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Introduction

The infrared (IR) region of the electromagnetic
spectrum lies between B10 and 12800 cm� 1. The

energy of IR photons is thus of the same order of
magnitude as the energy differences between quan-
tized molecular vibrational states. Transitions be-
tween these vibrational modes can be induced by IR
radiation if there is a change in the molecular electric
dipole moment in the course of the vibrational
motion. IR spectroscopy is the study of the interac-
tion of IR radiation with matter as a function of
photon frequency. This interaction can take the form
of absorption, emission, or reflection. IR spectro-
scopy is a fundamental analytical technique for
obtaining quantitative and qualitative information
about a substance in the solid, liquid, or vapor state.
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It is convenient to divide the IR region into three
parts (Table 1): the far-IR (10–200 cm�1); the mid-
IR (200–4000 cm�1); and the near-IR (4000–
12 800 cm� 1). (The regions are not exactly defined:
slightly different boundaries for the IR regions are
found in the literature. In particular, most Fourier
transform infrared (FTIR) spectrometers operating in
the mid-IR region have a low-wave-number limit of
400 cm� 1.) Each part of the spectrum plays a dif-
ferent role in analysis according to the different
character of the transitions involved in each case.

Mid-IR radiation corresponds to fundamental
transitions in which one vibrational mode is excited
from its lowest energy state to its first excited state.
For routine analysis a spectrum is normally taken
from 400 to 4000 cm� 1. The mid-IR spectrum of a
substance is effectively a unique fingerprint that can
be used for the purpose of identification by compari-
son with a reference spectrum. When no reference
spectrum is available, an IR spectrum can be used to
identify the presence of certain structural units that,
irrespective of their molecular environment, give rise
to characteristic spectral features in a narrow fre-
quency range.

Near-IR spectroscopy arises from transitions in
which a photon excites a normal mode of vibration
from the ground state to the second or higher excited
vibrational state (overtones, vide infra) or transitions
in which one photon simultaneously excites two or
more vibrational modes (combinations bands, vide
infra). The use of the near-IR, especially diffuse re-
flection spectroscopy, in both quantitative and quali-
tative analysis has increased significantly due to
better instrumentation and the development of
chemometrics to better handle the effect of seriously
overlapping bands.

The far-IR region of the spectrum (o200 cm� 1) re-
sults from transitions involving low-frequency torsions
and internal rotations in liquids and lattice vibrations
in solids and is not commonly used for analysis, al-
though recent developments in instrumentation for
terahertz spectrometry may change the situation.

The scope and flexibility of IR spectroscopy in the
mid-IR region have been greatly increased by the
advent of FTIR spectroscopy. The multiplex and
throughput advantages of this technique allow spec-
tra to be run faster and with a greater signal-to-noise

ratio than dispersive spectroscopy, i.e., measure-
ments made with prism or grating monochromators.

The following brief description of the principal IR
techniques – using the near- or mid-IR – illustrates
the range of sample handling possible with IR spec-
troscopy.

‘Diffuse reflection’ is the term used to describes the
reflection of electromagnetic radiation from a sample
after the radiation has undergone multiple scattering
inside a powdered sample or at the surface of a matte
substance. The radiation passes through the ‘micro-
structural’ elements of the sample, e.g., the micro-
crystallites of a powder or the surface fibers of a
fabric, and is absorbed in the process before being
scattered out of the sample to detector. The use of
diffuse reflection spectroscopy in the ultraviolet (UV)
region of the spectrum is a long-established tech-
nique. However, until FTIR was established, the
weakness of the signal prevented the extension of the
technique into the mid-IR. Diffuse reflection IR
Fourier transform (DRIFT) spectroscopy has become
a useful technique for obtaining IR spectra from
powdered samples (or any matte material) with little
or no sample preparation.

Photoacoustic IR spectroscopy has similar advan-
tages to DRIFT spectroscopy in its ability to handle
solids with the minimum of preparation. The prin-
ciple of this technique is that when a modulated
beam of IR radiation is absorbed by a sample, tem-
perature oscillations set up thermal waves. If the
sample is sealed in a cell and surrounded by gas, then
a microphone can pick up the sound waves in the gas
and an IR absorption spectrum generated.

‘Specular reflection’ is the term used to describe
‘mirror-like’ reflection, from the surface of a sample
(angle of reflection equals angle of incidence). Spec-
ular reflected radiation ostensibly carries no infor-
mation about the IR absorption of a sample and is a
source of interference in diffuse reflection experi-
ments when the sample is not completely matte, i.e.,
has an element of ‘shininess’ about it. However,
if the reflected intensity from a sample is due ‘prin-
cipally’ to reflection from the front surface of the
sample, then an absorption index spectrum of the
sample can be generated from the reflected intensity
over the whole spectrum using the Kramers–Krönig
transformation. (This complex transformation is an

Table 1 The IR region of the spectrum

Region l (cm) %n (cm� 1) n (Hz)

Near-IR 2.5�10� 4–7.8�10� 5 4000–12800 1.2�1014–3.8� 1014

Mid-IR 5�10� 3–2.5�10� 4 200–4000 6�1012–1.2� 1014

Far-IR 0.1�5� 10� 3 10–200 3�1011–6�1012
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integral part of the software packages driving most
modern FTIR spectrometers.)

Aqueous solutions have traditionally posed a prob-
lem for IR spectroscopy due to the fact that water is a
strong absorber of IR radiation. This difficulty, for
aqueous solutions and other strongly absorbing liquid
and solid samples, can be overcome by using attenu-
ated total reflection spectroscopy. In this technique,
the phenomenon of total internal reflection is used in
such a way that it is only the evanescent wave as-
sociated with total internal reflection that enters the
sample. The evanescent wave penetrates the sample
very short distances only, hence the advantage for
strongly absorbing species.

FTIR microscopy, in which IR spectra can be ob-
tained from picogram quantities, is an invaluable
nondestructive analytical tool in fields such as foren-
sic science and pharmaceutical analysis.

The short data-capture times possible with the
FTIR spectrometer means that time-resolved spec-
troscopy has become an important means of follow-
ing the course of a chemical reaction in order to
obtain information about kinetics, equilibria, and the
nature of reaction intermediates.

Matrix isolation IR spectroscopy involves mixing
trace amounts of solute into a rare gas matrix at low
temperature. The advantage is that the solute mole-
cules are isolated so that reactive species can be
analyzed. Also, the absence of rotational structure
and lattice modes increases resolution.

