the artery
wall, they are transformed into foam cells, which are cholesterol/cholesterol ester-rich.
Once the foam cells die, they release fatty materials forming extracellular lipid (b). At
more advanced development stages, smooth muscle cells move from the media layer into
the intima (c). Usually, only some of the plaques rupture and produce damage to

individuals.
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Figure 3.2: (top) — Schematic of the artery structure; (bottom) — Atherosclerotic plaque
development process: (a) monocyte enters intima and artery starts thickening; (b)
extracellular lipid forms; (c) muscle cell enters intima; (d) thrombus forms.
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After rupture, platelets adhere to the lipid pool in the plaque, and cause the formation of a
thrombus. Some of the thrombi may become free-travelers flowing with the blood stream,
and lodge in the thin arteries resulting in a sudden and complete blockage of the blood

flow in these vessels.

Some plaques could grow thick enough to block the lumen. In addition, the free thrombi
have the fatal risk of sudden death. It is important to detect and remove the plaques at

early stages to prevent the blood flow block or sudden death.

3.3.2 Multivariate Data Analysis

Multivariate data analysis (a.k.a., chemometrics) utilizes mathematical, statistical, and
computer sciences to efficiently extract useful information from data generated via
chemical measurements. Multivariate data analysis can be roughly divided into

multivariate classification (pattern recognition) and multivariate regression techniques.”®

79

The pattern recognition techniques can be further divided into two categories: supervised
and unsupervised learning procedures. For both, a sufficiently large training set of well-
defined samples is required to build a robust model. In unsupervised pattern recognition,
no a priori knowledge about the training set samples class membership is required.
Hence, samples will be grouped into a number of classes with certain communalities
without initial qualification of the samples or their class assignment. Thereby, even

without initial knowledge on the expected differences, structure within certain data sets
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may be recognized. On the contrary, supervised pattern recognition requires a priori
knowledge of the classes contained within the training samples, i.e., which sample
belongs to which class such as (e.g., clearly identifying samples from disease cases vs.
samples from healthy cases). Consequently, unsupervised pattern recognition techniques
are exploratory methods for data analysis, which seek inherent similarities of data, and
group data in a ‘natural’ way. Using this data analysis technique, unexpected grouping
within a training sample set may be discovered that may not be initially evident, e.g., that
a group of disease-related samples might additionally separate into two or more distinctly
different classes. Supervised pattern recognition techniques are different, as they group
data into predefined classes already identified during the training procedures, thereby
allowing a more precise classification within the class boundaries. Clearly, each approach

has strength and weaknesses, and its appropriate applications.

Multivariate regression is frequently applied to analyze one or multiple constituents in a
complex sample that are subject to significantly overlapping analytical signals. A training
data set with known concentrations of interest is used to build a calibration model;
consequently, the concentration levels in unknown samples are predicted based on the
established model. In general, sufficient accuracy and robustness of classification and
predictive regression models have to be evaluated with an appropriate set of validation
samples prior to the analysis of unknowns. In the following, several pattern recognition

methodologies and one regression method utilized in this work are briefly introduced.

3.3.2.1 Principal Component Analysis (PCA)
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PCA is a commonly applied unsupervised pattern recognition technique based on
evaluating the total variances within a data set via eigenanalysis, which provides two
distinct benefits. First, it is a powerful data reduction technique that can condense the
original data with a large number of initial variables to a dataset with only a few variables
reflecting the most relevant analytical information. Simply summarizing, by transforming
the coordinate system of the (multi-dimensional) data set generated by the analytical
measurement (e.g., MIR spectra) into a coordinate system representing the orthogonal
directions of largest variances within the data set, the usually rather large number of
variables contributing to the total variance is reduced to a much smaller set of so called
principal components (PCs). This operation is graphically demonstrated in Figure 3.3.
This - and similar - data reduction processes are the fundamental basis of many
multivariate data analysis techniques, with the main advantage that classification and
regression of unknowns in this transformed coordinate system is processed much faster
given much fewer relevant variables. Secondly, PCA assists in resolving overlapping
spectral features, as rather than selecting an individual wavelength for constituent-
specific evaluation, variance across the entire spectral range or within selected frequency
regimes is taken into account. The unique scores derived for each data set can be used to
group/classify data in the PC-based coordinate system, or to regress to concentration
information. However, PCA is only capable of recognizing total variance regarding a

whole data set, and not capable of identifying within-group and among-group variances.
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Figure 3.3: Demonstration of PCA compression.

3.3.2.2 Principal Component Regression (PCR)

During PCR, PCA is used to compress and decompose the original spectra generated
from training samples into fewer variables (PCs), capturing the relevant variances within
the data set, and then using the scores derived from the training data to create a
quantitative model. During the prediction of unknowns, the score vectors of the
unknowns are derived based on their unique spectra, and regressed against the PC vectors
obtained from the calibration samples for retrieving a quantitative prediction of the
unknown concentration. PCR was also successfully implemented as a classification tool

by Haaland et al., and was applied to classify cell and tissue samples.™

3.3.2.3 Partial least squares — Discriminant Analysis (PLS-DA)

PLS-DA is a supervised discriminant method derived from PLS regression models.*’
Figure 3.4 shows the process of PLS calculation. Similar to PCA, PLS is also a powerful
data compression technique that can condense the original data with a large number of

initial variables to a dataset with only a few variables. In contrast to PCA, PLS not only
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considers the variation in the original multi-dimensional dataset generated by analytical
measurement (e.g., MIR spectra, matrix A in Figure 3.4), but also simultaneously takes
into account the variation in the original multidimensional value dataset (e.g.,
concentration, matrix C in Figure 3.4 ). In short, a PLS model will try to find the
multidimensional direction in the analytical measurement sample data matrix (A) that
explains the maximum multidimensional variance direction in the actual sample value
matrix (C). The orthogonal directions of largest variances within the original analytical
measurement or actual value dataset (the usually rather large number of variables

contributing to the total variance) is reduced to a much smaller set of so-called latent

variables (LVs).
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Figure 3.4 Demonstration of PLS compression and regression.

During the PLS-DA, PLS is adjusted for classification purposes such that training
samples from different classes are assigned a different number, usually ‘1’ or ‘0’. Thus,
the prediction results will give a ‘yes’ or ‘no’ answer regarding the relationship to a

specific class. A threshold in PLS-DA needs to be established for separating the predicted
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values for class assignment purposes. Here, the threshold for separating two classes is
calculated using the observed distribution (P;, P,...P,; n = number of classes; P, =
probability of one object belonging to class n) of the predicted values, and the Bayesian
theorem, which calculates the probability of one object belonging to a certain class by the
ratio of Pi/) P, for discriminating different classes. For classification applications, PLS is
guided by among-group variance, while PCA is guided only by the total variance and
cannot discriminate among-group from within-group variance. It is explicit that PLS-DA
provides favorable discrimination in contrast to PCA, in particular if the within-group
difference dominates over the among-group difference, since PLS inherently considers

class differences (while PCA does not) during the data compression.