For chiral molecules a small difference in the
magnitude of absorption of left- and right-circularly
polarized IR radiation is observed. This is known as
vibrational circular dichroism and, since the effect
can be observed from each normal mode, absolute
stereochemical information can be obtained from the
entire molecule. This is different from the UV analog
of this effect, where there may often be only one
chromophore present.

The Vibration of Diatomic Molecules

The Classical Diatomic Rigid Vibrator

An understanding of the nature of vibrational motion
is best obtained by first studying a simple system. To
introduce some of the basic concepts involved it is
useful to study the classical diatomic vibrator before
going on to consider the quantum theory.

The simplest model for a diatomic molecule con-
sists of two atoms of mass m1 and m2 connected by a
rigid, massless spring of length r, which has the value
r0 at equilibrium (Figure 1). If the z-axis is taken to
lie along the internuclear line, then the Cartesian co-
ordinates of the two atoms, referred to the center of

mass, may be written as

z1 ¼ z01 þ Dz1 ½1a�

z2 ¼ z02 þ Dz2 ½1b�

where z01 and z02 are the equilibrium coordinates of
atoms 1 and 2, respectively, and Dz1 and Dz2 are the
‘Cartesian displacements coordinates’. An ‘internal
coordinate’ R can be defined as the differences in the
bond length from its equilibrium value

R ¼ Dz2 � Dz1 ¼ r� r0 ½2�
The potential energy of the molecule V(R), which in-
creases as the bond is stretched or compressed, may be
expressed as a power series in the internal coordinate

VðRÞ ¼Vð0Þ þ dVðRÞ
dR

� �
0

R

þ 1

2

d2VðRÞ
dR2

 !
0

R2 þ 1

6

d3VðRÞ
dR3

 !
0

R3 þ? ½3�

The subscripts (zero) indicate that the derivatives are
to be taken at the equilibrium bound length. Only
changes in the potential energy from the equilibrium
value are important, so the energy scale may be cho-
sen such that V(0) is zero. Also, the first derivative of
the potential energy (dV(R)/dR)0 must be zero by
definition at the equilibrium position since this cor-
responds to the energy minimum. This leaves only the
quadratic and higher terms in the potential function

VðRÞ ¼ 1

2

d2VðRÞ
dR2

 !
0

R2 þ 1

6

d3VðRÞ
dR3

 !
0

R3 þ? ½4�

The cubic and higher terms are generally small for
small departures from the equilibrium position. The
effects of including these contributions in the poten-
tial energy expression will be considered later. It is,
however, a good first approximation to set these
higher-order terms to zero to give

VðRÞ ¼ 1

2

d2VðRÞ
dR2

 !
0

R2 ¼ 1

2
KR2 ½5�

A system with a potential function given by eqn [5] is
said to be ‘mechanically harmonic’ and K is known

m1 m2

r0

r

Massless spring

Figure 1 Model for a rigid diatomic vibrator.
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as the ‘force constant’ for the bond where

K ¼ d2VðRÞ
dR2

 !
0

½6�

The harmonic approximation corresponds to a rest-
oring force F acting on the atoms that is proportional
to the displacement of the bond length from its equi-
librium value (Hooke’s law)

F ¼ �KR ½7�
With the center of gravity as the coordinate origin, it
is straightforward to show that the problem reduces
to that of a single particle oscillating around the
center of mass subject to a harmonic restoring force
whose displacement is equal to the change in the in-
ternuclear distance of the molecule, i.e., the internal
coordinate R. The mass m of this particle is known as
the reduced mass of the molecule and is given by

m ¼ m1m2

m1 þm2
½8�

Applying Newton’s second law gives

m
2

d2R

dt2
¼ �KR ½9�

This equation describes the simple harmonic oscilla-
tor. The solution is

R ¼ R0 sinð2pnt þ dÞ ½10�
which corresponds to simple harmonic motion with
maximum amplitude R0, phase factor d, and fre-
quency n given by

n ¼ 1

2p
K

m

� �1=2

½11�

It can be shown that the maximum amplitude of
vibration for each atom is inversely proportional to
the atomic mass.

The Quantum-Mechanical Harmonic
Diatomic Vibrator

The harmonic potential function obtained in eqn [5]

VðRÞ ¼ 1
2KR

2

can be used in Schrödinger’s equation to yield the
following wave function:

CvðRÞ ¼ ða=pÞ1=4
ð2vv!Þ1=2

exp � aR2

2

� �
Hvða1=2RÞ ½12�

where v is the vibrational quantum number, and

a ¼ 2p
ðmKÞ1=2

h
¼ 4p2mn

h

where Hvða1=2RÞ are Hermite polynomials (Table 2).

The vibrational energy levels are given by

Ev ¼ vþ 1
2

� �
hn; v ¼ 0; 1; 2;y ½13�

where

n ¼ 1

2p
K

m

� �1=2

Note that this expression is exactly the same as
eqn [11], the classical vibration frequency.

Vibrational term values G(v) in wave numbers can
be defined from eqn [13]:

GðvÞ ¼ Ev

hc
¼ vþ 1

2

� �
n
c
¼ vþ 1

2

� �
*n ½14�

Inspection of eqn [13] shows that the vibrational
zero-point energy E0 is given by

E0 ¼ 1
2 hn ½15�

or

Gð0Þ ¼ 1
2 *n ½16�

Figure 2 shows plots of the harmonic diatomic vibra-
tor wave functions.

For harmonic wave function, the properties of the
Hermite polynomials are such that the selection rules
for vibrational transitions are

Dv ¼ 71 ½17�

There also exists the gross selection rule that, in
order for electromagnetic radiation to be absorbed,
the dipole moment of the molecule must change
during the vibration, which means that a diatomic
molecule must possess a permanent dipole moment
in order to absorb IR radiation. (These selections
rules will be discussed in detail in the section on the
intensity of IR transitions.)

Since all energy levels are equally spaced for a
harmonic diatomic vibrator, one line will appear in
the IR absorption spectrum with wave number

*n ¼ 1

2pc
K

m

� �1=2

½18�

Table 2 The first few Hermite polynomials

v Hv(x)

0 1

1 2x

2 4x2�2

3 8x3�12x

4 16x4�48x2þ12

5 32x5�160x3þ 120x
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Equation [18] can be used to provide approximate
values for the force constants of bonds (Table 3).