3.3.2.4 Mahalanobis Distance

The Mahalanobis distance®® *

is a specific linear discriminant analysis method
particularly suitable for classification because it maximizes the among-class difference
relative to the within-class difference. In the work presented here, this procedure is
performed by first compressing the spectral data into principle components or latent
variables and corresponding scores by using PCA or PLS. After this, the mean score
vector S,,,, and the mean-centered scores S, for each class were calculated, and the
covariance matrix M of S,. for each class was computed. For the prediction of an
unknown sample, its score was calculated from the measured spectrum and principal
components or latent variables, and mean-centered by the S, of one class. The distance

Dzj of the mean-centered unknown score ¢ from S,, of this class was computed and

normalized by M following Eq. 3. 1.
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Eq.3.1

where M = L’I” with m indicating the number of training samples in one class. The
m f—

distance calculation of an unknown sample to the center of covariance distribution of
mean-centered scores of one specific class is graphically illustrated in Figure 3.5. The
distance of an unknown sample to the centers of the classes determines which class the
unknown belongs to. The class that has less distance to the unknown will incorporate the

unknown sample.

Covariance distribution of S,

unlImensm

Figure 3.5: 2-D demonstration of Mahalanobis distance calculation for an unknown to the
covariance distribution center of mean-centered scores of one class. a — distance of
unknown to the center of group j; b — ellipse diameter of covariance distribution of mean-
centered scores for group ;j along the direction of unknown to the group j center.

3.4 Experimental

3.4.1 Aorta Sample Preparation

33



Five New Zealand White male rabbits were used to obtain the training sample set for
building the classification models in this study. Two of the rabbits (13 weeks-old) were
fed with a normal diet of rabbit chow. The remaining three rabbits were fed rabbit chow
supplemented with 1% (w/w) cholesterol (Harlan Teklad, Indianapolis/Indiana) daily for
8 weeks to induce atherosclerotic lesions.** The aorta biopsy preparation process is
schematically displayed in Figure 3.6. One more normal-fed and one more cholesterol-
fed rabbit (approx. 13 weeks old) were used to obtain the first set of test samples (12 in
total) for validation of the established classification models. Their weight and blood
cholesterol level were monitored every other week. For harvesting the aorta tissue, the
rabbit was anesthetized and treated with an overdose of sodium pentobarbital. After
euthanasia, the aorta tissue was excised and stored in 0.9% sodium chloride (NaCl)
solution. Normal and atherosclerotic aortas (or aorta areas) were identified by visual
inspection. Aortas from the rabbits on normal diet appeared inconspicuous without
evident lesions. One cholesterol diet rabbit revealed lesion streak scattering along the
inner wall of the aorta; two cholesterol diet rabbits were characterized by atherosclerotic
aortas, where the aorta inner wall was entirely covered by lesions. Tissue samples were
cut into segments with a diameter of 4mm using a biopsy device (Bio-punch, Health
Link, Jacksonville/Florida) for spectroscopic measurement. The work discussed above
was assisted by Ellen Dixon- Tulloch (Duke University, Dept. of Biomedical
Engineering) and performed during a research stay at Duke University in collaboration

with Dr. Richard Palmer (Duke University, Dept. of Chemistry).
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Figure 3.6: Scheme of rabbit aorta biopsy sample preparation.

3.4.2 Instrumentation and Data Acquisition

3.4.2.1 Custom-Built IR-ATR Catheter

A recently developed IR-ATR catheter prototype for future in vivo diagnostic and
therapeutic applications was used ex vivo to collect spectra from normal and
atherosclerotic aorta samples.” > This catheter is composed of two silica hollow
waveguides (HGW; Polymicron Technologies, Phoenix/AZ) with a length of 1m and an
inner diameter of 500um (840um outer diameter) connected to a cylindrical ZnSe ATR
tip with a 45° tip cone providing a top surface area of approx. 1.57mm” (Figure 3.7). The
HGWs provide low attenuation losses in the spectral range of 2-10um (approx.
0.15dB/m), and a small numerical aperture (NA; 3° at full angle). The small NA provides
for IR radiation to be reflected at the interface of the ATR tip and the tissue, rather than

being refracted into the tissue. Additional losses are encountered if the HGW is bent, with
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Figure 3.7: (top) Scheme of IR-ATR catheter measurements at rabbit aorta biopsies. The
interface between the HWGs and the conical ATR tip was secured by a stainless steel
sleeve; (bottom) optical assembly for guiding IR light into HWG and detecting light out
from IR-ATR catheter”.

the attenuation losses being inversely proportional to the bending radius.*® Since the

spectroscopic analysis in this study utilizes ratios of peak intensities rather than absolute

36



peak values, changes in the overall signal intensity will not affect quantitative signal
analysis if the HGWs are statically bent. In turn, the considerable flexibility of HGWs
benefits the movement of catheter during insertion, which is essential for future in vivo
applications. Radiation from a FT-IR spectrometer (Thermo Nicolet, Nexus 470, Thermo
Electron Corp., Somerset/NJ) was focused into one IR HWG and directed onto the
interface between the ATR crystal and the tissue. The illuminated tissue area was approx.
1.57 mm’. Radiation reflected back into the distal HWG was directed onto a liquid

nitrogen cooled mercury cadmium telluride (MCT) detector.

Hydrated and dehydrated tissue samples were prepared and separately investigated.
Hydrated biopsies were kept in 0.9% NaCl solution during measurements. Dehydrated
biopsies were prepared by rinsing with deionized water, drying with lens paper, and
exposure to air for approx. 10min. The biopsy samples were then positioned on a glass
slide centered on a 2-D adjustable sample stage. The ATR sensor head of the catheter was
fixed above the sample stage at an angle of 45°. In order to provide reproducible contact
between the ATR tip and the tissue samples while preventing puncture of the tissue
samples, an experimentally optimized constant pressure (0.5mA) was applied between
the optical ATR tip of the catheter, and the tissue samples. Thereby, it was ensured that
the obtained signal exclusively results from the intima of the aorta sample. Constant
pressure was achieved by slowly adjusting the height of the sample stage while
monitoring the pressure with a contact alert system (Contact Alert, Spectra Tech).
Constant pressure was maintained during each data acquisition period, ensuring that

spectral differences caused by pressure variation were avoided. In previous studies,
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Katzir et al. characterized and differentiated tissues with unclad silver halide fibers,
flattened silver halide waveguides, or silver halide fibers connected to a diamond ATR
element utilizing similar measurement procedures, but, without active contact pressure

control 3%

Hence, while fiberoptic sensing techniques proved successful in
characterizing or differentiating tissues, such IR data is not suitable for multivariate data
analysis due to potential spectral variations introduced by the change of contact pressure.

An image of the setup for IR-ATR measurements with contact alert is shown in Figure

3.8. Prior to the measurements at each sample, the ATR tip was rinsed with deionized
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Figure 3.8: System setup for IR-ATR catheter measurement with contact alert.

38



water followed by acetone, and a new reference (background) spectrum was collected
prior to each sample data acquisition eliminating spectral artifacts. A total of 128 scans
was averaged at a spectral resolution of 4cm™ during each measurement. Spectra were

collected in a spectral range of 5000-400cm™".

For both hydrated and dehydrated tissue studies, aorta samples from one normal and one
cholesterol diet rabbit were used. Visual inspection revealed no detectable lesions at the
intima of normal diet rabbit aorta samples, while the intima of cholesterol diet rabbit
aorta was entirely covered with visible lesions. Biopsy samples from normal diet rabbits
were considered representative non-lesion samples, while samples from cholesterol diet
rabbits were used as representative lesion samples. For hydrated tissue experiments, four
biopsy samples for each kind of aorta were prepared, and five spectra from different
locations were collected from each hydrated biopsy. For dehydrated tissue experiments,
additional measurements at different locations on an individual biopsy sample were

performed, resulting in a total of 21 lesion spectra and 32 non-lesion spectra.