Isotopic Substitution

If one of the atoms in the diatomic molecule is replaced
by another isotopic species, then to a good approxi-
mation the electronic structure is unchanged. Hence,
the force constant will be the same for both molecules.
The change in the vibrational frequency will therefore
be completely due to the change in the reduced mass. If
m0 and *n0 are the reduced mass and wave number of the
isotopically substituted molecule, then

*n
*n0
¼ m0

m

� �1=2

½19�

Similar relationships for frequency shifts induced by
isotopic substitution in polyatomic molecules are given
later.

Anharmonic Vibrations of a Diatomic Molecule

The true potential function for a diatomic molecule
departs from harmonicity, especially for large ampli-
tude vibrations. It is useful to approximate an an-
harmonic potential using a Morse function (Figure 3)

Eanh ¼ Def1� exp½�aðr� reÞ�g2 ½20�

where De is the thermodynamic dissociation energy
and

a ¼ o
m

2De

� �1=2

; o ¼ 2pn ½21�

When this potential energy is used in the Schrödinger
equation the vibrational levels become

GðvÞ ¼ vþ 1

2

� �
*ne � vþ 1

2

� �2

xe *ne;y; xe ¼ a2_

2mo
½22�

where *ne is the wave number corrected for anhar-
monicity, and xe is the anharmonicity constant, a
positive number B10�2. The negative term in eqn
[22] results in the gap between successive vibrational
energy levels decreasing as v increases. The point at
which the levels merge into a continuum corresponds
to the dissociation of the molecule.

Another effect of anharmonicity is to relax the se-
lection rules to give

Dv ¼ 71;72;73;y ½23�

Along with the fundamental vibrations, ‘harmonics’
are now observed in the IR spectrum: the second
harmonic (or first overtone) (v¼ 2’v¼ 0), third
harmonic (or second overtone) (v¼ 3’v¼ 0) and so
on occur with decreasing intensity. A knowledge
of the wave numbers of the fundamental and first

� = 3

� = 2

� = 1

� = 0
r
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y

Figure 2 Harmonic diatomic vibrator wave functions.

Table 3 Vibrational frequencies and force constants for select-

ed bonds

Bond %n (cm� 1) K (�10 2Nm� 1) a

C–H 2960 4.7
==C–H 3020 5.0

====C–H 3300 5.9

(OC)–H 2800 4.3

C–C 900 2.9

C==C 1650 9.6

C====C 2050 15

C==O 1700 12

C====N 2100 17

O–H 3600 7.2

N–H 3350 6.2

C–F 1100 5.3

C–Cl 650 2.2

C–Br 560 1.9

C–I 500 1.6

a1mdyne Å�1¼100Nm� 1.

re r

De

P
ot

en
tia

l e
ne

rg
y

Figure 3 The Morse potential function.
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overtone vibrations allows the anharmonicity con-
stants to be calculated using eqn [22]. Table 4 shows
values of anharmonicity constants for a selection of
diatomic molecules.

Normal Coordinates

Computational and interpretational aspects of vib-
rational spectroscopy are greatly simplified by the
introduction of ‘normal coordinates’. First, mass-
weighted Cartesian displacement coordinates for an
N-atom molecule q1; q2;y; q3N are defined accord-
ing to

q1 ¼Om1Dx1; q2 ¼ Om1Dy1;

q3 ¼Om1Dz1; q4 ¼ Om2Dx2;y ½24�

In these coordinates the kinetic energy T is given by

T ¼ 1

2

X3N
i¼1

’q2i ½25�

where the dot indicates a time derivate. The potential
energy is given by

V ¼ 1

2

X3N
i;j¼1

@V

@qi@qj

� �
0

qiqj

¼ 1

2

X3N
i;j¼1

bijqiqj ½26�

where the bij denote the force constants in the
Cartesian displacement coordinate system. (Note
that there are cross-terms in the potential function
involving two coordinates.)

The total energy is therefore given by

E ¼ 1

2

X3N
i¼1

’q2i þ
1

2

X3N
ij¼1

bijqiqj ½27�

If the potential energy term did not include any cross-
terms, then Newton’s equation could be applied

d

dt

@T

@ ’qi

� �
þ @V

@qi

� �
¼ 0; i ¼ 1; 2;y; 3N ½28�

In this case the problem would reduce to the solution
of 3N independent equations. Therefore, in order to

enable the use of Newton’s equation, the mass-
weighted Cartesian coordinates qi are transformed
into a set of new coordinates Qi which results in no
cross-terms in the potential function.

The Qi are called the ‘normal coordinates’ of the
system, and this transformation from Cartesian dis-
placement to normal coordinates is the essence of the
vibrational problem. Using normal coordinates, the
kinetic and potential energy become

T ¼ 1

2

X3N
i¼1

’Q2
i ½29�

V ¼ 1

2

X3N
i¼1

liQ2
i ½30�

Using eqns [29] and [30] in eqn [28] instead of the
mass-weighted Cartesian coordinates gives

Q̈i þ liQi ¼ 0; i ¼ 1; 2;y; 3N ½31�

These are simply harmonic oscillator equations with
solutions

Qi ¼ Q0
i sinðOlit þ diÞ ½32�

with frequencies

ni ¼ 1

2p
Oli ½33�

Each vibration associated with a normal coordinate
is known as a ‘normal vibration’. Each atom
involved in a normal coordinate vibrates in phase
with all the other atoms involved in the same vib-
ration. Each atom passes through its equilibrium po-
sition at the same time and reaches each turning
point at the same time.

An analysis of the stretching vibrational motion of
a symmetrical linear triatomic molecule (Figure 4)
reveals that in terms of mass-weighted Cartesian co-
ordinates q1, q2, and q3 the normal vibrations (ex-
cluding a zero-frequency translational solution) are
given by

Qþ ¼ 1

21=2
q1 � 1

21=2
q2 ½34a�

Q� ¼ M

2ðMþ 2mÞ
� �q

1

� 2m

Mþ 2m

� �q
2

þ M

2ðMþ 2mÞ
� �q

3

½34b�

with frequencies

nþ ¼ 1

2p
K

m

� �1=2

½35a�

n� ¼ 1

2p
KðMþ 2mÞ

Mm

� �1=2
½35b�

Table 4 Anharmonicity constants for some diatomic molecules

Bond %ne (cm� 1) xe %ne (cm� 1)

H–12C 2861.6 64.3

H–19F 4138.5 90.07

H–16O 3735.2 82.81

H–35Cl 2991.0 52.85

H–Br 2649.7 45.21
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The þ and � labels have been used to denote that
the two normal vibrations are symmetric and anti-
symmetric stretches, respectively.