3.4.2.2 Reflection Microspectroscopy

Reflectance spectra (single beam), which were collected with an FT-IR spectrometer
(Thermo Nicolet, Nexus 470, Thermo Electron Corp., Somerset/New Jersey) coupled to
an IR microscope with cassegrainian optics (Figure 3.9 (left), Spectra-Tech IR Plan,
Vermont Optechs Inc., Charlotte/Vermont), were used as training data to build
multivariate models for classifying lesion and non-lesion aorta tissue. The biopsy sample

(diam. 4mm) was placed on a glass slide, and the slide was positioned at the microscope
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stage. The distance between IR objective and sample was adjusted by focusing white
light at the sample surface. The principle of reflection measurements is shown in Figure

3.9 (right). Spectra

Reflected IR to detector

IR from IR source

Figure 3.9: (left) IR microscope of Spectra-Tech IR Plan; (right) Scheme of light
reflection from the sample surface. Radiation from the IR source interacts with the
sample after passing through the IR objective. Reflected light from the sample is
collected by the IR objective, and then guided to the IR detector by additional optical
components.

were collected at 4cm™ resolution from 650 to 4000cm™ averaging 32 interferometer
scans per measurement from a 100x100um spot. All lesion aorta samples were obtained
from one of three cholesterol diet rabbits; non-lesion aorta samples were prepared from
the 13 months old normal diet rabbit. A total of 14 biopsies from each kind of sample
(lesion and non-lesion) were collected. Two IR reflectance spectra were recorded for
each biopsy. The two measurements at each biopsy are denominated hydrated and
dehydrated in the remainder of this study. The hydrated sample spectrum of each

hydrated and dehydrated set was measured three minutes after removal of the sample

from the saline. The dehydrated sample spectra were measured 8min thereafter. By
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standardizing the data collection in this way, the effects of loss of water to evaporation
were presumed to be reproducible from sample to sample for each set of spectra of
hydrated or dehydrated samples. Since the maximum penetration depth for MIR radiation
into tissue is approximately 10um (or less in the presence of water), it can also be
assumed that the reflectance signals obtained were generated entirely or at least

predominantly from the intima®.

One set of test samples was independently investigated following the same procedure
described above. These samples were collected from another two rabbits: one control and
one cholesterol diet rabbit. The data obtained were then classified utilizing the
multivariate classification models developed in the first phase of this study, namely PCA,

PLS-DA, PCR, Mahalanobis distance.

3.4.2.3 Bench-top IR-ATR Spectroscopy

IR-ATR spectra were collected with a 45° single reflection diamond ATR accessory
(Figure 3.10, Golden Gate, Specac Ltd., Orrington/UK) coupled to the same FT-IR
spectrometer by placing it in the sample compartment. In total, 29 dehydrated biopsy
samples with a diameter of 4mm were investigated comprising 10 lesion, and 19 non-
lesion samples. Prior to the measurement, each biopsy sample was prepared by rinsing
with DI water, drying with lens paper, and then exposure to air for approx. 10min. The
dehydrated tissue samples were centered at the top of the circular diamond ATR element.
To ensure sufficient contact between the tissue sample and the diamond, a constant

pressure was applied via a built-in adjustable plunger and monitored by a torque wrench.
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Spectra were collected at 4cm™ resolution from 4000 to 400cm™ averaging 16 spectra per

measurement.

Figure 3.10: Golden gate single-bounce diamond ATR accessory for IR-ATR
spectroscopy measurement.

3.4.3 Multivariate Data Analysis

PLS Toolbox 3.5 (Eigenvector Inc., Wenatchee/Washington) was used to generate the
classification models. PCA, PCR, PLS-DA, and Mahalanobis distance were adopted, and
applied to hydrated and dehydrated tissue data sets obtained with the IR-ATR catheter
and IR reflection microspectrometry methods. The spectra obtained for each particular set
of experiments were always mean-centered prior to multivariate analysis. Cross-
validation (leaving one sample out) was performed to determine the optimal number of

principal components (PC) or latent variables (LV).

3.5 Results and Discussion

3.5.1 Custom-Built IR-ATR Catheter
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3.5.1.1 Average IR Spectra of Classification Data

Figure 3.11 shows an example of the average spectra of dehydrated lesion and non-lesion
tissue samples collected with the prototype IR-ATR catheter. The spectra are
characterized by considerable noise levels, due to the reduced signal throughput of the
IR-ATR catheter device. Spectral differences are evident between the average spectra, in
particular at 2927, 2855, and 1753cm™, representing the spectroscopic features of
lipid/lipid ester associated with cholesterol deposition. Absorbances are increased at these
frequencies for lesion tissue compared to non-lesion tissue relative to other absorption
bands in the spectrum. For comparison, Figure 3.12 shows the average spectra of
hydrated tissue samples, where it is evident that the differences are not as strong;
consequently, it is impossible to directly distinguish whether the sample is a lesion or

non-lesion case. Hence, implementing multivariate data analysis techniques is essential.
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Figure 3.11: Red — average of dehydrated lesion sample spectra using the IR-ATR
catheter; black — average spectrum of dehydrated non-lesion samples using the IR-ATR
catheter.
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Figure 3.12: Red — average of hydrated lesion sample spectra using the IR-ATR catheter;
black — average spectrum of hydrated non-lesion samples using the IR-ATR catheter.

The spectral region from 3800-1000cm™ was selected for establishing multivariate

classification models.

3.5.1.2 Multivariate Data Analysis

The estimation errors were evaluated by resubstitution and bootstrap resampling
techniques, respectively.*”® For determining the resubstitution error estimate, all samples
were used to build the classification models, and the class membership of the same set of
samples was predicted. Since the resubstitution method frequently generates overly

optimistic bias in the error estimation for small data sets, the bootstrap resampling
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technique was also applied to the prediction error rate study. For bootstrap resampling, a
training data set (i.e., a ‘bootstrap’ sample) was formed by randomly selecting samples
with replacement from the original data set, with the same sample size for both sets. The
samples removed from the training data set provide a corresponding test data set. This
generation of training and test data sets was repeated 25 times in this study followed by

the model development and evaluation strategy mentioned above.

3.5.1.2.1 Resubstitution related multivariate data analysis and error estimation

All applied multivariate data analysis methods (PCA, PLS-DA, and Mahalanobis
distance) provided consistent classification results at hydrated and dehydrated tissue data
with a prediction probability of 1 for each sample in all models following Bayesian
statistics, if the resubstitution method was applied. Figure 3.13 - Figure 3.18 are the

corresponding multivariate data analysis results using the resubstitution method.

Two and three PCs were selected to build PCA models for both hydrated and dehydrated
samples based on the root mean square error for cross validation (RMSECV). The
corresponding results are shown in Figure 3.13 and Figure 3.14. 1t is clearly evident that

lesion and non-lesion samples were well separated into two categories.
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Figure 3.13: (top) RMSECV of PCA; (bottom) PCA classification results at hydrated
samples for the IR-ATR catheter. Green stars — non-lesion training samples; red triangles
— lesion training samples.
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Figure 3.14: (top) RMSECV of PCA; (bottom) PCA classification results at dehydrated
samples for the IR-ATR catheter. Green stars — non-lesion training samples; red triangles
—lesion training samples.