The two bonds in this system are known as ‘cou-
pled oscillators’. This type of system occurs often in
the vibrations of polyatomic molecules in which two
oscillators (which can be bonds or groups of bonds)
couple to give symmetric and antisymmetric combi-
nations. (In this case, where the system is exactly
symmetrical, the symmetric combination will not be
observed in the IR spectrum because the dipole mo-
ment of the molecule does not change.)

High-Resolution IR Spectra of
Linear Molecules

Each vibrational transition of vapor-phase molecules
is accompanied by rotational transitions. In the liq-
uid state the effect of molecular collisions is to
broaden the rotational lines so that they cannot be
resolved. This is why one observes IR bands as op-
posed to lines in solution spectra. In the vapor phase,
however, it is possible to resolve the rotational struc-
ture in a vibrational transition.

The Diatomic Vibrating-Rotator

It is normally a good approximation to express the
total energy due to the motion of the nuclei Enuc as
the sum of the separate energies Evib and Erot (the
Born–Oppenheimer approximation)

Enuc ¼ Evib þ Erot ½36�

To a first approximation, wave numbers of the
rotational levels are given by

EJ

hc
¼ BJð J þ 1Þ cm�1; J ¼ 0; 1; 2;y ½37�

when J is the rotational quantum number and B is
the rotational constant given by

B ¼ h

8p2Ic
cm�1 ½38�

where I is the moment of inertia of the molecule
given by

I ¼ mr2e ½39�

where re is the equilibrium bond length.

Using eqns [22] and [37] the total vibrational and
rotational energy is given by

Ev; J

hc
¼ BJð J þ 1Þ þ vþ 1

2

� �
*ne � xe vþ 1

2

� �
*ne ½40�

The selection rules for vibration–rotation transitions
are the same as for separate transitions:

Dv ¼ 71;72;73;y

and

DJ ¼ 71 ½41�

Labeling the initial and final levels by double and
single primes, respectively, and making the assump-
tion that the rotational constants for the lower and
upper vibrational states are the same, then the tran-
sition energies are given by

*nJ0; J00 ¼ *n0 þ Bð J0 � J00Þð J0 þ J00 þ 1Þ ½42�

when n0 is the band center (or band origin) given
by

*n0 ¼ *neð1� 2xeÞ ½43a�

*n0 ¼ 2*neð1� 3xeÞ ½43b�

*n0 ¼ 3*neð1� 4xeÞ ½43c�

for the fundamental and first and second overtones,
respectively. For DJ¼ þ 1,

*nJ00þ1; J00 ¼ *n0 þ 2Bð J00 þ 1Þ; J00 ¼ 0; 1; 2;y ½44�

For DJ¼ � 1,

*nJ00�1; J00 ¼ *n0 � 2Bð J0 þ 1Þ; J0 ¼ 0; 1; 2;y ½45�

So it can be seen that the high-resolution spectrum
will consist of two series of lines, one on either side
of the band center. The series corresponding to
DJ¼ � 1 is known as the P branch, and the series
corresponding to DJ¼ þ 1 is known as the R branch.
Note that there is zero intensity at the line center.
Figure 5 shows a schematic diagram of the transi-
tions involved and a stick representation of the line
intensities which will be discussed below. Figure 6
shows the high-resolution IR spectrum of the funda-
mental vibration of carbon monoxide and the same
spectrum of the fundamental vibration of carbon
monoxide and the same spectrum at lower resolution
where only the envelope of the P and R branches can
be seen.

m mM

K K
q1 q3 q2

Figure 4 The symmetrical linear diatomic molecule.
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It has been assumed that the rotational constant B
is the same for the upper and lower vibrational states
and that the vibrational terms will be unaffected by
the rotational state (interaction between rotation
and vibration, i.e., a breakdown of the Born–
Oppenheimer approximation). When these assumptions

are not made, eqn [40] becomes

Ev; J

hc
¼BvJð J þ 1Þ þ vþ 1

2

� �
*ne

þ xe vþ 1

2

� �2

ne �DvJ
2ð J þ 1Þ2 þ?

P branch R branch

Position of
Q branch

Frequency

Lower
vibrational
state

Upper
vibrational
state

5

4

3

2

1

 J ′ = 0

J″ = 0

5

4

3

2

1

Figure 5 Schematic diagram of P and R branch transitions for a diatomic molecule, where the line thickness compounds to the

intensity of the transition.

[46]

392 INFRARED SPECTROSCOPY /Overview



where Bv is the rotational constant associated with
the vibrational level with quantum number v and Dv

is the centrifugal distortion coefficient associated
with the vibrational level v. Centrifugal distortion
arises due to the fact that a bond will lengthen hence
weaken as the molecule rotates. The resultant vibra-
tional–rotational energy change is therefore

*nv0J0; v00J00 ¼ *n0 þ Bv0J
0ð J0 þ 1Þ �Dv0J

02ð J0 þ 1Þ2

� Bv00J
00ð J00 þ 1Þ þDv00J

002ð J00 þ 1Þ2 ½47�

Intensity of Lines in the P and R Branches

The intensity of each rotational line depends on the
number of molecules occupying the initial rotational
state. Using the Boltzmann distribution formula, at
thermal equilibrium the ratio of the number of mole-
cules NJ in rotational state J to the number N0 in the
rotational ground state is given by

NJ

N0
¼ ð2J þ 1Þ exp �BhcJð J þ 1Þ

kT

� �
½48�

where the (2Jþ 1)-fold degeneracy of each rotational
state has been taken into account. By differentiating
eqn [48] with respect to J and setting the derivative to
zero it can be shown that the maximum population
and hence the maximum intensity line occurs at

Jmax ¼ kT

2Bhc

� �1=2

� 1

2
½49�

This corresponds to a maximum intensity at wave
number *nmax given by

*nmax ¼ *n072B
kT

2Bhc

� �1=2

þ 1

2

" #
½50�

where the þ and � signs refer to the R and P
branches, respectively.

High-Resolution Vibrational Spectra of
Linear Polyatomic Molecules

The normal vibrations of a linear polyatomic mole-
cule which result in a change in the molecular dipole

moment (i.e., are IR allowed) can be classified into
two types: parallel vibrations and perpendicular vib-
rations, for which the directions of the changes in the
molecular dipole moment are parallel and per-
pendicular to the internuclear axis, respectively.
The rotational selection rules for parallel vibrations
are the same as for the vibration of a diatomic mole-
cule and one observes P and Q branches as before.
However, for perpendicular vibrations, rotational
transitions are allowed in which the rotational quan-
tum number does not change, i.e.,

DJ ¼ 0 ½51�

If rotational constants in both vibrational states are
equal then all Q branch transitions occur at the same
wavelength, the band origin. For a fundamental vib-
ration of a perpendicular vibration with unequal ro-
tational constants in the two vibrational levels and
introducing centrifugal distortion

*nv0J0; v00J00 ¼ *n0 þ ðBv0 � Bv00 ÞJ2 þ ðBv0 � Bv00 ÞJ þ ðDv0 �Dv00 ÞJ2
þ ðDv0 �Dv00 ÞJ; J ¼ 0; 1; 2;y ½52�

A typical band contour for perpendicular bands is
shown in Figure 7.

Polyatomic Molecules

Internal Coordinates

The set of internal coordinates required to describe
the vibrational motion of a general polyatomic mole-
cule consists of the bond stretch r, the bond angle
bend f, the out-of-plane (o.o.p.) angle bend g, and
the bond torsion t (Figure 8).

In a polyatomic molecule with 3N–6 vibrational
degrees of freedom (3N–5 for a linear molecule) a set

2250 2200 2150 2100 2050
Wave number (cm−1)

R branch P branch

Figure 6 The high-resolution infrared spectrum of carbon mon-

oxide showing P and R branches. (Inset on right is the same band

at lower resolution.)

Figure 7 Typical PQR branch envelope for the perpendicular

vibration of a linear polyatomic molecule.
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of 3N–6 internal coordinates can be chosen to de-
scribe the molecular vibrations.

A normal coordinate for a polyatomic molecule
can be expressed as a linear combination of the in-
ternal coordinates. The vibrational behavior of the
atoms can be represented by attaching arrows to
show their direction of motion. The lengths of the
arrows are in proportion to the maximum ampli-
tudes of each atom’s normal coordinate excursion.
The normal vibrations of water (H2O) are shown in
Figure 9.

Characteristic or group frequencies With a know-
ledge of atomic masses, the molecular geometry and
force constants, it is possible to calculate the internal
coordinate composition of the normal vibrations of
any molecule. Without this mathematical help, it is not
possible to specify the origin of most of the bands in an
IR spectrum which will, in general, contain major
contributions from several internal coordinates.

However, it is found that certain structural units in
a molecule give rise to bands that appear in the

spectra of different molecules within a sufficiently
narrow range of frequencies for these bands to be
used to identify the presence of the structural unit.
These relatively constant bands are known as the
characteristic frequencies or group frequencies of a
molecule. The vibrations associated with methylene
and methyl groups, which give rise to important
group frequencies, are shown in Figures 10 and 11,
respectively.

Intensity of IR Transitions

Let I0 and I be the incident and transmitted intensi-
ties, respectively, when infrared radiation passes
through a sample of concentration C and cell length
l. The transmittance T is defined as

T ¼ I

I0
¼ 10�aCl ½53�

where the quantity a, a function of wavelength, is
called the absorptivity of the sample. Taking logari-
thms of the last equation, the absorbance of the
sample is defined as

A ¼ log10
I0
I

� �
¼ aCl ½54�

Equation [54] is known as the Beer–Lambert law:
the absorbance of a sample is proportional to its
concentration and the cell pathlength. Since A is a

∆r ∆�

∆�∆�

Figure 8 Internal coordinates for polyatomic molecules.

v1

v2

Symmetric stretch
(3652 cm−1)

v3

Antisymmetric stretch
(3756 cm−1)

Angle bend
(1595 cm−1)

Figure 9 The normal vibrations of H2O.

In-phase stretch 2853cm−1 Out-of-phase stretch 2926cm−1

Wag

TwistRock

Deformation 1463cm−1

Figure 10 Characteristic vibrations of the methylene group.
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dimensionless quantity, the units of a are the product
of the units for reciprocal concentration and recipro-
cal pathlength. For example, with concentration in
molm� 3 and pathlength in meters, the units of a are
m2mol� 1. When concentration is expressed as mo-
larity and the pathlength is either in meters of centi-
meters, the absorptivity a is known as the molar
absorptivity and is given the symbol e.

The Beer–Lambert law is often used in quantitative
IR analysis using peakheights in the absorbance
spectrum as values for A, frequently after baseline
correction. Peakheights, however, are strongly de-
pendent on instrumental resolution and an alter-
native measure of the absorbance of a band is its
integrated intensity, which is the intensity integrated
over the whole IR band. The integrated intensity may
be expressed using the integrated absorptivity A, the
absorptivity integrated over the whole IR band, given
by

A ¼
Z
band

að*nÞ d*n ½55�

where að*nÞ has been written to highlight the depend-
ence of the absorptivity on wave number. Due to the
integration with respect to the wave number the di-
mensions of the integrated absorptivity are that of
the absorptivity divided by the dimension of length.
Using eqn [54], the last equation may be expressed as

A ¼ 1

Cl

Z
band

log10
I0
I

� �
d*n ½56�

While the peakarea is a better measure of band in-
tensity than peakheight in theory, the effect of ab-
sorption by neighboring bands leads to baseline
errors that affect the calculation of area more adver-
sely than peakheight. It is probably true to say that
most contemporary quantitative determinations are
made using peakheight.

The major interaction between the electromagnetic
radiation and a molecule is due to the interaction of
the electric field of the former, E, with the dipole
moment of the latter, l. (Magnetic interactions are
much smaller and generally are not important in

In-phase stretch 2870 cm−1 Out-of-phase stretch 2960 cm−1

(+ degenerate partner)

Out-of-phase deformation 1463 cm−1

(+ degenerate partner)

Rock (+ degenerate partner)In-phase deformation 1378 cm−1

Torsion

Figure 11 Characteristic vibrations of the methyl group.
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vibrational spectroscopy, although they are respon-
sible for IR circular dichroism.) The interaction gives
rise to a time-dependent perturbation of the quantum
states of a molecule equal to � l .E. Using the results
of time-dependent perturbation theory (Fermi’s
Golden Rule) it can be shown that the integrated
absorptivity of a transition between initial state ijh
and final state f jh for an isotropic system is given by

A ¼ NA2p2 *nif
3e0hc lne 10

j ijljfh ij2 ½57�

where ijh and f jh are the initial and final states of the
transition, l is the molecular dipole moment opera-
tor, NA is Avogadro’s number, nif is the wave number
corresponding to the band center, e0 is the per-
mittivity of free space, h is Planck’s constant, and c is
the speed of light. The quantity

ijljfh i �
Z

W0
i lWf dt

� �
½58�

is known as the electric dipole transition moment and
its magnitude determines the intensity of a transition.