Based on the RMSECV, three latent variables (LVs) were selected to build PLS-DA

statistical models for both hydrated and dehydrated samples. The corresponding

47



classification results are shown in Figure 3.15 and Figure 3.17. Ideally, lesion samples
have value of 0.5, and non-lesion samples have value of -0.5. However, the predicted
values frequently deviate from the ideal values due to the spectral variation of the

samples within the same class.

Threshold values were calculated using the observed distribution of the predicted values,
and the Bayesian theorem for discriminating the two different classes. As shown in
Figure 3.16, the blue bars represent a histogram of the predicted values for class 1
samples; the green bars provide a histogram of the predicted values for class 2 samples.
The threshold is the cross point of two normally fitted histograms. Bayesian statistics also
provide the probability whether a sample is a member of a certain class given the
predicted value. The prediction probability results for the 3LV PLS-DA model based on
all investigated samples are 1. Given a sample, its probability belonging to class 1 is

calculated using Eq. 3. 2.

P(y,1)
[P(y,D) + P(y,2)]

probability(classl) =

Eq.3.2

where y is the predicted value from the PLS-DA model for the sample in question,

P(y,]) is the probability of this sample to be a member of class 1 given the value of y,
and P(y,2) is the probability of this sample to be a member of class 2 given the value of

y. Consequently, a sample with a predicted value at the threshold has a 50% probability

belonging to either class.
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Figure 3.15: PLS-DA classification results at hydrated samples for the IR-ATR catheter.
Green stars — non-lesion training samples; red triangles —lesion training samples.
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Figure 3.16: Histograms for PLS-DA model at hydrated samples for the IR-ATR catheter.
Blue — distribution of non-lesion training samples; green — distribution of lesion training
samples.
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Figure 3.17: PLS-DA classification results at dehydrated samples for the IR-ATR
catheter. Green stars — non-lesion training samples; red triangles —lesion training samples.

All lesion samples were also used to conduct a Mahalanobis distance analysis. The results
obtained with the corresponding classification models are shown in Figure 3.18.

Apparently, the Mahalanobis distance method has enabled 100% successful classification

of all samples, similar to PCA and PLS-DA.

50



b i !Wf!

blahalanobis Distance (lesion)

¥
) ¥
4

10” 10°
fahalanobis Distance (non-lesion)

Mahalanohis Distance (lesion)

10 10° 10 10° 10
hdahalanaobis Distance (non-lesion)

Figure 3.18: Mahalanobis distance classification results at (a) hydrated samples; (b)

dehydrated samples for the IR-ATR catheter. Green stars — non-lesion training samples;
red triangles —lesion training samples.

Finally, all lesion samples were assigned a value of one, and non-lesion samples were
assigned a value of zero before establishing a classification model based on principle

components regression (PCR).* The optimal numbers of principle components (PC) for
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establishing the classification model based on data obtained from hydrated and

dehydrated tissue were 2 and 7, respectively, based on the root mean square error for

cross-validation (RMSECV). The results obtained with the corresponding PCR

classification models are shown in Figure 3. 19. Apparently, dehydrated tissue data
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Figure 3. 19: Prediction results for PCR models using the the IR-ATR catheter. (top)
hydrated samples; (bottom) dehydrated samples. Red triangle — lesion samples; green star
— non-lesion samples.
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require more PCs to establish robust well-classifying PCR models due to an increased

within-sample variation introduced by the dehydration process.

It was anticipated that a minimum of 2-3 LVs or PCs are needed to build a classification
model considering the spectral differences between the two types of tissues. This was
confirmed by the data analysis results shown above. The major difference between PLS
and PCR is that PLS considers not only the spectral difference, but also the class
difference among the samples. This frequently results in fewer latent variables being
needed in PLS in contrast to PCR, which is also clearly evident in the analysis results for

the dehydrated tissue samples.

3.5.1.2.2 Bootstrap resampling related multivariate data analysis and error estimation

Twenty-five sets of pseudo training samples generated by bootstrap resampling were
used to build PLS-DA and Mahalanobis distance classification sub-models, and then
corresponding sets of pseudo test data were predicted. The error rate was calculated by
averaging the prediction error of each test set with respect to the corresponding sub-
model. For PLS-DA and Mahalanobis distance analysis of hydrated and dehydrated tissue
sample spectra, the same prediction possibility of 1 was obtained for the bootstrap
resampling related analysis, as for the analysis based on the resubstitution method. Box-
whisker-plots are used to display the results for the test samples of each model. Since
Mahalanobis distance classification obtained similar results as PLS-DA, only PLS-DA

(Figure 3.20) results are shown here.
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Figure 3.20: Boxplot of the PLS calculation results for the test samples using bootstrap
sampling. (a) Hydrated samples; (b) dehydrated samples. Grey - lesion samples; black —
non-lesion samples. The five-number summary of the boxes consists of the minimum,
first quartile, median, third quartile, and maximum. The small square in the box
represents the mean.

Both PLS-DA and Mahalanobis distance provided superior prediction results with error

rates of zero.
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It can be concluded that unsupervised PCA, supervised PLS-DA, and Mahalanobis
distance classification provide sufficient performance for the discrimination of lesion vs.
non-lesion tissue samples in this study. The dehydrated samples have comparatively
broader distributions in all three models, which may be attributed to the introduction of

within-group variation during the dehydration process.

While the IR-ATR catheter system combined with multivariate data analysis techniques
revealed excellent potential for identifying lesion and non-lesion rabbit aorta tissues,
collecting measurements for large data sets is not convenient for the preparation of
extensive calibration models. Therefore, an effort was made by utilizing reflection
microspectroscopy and bench-top IR-ATR spectroscopy to collect calibration data, and

applying the data analysis strategies discussed before to these data to identify tissue

types.

3.5.2 Reflection Microspectroscopy

3.5.2.1 Average IR Spectra of Classification Data

Average spectra of measurements of the training set (hydrated and dehydrated aorta
samples) are shown in Figure 3.21 and Figure 3.22. From these plots, it is clearly
evident that the spectral differences between lesion and non-lesion tissue samples are
very subtle. The experimental results obtained in this study convincingly demonstrate that
sophisticated multivariate data analysis and classification techniques are essential to

robust and reliable sample classification for diagnostic purposes.
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Figure 3.21: Red — average of hydrated lesion sample spectra; black — average spectrum
of hydrated non-lesion samples using reflection microspectrometry.

aingle Beam

I:l 1 1 1 1 1 1
4000 3500 3000 2500 2000 1500 1000
YWavenumber, cm-1

Figure 3.22: Red — average of dehydrated lesion sample spectra; black — average
spectrum of dehydrated non-lesion samples using reflection microspectrometry.
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3.5.2.2 Multivariate Data Analysis Using Spectra Range 4000-1000cm™

3.5.2.2.1 Multivariate classification results using hydrated sample data

In all plots shown below, points 1-14 represent lesion training samples (class 1); 15-28
non-lesion training samples (class 2); and 29-40 samples from a test set. The
establishment of the model using the training samples (1-28) by L. Wang at Georgia Tech
preceded the measurement of the unknown samples (by J. Chapman at Duke Univ.) by
six months owing to tissue availability schedules. For the 12 samples from the test set,
only the raw single beam IR spectra were provided for evaluation without any indication
of the number of lesion vs. non-lesion cases among the 12 samples. The identity of the

test samples was shared only after the classification had been made.

Two PCs were selected to build the calibration models based on the RMSECV (Figure
3.23). Figure 3.24 and Figure 3.25 show the classification models without and with
certain training sample(s) excluded for optimizing the model quality. By excluding
sample ‘7°, and sample 7 ‘and ‘25’ together, respectively, it appears that the model
quality did not improve. With thus established calibration models, the test samples could
not be predicted as expected (see Figure 3.26 and Figure 3.27). For comparison, a 3 PC

PCA model is shown in Figure 3.28. Obviously, it is not a functional model either.
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Figure 3.23: RMSECYV of PCA at hydrated samples for reflection microscpectroscopy.
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Figure 3.24: 2 PCs PCA classification results at hydrated samples for reflection
microspectroscopy without any samples excluded. Green stars — non-lesion training
samples; red triangles — lesion training samples.
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Figure 3.26: 2 PCs PCA classification and prediction results at hydrated samples for

reflection microspectroscopy without sample excluded. Green stars — non-lesion training
samples; red triangles — lesion training samples; black dot — test samples.
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Figure 3.27: 2 PCs PCA classification and prediction results at hydrated samples for

reflection microspectroscopy with sample ‘7’ and ‘25’excluded. Green stars — non-lesion
training samples; red triangles — lesion training samples; black dot — test samples.
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Figure 3.28: 3 PCs PCA classification results at hydrated samples for reflection
microspectroscopy without sample excluded. Green stars — non-lesion training samples;
red triangles — lesion training samples.

Based on RMSECYV results for PLS-DA shown in Figure 3.29 (top), 4 and 6 latent
variables (LVs) were tested as optimal number to minimize the error during classification
and prediction. The corresponding classification and prediction results are shown in
Figure 3.29 (bottom). In the model using four LVs, sample 10 cannot be unambiguously
classified, but its probability of belonging to class 1 is > 50% (see Table 3.1). Using this
model, only test sample ‘30’ was incorrectly classified. If six LVs were applied to

establish the model, all samples could be correctly classified or predicted.
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Figure 3.29: (top) RMSECYV vs. LV number using data of hydrated training set samples.
(bottom) Classification and prediction results for PLS-DA model 6LVs using hydrated
sample data. Red triangles — lesion training samples; green stars — non-lesion training
samples; black dots — test samples; Red line — threshold (-0.0507).
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Table 3.1: Prediction probability results for PLS-DA models using hydrated data.
1-28: training sample set; 1-14: lesion sample set; 15-28: non-lesion sample set; 29-40:
test samples.

Prediction probability
Sample |Revealed 4 LVs 6 LVs
class Class 1 Class 2 Class 1 Class 2
1 1 0.9848 0.0152 1 0
2 1 0.9921 0.0079 1 0
3 1 0.9274 0.0726 1 0
4 1 0.9995 0.0005 1 0
5 1 0.9489 0.0511 1 0
6 1 0.8146 0.1854 1 0
7 1 0.9959 0.0041 1 0
8 1 1 0 1 0
9 1 0.9989 0.0011 1 0
10 1 0.5937 0.4063 1 0
11 1 0.9682 0.0318 1 0
12 1 0.9267 0.0733 1 0
13 1 0.9967 0.0033 1 0
14 1 0.9778 0.0222 1 0
15 2 0.2024 0.7976 0 1
16 2 0.0017 0.9983 0 1
17 2 0.0001 0.9999 0 1
18 2 0.0413 0.9587 0 1
19 2 0.1192 0.8808 0.0001 0.9999
20 2 0.0146 0.9854 0 1
21 2 0.0001 0.9999 0.005 0.995
22 2 0.0185 0.9815 0 1
23 2 0.3082 0.6918 0 1
24 2 0.0011 0.9989 0 1
25 2 0.0218 0.9782 0.0001 0.9999
26 2 0.0069 0.9931 0 1
27 2 0.324 0.676 0.0002 0.9998
28 2 0.0241 0.9759 0 1
29 2 0.0991 0.9009 0.0002 0.9998
30 2 1 0 0.0126 0.9874
31 1 0.9999 0.0001 1 0
32 2 0.0001 0.9999 0 1
33 1 1 0 1 0
34 1 1 0 1 0
35 1 0.9767 0.0233 1 0
36 2 0.0044 0.9956 0 1
37 1 0.7582 0.2418 0.9999 0.0001
38 2 0.0006 0.9994 0 1
39 1 0.9957 0.0043 1 0
40 1 0.9992 0.0008 1 0
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The Mahalanobis distance classification and prediction results based on 6 LVs of PLS-
DA shown above are given in Figure 3.30. This method provided a 100% hit quality at

training and test samples.
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Figure 3.30: (top) Classification results of 28 training samples using the Mahalanobis
distance method and hydrated data of training set samples. Green stars — non-lesion
training samples; red triangles — lesion training samples; diagonal line — discriminant
line. (bottom) Prediction results of 12 test samples using the Mahalanobis distance
method and hydrated data of test samples. Diagonal line — discriminant line.
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3.5.2.2.2 Multivariate classification results using dehydrated sample data

During further studies, PCA was applied on the obtained data. Based on the RMSECV
results shown in Figure 3.31, three PC were selected as optimal number to minimize the
error during classification and prediction. The corresponding classification and prediction
results are shown in Figure 3.32. It is evident that lesion and non-lesion training samples
are grouped well, although sample 24 and 26 locate relatively far from the group center
area possibly due to the large within-group variance. Calculated from the established
PCA model, the test samples were all correctly predicted, with only sample 40 close to

the margin of two classification categories.
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Figure 3.31: RMSQCYV for dehydrated samples using reflection microspectroscopy.
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Figure 3.32: Classification and prediction results of PCA. Red triangles — lesion training
samples; green stars — non-lesion training samples; black dots — test samples.

For PLS-DA analysis, 6 LVs were selected to build the statistical models. The
corresponding classification and prediction results are shown in Figure 3.33. All training
samples could be clearly classified with this method, and only test sample 40 could not be

classified with sufficient certainty. Most probably, it would be incorrectly classified as a

non-lesion sample.
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Figure 3.33: (top) Classification and prediction results for PLS-DA using dehydrated
data. Red triangles — lesion training samples (class 1); green stars — non-lesion training
samples (class 2); black dots — test samples; Red line — threshold (-0.1042).

The corresponding probability results for the PLS-DA model and dehydrated data are

given in Table 3.2.
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Table 3.2: Prediction probability results for PLS-DA models using dehydrated data. 1-28:
training samples; 1-14: lesion samples; 15-28: non-lesion samples; 29-40: test samples.