The appearance of lne 10 in eqn [57] is to be con-
sistent with the definition of absorbance using base-
10 logs. Often the equation will be seen without
divisor, in which case it should be noted that the
absorptivity has been defined using the natural log
scale.

It should be noted that eqn [57] strictly only ap-
plies to dilute gases. In condensed phases refractive
index effects become important.

Equation [57] often appears in Gaussian units. The
Gaussian version is obtained by replacing e0 by 1/4p
to give

A ¼ NA8p3 *nif
3hc lne 10

ijljfh ij j2 ½59�

The transition electric dipole moment in eqn [57] can
be developed by invoking the Born–Oppenheimer
approximation to express the total molecular wave
function as a product of electronic and vibrational
parts. (Rotational wave functions do not have to be
included here since eqn [57] refers to an isotropic
system. That is, the equation is a result of a rota-
tional average which is equivalent to a summation
over all the rotational states involved in the transi-
tion.) A general molecular state can now be ex-
pressed as the product of vibrational and electronic
parts. Assuming that the initial and final electronic
states are the ground state jeg

�
,

ij i ¼ ivibj i eg
�� � ½60a�

fj i ¼ fvibj i eg
�� � ½60b�

and the transition moment becomes

ijljfh i ¼ nij egjljeg
	 �jnf	 �

¼ nih jle nf
�� � ½61�

where jnii and jnf
�
are the initial and final vibrational

states, respectively, and le is the permanent dipole
moment of the molecule. The permanent dipole mo-
ment is now treated as a parametric function of the
normal coordinates and expressed as a power series

nih jl0 þ
X3N�6

p¼1

@l
@Qp

� �
0

Qp

þ 1

2

X3N�6

p¼1

X3N�6

r¼1

@2l
@Qp@Qr

� �
0

QpQr þ? nf
�� � ½62�

Ignoring the quadratic terms (assuming the system is
electrically harmonic) gives

nih jl0e nf
�� �þ X3N�6

p¼1

nih j @le
@Qp

� �
0

Qp nf
�� � ½63�

The total vibrational wave function njh is given by
the product of the 3N� 6 normal coordinate wave
functions

nh j ¼ v1h j v2h j v3h j? v3N�6h j ½64�

where vp is the vibrational quantum number of the
pth normal vibration.

The total vibrational energy is given by

Gðv1; v2?v3N�6Þ ¼ v1 þ 1

2

� �
*n1 þ v2 þ 1

2

� �
*n2

þ?þ v3N�6 þ 1

2

� �
*n3N�6 ½65�

Let the vibrational ground state 0jh be represented by

0h j ¼ 01h j 02h j 03h j? 03N�6h j ½66�

and the state with the pth normal mode in the vp¼ 1
state be represented by

1p
	 �� ¼ 01h j 02h j 03h j? 1p

	 ��? 03N�6h j ½67�

Using the properties of harmonic oscillator wave
functions (the Hermite polynomials) that

0jQpj1r
	 � ¼ h

8p2n

� �1=2

dpr ½68�

where dpr is the Kronecker delta (which is unity if
p¼ r and zero otherwise), and

0j1p
	 � ¼ 0 ½69�
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Eqn [63] becomes

h

8p2np

� �1=2 @l
@Qp

� �
0

½70�

Substituting in eqn [57],

A ¼ NA

12e0c2 lne 10
@l
@Qp

� �
0

����
����
2

½71�

@l
@Qp

� �
0

����
���� ¼ 12e0c2 lne 10

NA

� �1=2

A1=2 ½72�

Note that the sign of the derivative of the dipole
moment cannot be determined directly by measuring
the integrated absorbance of an IR band.

Equation [71] shows the origin of the gross selec-
tion rule that the dipole moment of a molecule must
change in the course of a normal coordinate excur-
sion for the vibration to absorb IR radiation. The
transition moment in eqn [57] is only nonzero for
the case where only one vibration is excited and for
the situation in which the quantum number of the
vibration involved changes by 71. Hence the selec-
tion rule given earlier in eqn [17].

Anharmonic Effects in Spectra of
Polyatomic Molecules

Combination and difference bands Besides over-
tones, anharmonicity also leads to the appearance of
combination bands and difference bands in the IR
spectrum of a polyatomic molecule. In the harmonic
case, only one vibration may be excited at a time (the
transition dipole moment integral vanishes when the
excited state is given by a product of more than one
Hermite polynomial corresponding to different ex-
cited vibrations). This restriction is relaxed in the
anharmonic case and one photon can simultaneously
excite two different fundamentals. A weak band ap-
pears at a frequency approximately equal to the sum
of the fundamentals involved. (Only approximately
because the final state is a new one resulting from the
anharmonic perturbation to the potential energy
mixing the two excited state vibrational wave func-
tions.)

A difference band is the result of a transition from
an excited level of one normal vibration to a higher
energy level of another vibration. The frequency of
the difference band occurs at exactly the difference in
the frequencies of direct transitions to the excited
states involved from the vibrational ground state.
(‘Exactly’ equal in this case because no new vibra-
tional state is involved.)

Because difference bands originate from thermally
populated excited states, they will be more frequently
observed at lower frequencies and increase in intensity
as the temperature is raised. (Transitions which occur
from states other than the ground state are known as
hot bands. They are generally weak in mid-IR spectra
at room temperature due to vibrational energy gaps
which are relatively large compared to kT).

Fermi resonance If an overtone or combination
transition occurs with nearly the same frequency as
a fundamental transition of the same symmetry, then
the anharmonic term in the potential function causes
the two vibrations to interact or ‘mix’. This is known
as Fermi resonance. The extent of the mixing increase
as the frequency difference decreases. The result is
that the overtone or combination band acquires in-
tensity through having some of the fundamental vib-
ration mixed into it. Fermi resonance causes the two
bands involved to split apart from the positions they
would have occupied had no interaction occurred.