Prediction probability
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The Mahalanobis distance method was also applied to classify dehydrated data. The
classification results are shown in Figure 3.34. Again, test sample 40 could not be
correctly classified. Sample 30 could be classified more clearly using the Mahalanobis

distance in contrast to using PLS-DA.
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Figure 3.34: (top) Classification results of 28 training samples using the Mahalanobis
Distance method and dehydrated data. Green stars — non-lesion training samples; red
triangles — lesion training samples; Diagonal line — discriminant line. (bottom) Prediction
results of 12 test samples based on the PLS-DA model for dehydrated data.
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Alternatively, the application of principal components regression (PCR) techniques was
investigated for hydrated and dehydrated data series of the test set to discriminate
between lesion and non-lesion classes. ‘1’ was the preset value for all lesion samples, and
‘0 for all non-lesion samples.*” All spectra were again mean-centered prior to PCR. The
predicted lesion value ideally centers at 0.5, and the non-lesion at -0.5. However, PCR
based classification failed in accurately classifying hydrated data. Figure 3.35 shows the
PCR results using dehydrated data. A total of nine PCs were selected for the model, and
all training samples could be accurately classified. Test sample 40 was incorrectly
classified as non-lesion similar to PLS-DA and the Mahalanobis distance method. In
addition, test sample 35 could not be clearly predicted with the horizontal zero line as

discriminator, as the prediction value was only slightly above zero.
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Figure 3.35: Classification and prediction results for PCR model with 9 PCs using

dehydrated data. Red triangles — lesion training samples; green stars — non-lesion training
samples; black dots — test samples.

In contrast to PCR, the PLS-DA method not only considers the changes in the spectra,

but instantaneously also consider the changes in concentration of the various constituents
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(or class difference in our case). Due to uncertainties introduced by the sample
preparation process and ambient effects during the measurements, the among-group
difference is not always larger than the within-group difference. Hence, PCR appeared to

be the least suitable method for providing satisfactory classification results.

The sensitivity and specificity of the PCA, PLS-DA, and Mahalanobis distance models
for the training and test samples without a prior knowledge were calculated using the
method introduced by Balchum et al.*’, and summarized in Table 3.3. The sensitivity
measures the proportion of actual positives (diseased) which are correctly identified as

such, and can be calculated by:

TP

Sensitivity = ———
TP+ FN

Eq.3.3

where TP represents the number of true positive identified, and FN the number of false

negative identified.

The specificity measures the proportion of actual negatives (not diseased), which are

correctly identified as such, and can be calculated by:

IN

Selectivity = ———
TN + FP

Eq.3.4

where TN represents the number of true negative identified, and FP the number of false

positive identified.
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Table 3.3: Sensitivity and specificity of the investigated multivariate data analysis
methods for training and test samples.

Sensitivity, % Specificity, %
6 LVs PLS-
6 LVs PLS-DA PCA DA PCA
& M-distance & M-distance

Hy Dehy | Hy | Dehy | Hy Dehy Hy | Dehy
Training samples 100 100 | N/A | ~100 | 100 100 N/A | ~100

Test samples 100 857 | N/A'| ~100 | 100 100 N/A | ~100

*Hy — Hydrated samples; Dehy — Dehydrated samples.

That using hydrated data provides — marginally - more accurate and sensitive predictive
results for PLS-DA and Mahalanobis distance in contrast to using dehydrated data, may
result from the fact that the sample had significantly changed during ambient exposure,
and during the experimental procedure; it has to be considered that the dehydrated data
set was recorded after 11min of an entire measurement series. Hence, due to water
evaporation the sample was significantly drier at the end compared to the beginning of
the measurement series. In turn, this indicates that classification at hydrated conditions,
which more closely resemble the in vivo environment, is more accurate by applying PLS-
DA and Mahalanobis distance. However, PCA provided the opposite results with better
discrimination at dehydrated vs. hydrated samples. PCA has failed to build appropriate
classification models for hydrated samples. However, for test samples, it generated
similar prediction results, as the other two multivariate data analysis strategies. In
contrast to PCA, the PLS-DA method not only considers the changes in the spectra, but
also instantaneously considers the changes in concentration of the various constituents (or

class difference in our case). Due to the serious influence of water, the among-group
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difference with regards to the IR data vs. the contribution of all other biocomponents was
relatively small for hydrated samples. The among-group difference was not always larger
than the within-group difference. Hence, PCA appeared incapable of providing
satisfactory classification results for hydrated samples. Only once aorta samples are
dried, the among-group differences appear enhanced enabling PCA to correctly classify

and predict aorta samples.

3.5.2.3 Multivariate Data Analysis Using Selected Spectral Ranges

In a final study, it was tested whether PCA and PLS-DA prediction accuracy improves by
manually selecting specific spectral region(s), and by developing corresponding
classification models. As described in the previous sections, C-H stretching of lipid locate
in the region of ~3000-2800cm™', C=0 stretching of lipid ester features at ~1800-1700cm™
! and Amide I and II vibrations resulting from proteins located in the region ~1700-
1600cm™ are suitable spectral ranges. These regions are supposed to closely correlate to
the chemical component change with the development of atherosclerotic plaque. PCA
and PLS-DA calculations were performed separately at hydrated and dehydrated sample
data using the combination of these three regions of the obtained spectra. The
corresponding results for discriminating lesion and non-lesion samples are displayed in
Figure 3.36 and Figure 3.37. The accuracy, sensitivity, and specificity of the results

obtained by the different multivariate data analysis methods for training and test samples

were calculated and summarized in Table 3.4. From these results, it is evident that PCA
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Figure 3.36: (top) PCA and (bottom) PLS-DA results for hydrated samples using the
combined regions 3000-2700cm™ and 1800-1600cm™. Green stars — non-lesion training
samples; red triangles — lesion training samples; black dots — test samples; red line —
threshold (-0.002).
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Figure 3.37: (top) PCA and (bottom) PLS-DA results for dehydrated samples using the
combination of regions 3000-2700cm™ and 1800-1600cm™. Green stars — non-lesion

training samples; red triangles — lesion training samples; black dots — test samples; red
line — threshold (-0.12).
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Table 3.4: Accuracy, sensitivity, and specificity of the investigated multivariate data
analysis methods for training and test samples using the spectral regions 3000-2700cm™
and 1800-1600cm’".

Accuracy, % Sensitivity, % Specificity, %

PLS-DA PCA PLS-DA PCA PLS-DA PCA

Hy | Dehy | Hy | Dehy | Hy | Dehy | Hy | Dehy | Hy | Dehy | Hy | Dehy
Training 1460 | 100 | NA | 100 | 100 | 100 | NA | 100 | 100 | 100 | NA | 100
samples
Test
samples

*Hy — Hydrated sample; Dehy — dehydrated sample

833 | 833 | NA | 91.7 | 80 80 NA 80 857 | 8.7 | NA | 100

still could not establish a viable calibration model for hydrated samples; using PLS-DA, a
viable model was built but with reduced figures of merit. This may result from the fact
that the selected spectral regions do not cover as much variance as the entire spectrum,

thereby leading to reduced predictive capabilities.

PLS-DA calculations were also performed within the data region 3800-2700cm’
(O-H stretching of water is dominant at ~3800-3000cm™) and 2100-1000cm™,
respectively. The results in Figure 3.38 and Figure 3.39 show that the predictive
capabilities were overall reduced compared to the results obtained using the entire
spectral range (3800-1000cm-"). In summary, it can be noted that for this specific case
spectral region selection has not led to an improvement of the predictive capabilities of

the established multivariate models.
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Figure 3.38: PLS-DA results for (top) hydrated and (bottom) dehydrated samples using
the spectral region 3800-2700cm .
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Figure 3.39: PLS-DA results for (top) hydrated and (bottom) dehydrated samples using
the spectral region 2100-1000cm .