Symmetry of molecular vibrations Every normal
coordinate of a molecule must transform according
to an irreducible representation of the molecular
point group. If the molecular geometry is known,
then it is a routine matter to use the methods of
group theory to deduce how many vibrations occur
for each irreducible representation. The procedure is
to assign three Cartesian displacement coordinates to
each atom and to use the 3N coordinates as basis
functions for a 3N� 3N matrix representation of the
point group. A reducible representation is then ob-
tained by taking the trace of these matrices. This
representation is then reduced to a sum of irreducible
representations using

Ni ¼ 1

h

X
R̂

wiðR̂ÞwredðR̂Þ ½73�

where Nl is the number of times that symmetry spe-
cies i occurs, h is the order of the group, wi(R̂) is the
character associated with symmetry species i and
symmetry operation R̂, and wred(R̂) is the character of
the reducible representation associated with symme-
try with symmetry operation R̂.

One must then remove the irreducible representa-
tion which result from the three translational and
three rotational degrees of freedom (two for a linear
molecule). These can be identified from the character
table of the molecular point group: the translational
degrees of freedom transform as the functions x, y,
and z (denoted Tx, Ty, Tz or x, y, z in the character
tables); and the rotational degrees of freedom
transform as the components of an axial vector
(denoted Rx, Ry, and Rz in the character tables). The
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method is illustrated below for a bent triatomic mole-
cule which belongs to the C2v point group.

Figure 12A shows the molecule with three Cartesian
coordinates associated with each atom. Figure 12B
shows the effect of C2 rotation on the coordinates. This
transformation can be described in matrix form as

From eqn [74] it can be seen that the trace of the C2

matrix w(C2) is � 1. Using the same procedure for the
other symmetry operations, the complete reducible
representation formed from the traces of the matrices
corresponding to all the symmetry operations of the
C2v group is given by

wredðEÞ wredðC2Þ wredðsnÞ wredðsn0 Þ
Gred 9 �1 1 3

This representation can be reduced using eqn [73]
and the information in C2v character table. For ex-
ample, the number of times NA1

(the A1 irreducible
representation) is contained in Gred is given by

NA1
¼ 1

4½ð1Þð9Þ þ ð1Þð�1Þ þ ð1Þð1Þ þ ð1Þð3Þ� ¼ 3

The same procedure can be carried out for each
symmetry species of C2v to give

Gred ¼ 3A1 þ A2 þ 2B1 þ 3B2 ½75�

From the C2v character table, the three translations
span A1, B1, and B2, and the three rotations span A2,
B1, and B2. If these are taken away from eqn [75],
this leaves 2A1 and B2. The three normal vibrations
of the bent triatomic molecule, therefore, span these
irreducible representations. (See Figure 9: the anti-
symmetric stretch is B2.)

This method may be simplified by noting that only
Cartesian coordinates associated with atoms whose
positions are unchanged by a symmetry operation
may contribute to the trace of a matrix. If a symme-
try operation R̂ leaves the position of UR̂ atoms un-
changed, then it can be shown that the character of
the transformation matrix for not including trans-
formations and rotations is given by

wðR̂Þ ¼ ðUR̂ � 2Þð1þ 2 cosfÞ ½76a�

for proper rotations, and

wðR̂Þ ¼ UR̂ð�1þ 2 cos fÞ ½76b�

for improper rotations (reflection, rotation–reflection,
inversion) where f is the angle through which the
molecule is rotated. (Inversion through the center of
symmetry is equivalent to an improper rotation
through 1801, a reflection in a plane of symmetry is
an improper rotation through 01, and the identity
element is a proper rotation through 01.)

For the molecule ClCH3, which belongs to the
point group C3v, the number of atoms left unchanged

∆z1

∆x1

∆y1

∆z2

∆x2

∆y2 ∆z3

∆x3

∆y3

∆z1

∆x1

∆y1

∆z2

∆x2

∆y2

∆z3

∆x3

∆y3

(B)

(A)

Figure 12 (A) Cartesian displacement coordinates of symmetric

triatomic molecules. (B) Cartesian coordinates after C2 rotation.

C2

Dx1
Dy1
Dz1
Dx2
Dy2
Dz2
Dx3
Dy3
Dz3

¼

�Dx3
�Dy3
Dz3
�Dx2
�Dy2
�Dz2
�Dx1
�Dy1
Dz1

¼

0 0 0 0 0 0 �1 0 0 Dx1
0 0 0 0 0 0 0 �1 0 Dy1
0 0 0 0 0 0 0 0 1 Dz1
0 0 0 �1 0 0 0 0 0 Dx2
0 0 0 0 �1 0 0 0 0 Dy2
0 0 0 0 0 1 0 0 0 Dz2
�1 0 0 0 0 0 0 0 0 Dx3
0 �1 0 0 0 0 0 0 0 Dy3
0 0 1 0 0 0 0 0 0 Dz3

½74�
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by the three symmetry operations I, C3, and sn is

UI ¼ 5; UC3
¼ 2; Usn ¼ 3 ½77�

Using eqn [77] in eqn [76] gives:

wðIÞ wðC3Þ wðsnÞ
Gred 9 0 3

This representation can be reduced using eqn [73] to
give 3A1þ 3E, Thus, ClCH3 (3N� 6¼ 9) has three
totally symmetric vibrations and three doubly
degenerate vibrations.

Symmetry Selection Rules

Using eqn [61] for a fundamental vibration Qp it can
be seen that the band intensity is proportional to the
following transition dipole moment integral:

0jmaj1p
	 �

; a ¼ x; y; z ½78�

Unless the integrand is totally symmetrical the
integral will be identically zero. Since the vibrational
ground state is always totally symmetric, an IR funda-
mental will only be allowed when one or more com-
ponents of the dipole moment operator span the
same irreducible representation as the normal vibra-
tion. The components of the dipole moment operator
mx, my , and mz span the same irreducible representa-
tions as the functions x, y, and z, respectively. Hence
a fundamental vibration will only be allowed if it
spans the same irreducible representations as x, y, or
z (Tx, Ty, or Tz).

It was shown before that a bent triatomic molecule
undergoes two A1 and one B2 vibrations. Inspection
of the C2v character table revels that z spans A1 and y
spans B2. Therefore, all the vibrations are allowed.
This is not to say that all three bands will appear. The
magnitude of the transitions dipole moments may be
so small that a transition may not be observed.