3.5.3 Bench-top IR-ATR Spectroscopy
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The average spectra for lesion samples and for non-lesion samples using single reflection

ATR spectroscopy are shown in Figure 3.40. Spectral differences are most evident in the
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Figure 3.40: Red — average of dehydrated lesion sample spectra using IR-ATR; black —
average spectrum of dehydrated non-lesion samples using IR-ATR.

region 2700-3000cm™’. However, spectra collected from individual dehydrated non-lesion
samples also show relatively strong absorptions in the spectral region of 2700-3000cm™,
and at approx. 1650cm™. These characteristics appear smoothed out in the average
spectra, which may render the classification of these samples difficult, if these spectral
features are used as the only identifiers. Therefore, multivariate data analysis appears

again essential for obtaining reliable tissue classification models.

PLS-DA was applied to IR-ATR data after preprocessing of the spectra by mean-
centering. The corresponding classification results are shown in Figure 3.41 (top). The

prediction probability calculated using the Bayesian theorem is 1 for all tissue samples.
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Alternatively, Mahalanobis distance was applied at the dehydrated tissue data collected
using bench-top IR-ATR. The classification results based upon the latent variables

derived from the PLS-DA are shown in Figure 3.41 (bottom).
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Figure 3.41: (top) Classification results for PLS-DA model applied to dehydrated data
from bench-top IR-ATR. Red triangles — lesion samples; green stars — non-lesion
samples; red line — threshold (0.2234). (bottom) Classification results of 29 dehydrated
training samples measured using IR-ATR based on the Mahalanobis distance method.
Green stars — non-lesion samples; red triangles — lesion samples; diagonal line —
discriminant line.
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Alternatively to building a model using all samples in the data set as training samples, the
data were separated into a training set and a validation set. The validation set was used to
test the robustness of the model established with the training set. This operation was
performed 5 times, each time with a different set of 5 or 6 samples selected as validation
data (2 lesion, and 3 or 4 non-lesion samples). The remaining 23 or 24 samples were used
as training data. Eventually, each sample was selected into the validation data set once,
and tested once. Five LVs were applied for all five calibration models, similar to the
model using all data. All five models turned out to be sufficiently robust for predicting

the corresponding validation samples with 100% hit quality.

3.6 Conclusions

Supervised multivariate data analysis methods based on PLS-DA and Mahalanobis
distance were applied to mid-infrared micro-specular reflectance data, mid-infrared ATR
data, and IR-ATR catheter prototype data obtained from lesion and non-lesion biopsy
samples of rabbit aorta. Both methods achieved 100% hit quality with outstanding
sensitivity and specificity during tests on small sets of double blinded samples, in
particular for hydrated biopsy samples. Consequently, the results reveal a promising
prospect for successful classification of lesion vs. non-lesion tissue samples based on IR
spectra, in particular for IR-ATR catheter techniques in combination with multivariate

data analysis and classification methods.

3.7 Outlook

3.7.1 Data Collection Using a Focal Plane Array (FPA) Imaging Microscope
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Focal plane array (FPA) detectors usually consist of a two-dimensional matrix of
individual detector elements located at the focal plane of a microscope imaging system.
During future studies, a MIR FPA could be implemented to collect spectra of lesion and
non-lesion rabbit aorta tissue spectra. By using a FPA, it is anticipated to significantly
reduce the data collection time for the trainings data set, and to collect a wealth of data
during a single measurement, thereby sufficiently capturing spatial variances of lesion
and non-lesion tissue at the available samples in contrast to conventional one-element

detection techniques.

3.7.2 Development of More Robust Multivariate Classification Models

The developed supervised and unsupervised multivariate data analysis methods need to
be significantly expanded using more aorta samples from additional rabbits. Thus, more
robust models can be built for further improving the prediction for unknown samples,
even capturing the variance across multiple species. Furthermore, it should be
investigated whether calibration models derived from FPA imaging microscopy in the
ATR mode may be applied to the classification of samples analyzed using a two-
waveguide or three-waveguide IR-ATR catheter. Thereby, rapid establishment of
multivariate models would be enabled, while transferability of the established
classification to data obtained from a catheter device will be used to collect the real-world

samples.

3.7.3 Integration of a Three-Waveguide Catheter
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According to the scheme shown in Figure 10, a three-waveguide catheter can be
envisaged using e.g., a photonic band gap (PBG) hollow waveguide for simultaneously
delivering FEL or CO; laser radiation to the interface between the ATR element and the
tissue surface for tissue ablation, while two additional conventional HWGs could serve as
delivery and collection waveguides for broadband IR radiation coupled from a FT-IR
spectrometer for simultaneous spectroscopic tissue characterization. With three
waveguides connected to a cylindrical ZnSe ATR tip direct spectroscopic control during

laser surgery would be enabled.

Figure 3.42: Schematic construction of a three-HWG IR-ATR catheter for simultaneous
IR detection and surgical laser ablation.

Ideally, normal and atherosclerotic lesion rabbit aorta samples would be examined with
the developed three-waveguide IR-ATR catheter, and evaluated/classified via an adapted
multivariate calibration model derived from FPA imaging ATR microscopy. The
classification results would be used for on-line guiding of laser ablation at tissues with
immediate feedback to determine successful ablation (i.e., reaching the blood vessel wall
after successful removal of the entire plaque), which could lead to automatic switch-off
for the surgical laser. Upon success, it may be anticipated that this measurement concept

would be transferred from in vitro trials to in vivo trials with appropriate animal models.
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CHAPTER 4
COMBINATION OF SCANNING ELECTROCHEMICAL
MICROSCOPY WITH INFRARED ATTENUATED TOTAL
REFLECTION SPECTROSCOPY FOR IN SITU INVESTIGATION

OF ELECTROCHEMICALLY INDUCED PROCESSES

In this chapter, the first reported combination of scanning electrochemical microscopy
with infrared attenuated total reflection spectroscopy (SECM-IR-ATR) is presented. The
analytical capabilities of the combined microelectrochemical-FT-IR setup were
demonstrated by simultaneously in situ investigation of a micro-structured polymer (poly
(2,5-di-(2-thienyl)-pyrrole) deposition via evanescent field absorption, which was
induced via feedback mode SECM using a 25 um Pt disk ultramicroelectrode (UME). In
addition, spectral ray tracing simulation on the optical part of the combined SECM-IR-
ATR instrument was performed for evaluating the IR sensitive area on the ATR crystal
surface. Furthermore, line-scans were performed for experimentally investigating the
sensitive area of the ATR crystal surface by monitoring the IR absorption change
resulting from the UME sheath material when moving the UME tip within the evanescent

field along cross-sections of the ATR crystal.

4.1 Motivation

Recent research of our group has demonstrated that IR-ATR combined with atomic force
microcopy (AFM) can simultaneously monitor spectroscopic and topographic changes at

the ATR crystal surface in liquid environments.' There is an opportunity to further extend
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this dual combination via coupling to SECM by using AFM-SECM scanning probe tips.*
> The potential triple combination AFM-SECM-IR-ATR will enable obtaining
simultaneous in situ topographic (AFM), spectroscopic (IR-ATR), and electrochemical
(SECM) information, which is of particular interest when studying frequently changing
dynamic systems and matrices such as biological samples. However, there is still a
question that needs to be answered prior to achieving the triple combination: is it

possible to combine SECM with IR-ATR?

4.2 Introduction

The systematic analysis of processes at the solid/liquid interface requires experimental
tools and analytical methods to qualitatively and quantitatively determine and image
interfacial events with molecular selectivity, sensitivity, and preferably temporal/spatial
resolution. Many conventional analytical techniques are frequently limited to averaged
measurements or ex situ analysis. Hence the combination of complementary in situ
analytical techniques with scanning probe microscopic (SPM) techniques might bridge

the gap to elucidate fundamental processes at the solid/liquid interface.

Among the scanning probe techniques, SECM has matured into a versatile in situ method
providing information on homogeneous and heterogeneous electron transfer mechanisms
at various solid/liquid, liquid/liquid, and air/liquid interfaces.* > In addition, SECM has
successfully been used for microstructured surface modifications using electrochemically
assisted deposition or etching processes.® Either direct mode SECM experiments using
the UME as auxiliary electrode and the biased sample as working electrode, or feedback

mode SECM experiments at conductive and insulating surfaces have been described in
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literatures.” First approaches using direct mode SECM were based on applying a bias
between an electrochemical scanning tunneling microscopy (STM) tip and a conductive
surface, which was covered with a thin polymer film such as Nafion’ The localized
current flow between tip and sample was instrumental in reducing or oxidizing metal ions
or organic ions incorporated in film-forming metal lines or polymer lines. Direct mode
deposition of 2- and 3-dimensional polymer structures using pulsed deposition profiles
has also been achieved using disk-shaped microelectrodes as auxiliary electrodes.''™"”
Structured self-assembled layers and fluorescent patterns could be generated in direct
mode SECM.***° The close distance between tip and sample surface, as well as the tip
size and tip geometry govern the dimensions of the obtained microstructures by defining
the electrical field distribution between tip and conductive sample. Alternatively,
modifications can be achieved in feedback mode SECM generating an electroactive
species at the UME, which is diffusing to the sample surface, and then driving the surface
modification reaction. For example, pH shifts induced at the UME were used to deposit

26, 31

polymer and metal structures. Heinze and co-workers described the structured

polymerization of 2,5-di-(2-methylpyrrol-2-yl)-thiophene, which is not soluble in the
mediator solution, and was adsorbed at the substrate surface prior to feedback mode

induced polymerization.** So far, surface modification using SECM feedback mode has

7, 10, 14, 15, 18, 29

been achieved by etching of metals and semiconductors, or by the

8, 16, 17, 33 22, 34 9, 12, 13, 31, 35

deposition of metals, metal oxides, polymers, and organic

. 19-21, 23-25, 27, 28, 30, 36, 37
molecules or biomolecules ’ i athac ki

In recent years, SECM has been combined with a variety of analytical techniques ranging
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from mass sensitive and optical methods to complementary scanning probe techniques
providing structural and time-resolved information on interface processes. Combined
electrochemical SPM techniques are based on integrating an electroactive area into a
SPM tip. Dependent on the physical near field interaction, combinations with
electrochemical scanning tunneling microscopy (ESTM-SECM),** 39
photoelectrochemical microscopy (PEM)-SECM*” *! and AFM-SECM**® have been
realized. Complementary bulk information on mass changes can be obtained by SECM
combined with an electrochemical quartz crystal microbalance (EQCM) simultaneously
detecting the generated species by SECM, and the mass change by QCM.*** SECM has

55, 56

also been combined with optical microscopy, with near-field scanning optical

microscopy (NSOM),*” *! with fluorescence spectroscopy ,”’ with chemiluminescence

58-61 : : 62
, and with surface plasmon resonance (SPR) devices’*. For example,

techniques
Szunerits et al. have developed a combined SECM-SPR set-up, and have demonstrated
simultaneous SPR imaging of micropatterened conducting poly(pyrrole) deposited during
a SECM experiment®. To the best of our knowledge, the combination of SECM with
spectroscopic techniques in the mid-infrared wavelength regime of the electromagnetic
spectrum has not been described to date. Recently, our research group has developed a

combined AFM-IR-ATR device, which enabled obtaining simultaneous spectroscopic

and topographic information of dissolution processes.”
Mid-infrared spectroscopy is based on the excitation of fundamental vibrational modes of

molecules, and is among the most powerful techniques for identifying molecular

structures. In particular, the fingerprint region (10-20um) of the IR spectrum provides
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sensitive and molecularly distinct absorption patterns for almost any organic molecule.
Water absorption is usually a significant problem in conventional IR spectroscopy due to
the strong absorption bands of water at 1640 and 3400cm '. To minimize this interference
problem, infrared attenuated total reflection spectroscopy (IR-ATR) has matured into an
attractive IR technique due to its exquisite surface sensitivity.* IR radiation coupled into
an internal reflection element at angles exceeding the critical angle travels inside this
optical waveguide due to total internal reflection. Given a refractive index n; of the
waveguide and n, of the surrounding medium with n; > n,, radiation penetrates a very
short distance into the adjacent optically rarer medium at the condition of total reflection
(for details, please refer to Chapter 2 of this thesis). This “leaky” mode is called an
evanescent wave/field with a field intensity exponentially decaying with increasing
distance from the interface. The penetration depth of the evanescent field is typically in
the range of a few micrometers (um), and depends on the wavelength of the radiation, the
refractive indices of the waveguide and the ambient medium, and on the angle of
incidence. IR absorbing molecules present close to the ATR crystal surface and within
this evenascent field can therefore be detected by evanescent field absorption
spectroscopy.®® Strong IR absorbers, such as water, have only minimal adverse effects on
the IR-ATR measurements compared to conventional transmission and reflection IR
spectroscopy due to the limited probed analytical volume defined by the evanescent field.
As examples, plasma deposited polymers interacting with analytes in aqueous solution,
and electrode processes at semiconducting reflection elements in contact with electrolyte

solutions have recently been studied by IR-ATR.®
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The studies in this chapter describe the first combined SECM-IR-ATR platform enabling
in situ IR-ATR monitoring of surface processes induced by SECM. The capabilities of
this hyphenated technique were demonstrated in a model system: the deposition of
microstructured polymer spots generated in feedback mode SECM with a 25um (diam.)
Pt UME simultaneously spectroscopically monitored via IR-ATR. In this experimental
series, surface adsorbed 2,5-di-(2-thienyl)-pyrrole (Figure 4.1), which is insoluble in the
mediator solution, was polymerized via tip-generated Ru(bpy)s®", as previously described

by Heinze and coworkers (Figure 4.2)%,
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Figure 4.1: 2,5-di-(2-thienyl)-pyrrol (SNS) structure and designation of the hydrogens.
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Figure 4.2: SNS polymerization via feedback mode SECM using Ru(bpy)s>" as mediator.
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All in situ electrochemical experiments were conducted in deuterated water, as it
provides an IR transparent window in the region of 700—~1000cm™, which is the region of

interest for characteristic IR absorption features during the polymerization of SNS.

In addition, line-scan experiments were performed by moving the UME along cross-
sections of the ATR crystal surface for experimentally mapping out the sensitive area of
the ATR crystal. The insulating sheath of the UME is made from borosilicate glass
(BSG), which has strong IR absorptions in the region 700-1600cm™ > ®". When UME is
placed in the evanescent field on the ATR surface, IR features of BSG could be detected
and therefore facilitates these experiments. Furthermore, spectral ray tracing simulations
on the optical part of the combined SECM-IR-ATR instrument were performed for
confirming the experimentally derived IR sensing area at the ATR crystal surface, and for

verifying micropatterning results obtained at t