If a molecule has several possible structures which
belong to different molecular point groups then the
methods above can be used for structure elucidation,
especially in conjunction with the results of the
analogous analysis for vibrational Raman bands. For
example, if a molecule is known to have the molec-
ular formula AB4, a group theoretical analysis pre-
dicts that a tetrahedral molecule would have two
active IR fundamentals, whereas a square planar
molecule would have three.

Infrared Spectroscopy of Crystals

In molecular crystals the molecules are held together
by van der Waals forces, and since these bonds are

very much weaker than chemical bonds, the molec-
ular vibrations are normally very similar to those of
the free molecule. However, the crystal environment
will generally lower the symmetry of the molecule,
with the result that the degeneracy of vibrations may
be lifted and vibrations, which were forbidden in the
free molecule can become allowed in the crystal so
that extra bands can appear. The formal treatment of
the symmetry of vibrations in molecular crystals is
obtained by considering the local symmetry in the
crystal unit cell (site group analysis). A more com-
plete theory, which includes lattice modes, is
provided by factor group analysis.

Vibrations due to the crystal lattice occur in the
far-IR from B50 to 400 cm� 1. It is possible to dis-
tinguish between some molecular and lattice vibra-
tions using the fact that molecular vibrations are
relatively insensitive to the effects of temperature and
pressure while the frequencies of lattice vibrations
generally increase with a decrease in temperature and
with an increase in pressure.

Infrared Linear Dichroism

For oriented single crystals there will generally be a
difference in the absorption between two linearly
polarized IR beams that are mutually orthogonal and
orthogonal to the direction of propagations. The
dichroic ratio is defined as

R ¼
R
band

e8ð*nÞ d*nR
band

e>ð*nÞ d*n ½79�

where e8 and e> refer to polarization parallel and
perpendicular to the crystal axis, respectively. If the
symmetry of the crystal is known, then the dichroic
ratio can give information about the symmetry of the
vibration.

Calculation of Normal Coordinates

Given the molecular geometry and a set of force con-
stants for a polyatomic molecule, it is a routine matter
to calculate the normal coordinates, a procedure
known as normal coordinate analysis. Suites of com-
puter programs are readily available that will calculate
vibrational frequencies and the internal coordinate
composition of each normal vibration. Most of the
early calculation of vibration frequencies were made
by Wilson’s FG-matrix method, which is briefly sum-
marized below. Today, a number of alternative tech-
niques based on semiempirical methods, molecular
mechanics, or density functional theory are also avail-
able, in convenient commercial software packages.

In the Wilson FG-matrix method, the problem
is framed in internal coordinates rather than in
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Cartesian displacement coordinates because the force
constants involved are more meaningful in relation
to the chemical structure of the molecule and are
more readily transferred between similar molecules.
Also, the theoretical procedure using internal coor-
dinates are such that the translational and rotational
motion of a molecule are automatically taken into
account.

The F Matrix

In the harmonic approximation the potential energy
of a molecule can be expressed as

2V ¼
X
ij

FijRiRj ¼ R̃FR ½80�

where Ri are the internal coordinates, F is the
3N� 6� 3N� 6 matrix formed by the force con-
stants, R is a column vector formed by the internal
coordinates and R̃ is its transpose. (In order to have
the same dimensions for all coordinates, and there-
fore all the force constants, the angle bending inter-
nal coordinates are sometimes scaled with a bond
length, e.g., in water the angle bend coordinate Da
would become rDa where r is the O–H bond length.)

Collectively, the Fij are known as the force field of
the molecule. These force constants are treated as
empirical parameters whose values are optimized by
obtaining the best fit of calculated to experimental
results for vibrational frequencies, Coriolis coupling
constants (which govern a type of coupling between
rotational and vibrational motion), centrifugal dis-
tortion constants, and mean-square amplitudes of
vibration. The simplest force field neglects all off-
diagonal or interaction force constants. This valence
force field (VFF), in general, gives poor results due to
the poor number of adjustable parameters (the non-
zero force constants).

In the generalized valence force field (GVFF) there
is no neglect of the off-diagonal terms. However, for
molecules of any appreciable size the number of force
constants to be determined becomes too large to
evaluate them with accuracy. Hence the simplified
general valence force field (SGVFF) is frequently used
in which all off diagonal force constants are set to
zero except those involving two internal coordinates
with common atoms.

The Urey–Bradley force field (UBFF) is also com-
monly used. This consists of diagonal stretch and bend
force constants together with repulsive force constants
representing nonbonded atom–atom interaction.

The G Matrix

The kinetic energy part of the vibrational problem
is expressed in the G matrix whose elements depend

on atomic masses and molecular geometry. It can
be shown that the vibrational kinetic energy T is
given by

2T ¼ *’RG
�1

’R ½81�

where a dot denotes the time derivative.
The elements of the Gmatrix are given in Figure 13.
As an example, the G matrix for a nonlinear tri-

atomic molecule (Figure 14) is given by

G ¼

m1 þ m3 m3 cos f � m3 sinf
r2

m3 cos f m2 þ m3 � m3 sinf
r1

� m3 sinf
r2

m3 sinf
r1

m1
r21

þ m2
r22

þ m3
1

r21
þ 1

r22
� 2 cos f

r1r2

� �

2
66666664

3
77777775

½82�

(The exact from of the elements of G depends on
whether scaled or unscaled coordinates are being
used. The above is for unscaled.)

The Secular Equation

The relationship between internal coordinates and
normal coordinates is defined as

R ¼ LQ ½83�

It can be shown that the matrix vibrational secular
equation is given by

GFL ¼ LK ½84�

where A is the diagonal eigenvalue matrix and L is
the matrix of eigenvectors of the matrix product GF.
This last equation is solvable when

jGF� Elj ¼ 0 ½85�

where E is the unit matrix and l is a root of
the secular polynomial. There will be 3N� 6 non-
zero roots, which are equal to the squares of
vibrational angular frequencies. So the problem is
essentially the diagonalization of GF, a process which
is easily carried out by computer using numerical
methods.

From eqn [83] we have

Q ¼ L�1R ½86�

so that the elements of L�1 can be used to obtain a
picture of the normal vibration in terms of the in-
ternal coordinates. However, the reported results of a
normal coordinate analysis often include the poten-
tial energy distribution (PED) for this information.
The PED is the fraction of the potential energy
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of a normal mode contributed by each force constant
Fij. The diagonal elements of this distribution for
the major components of a normal vibration are
quoted as a percentage. For vibration Qp and
internal coordinate Ri

PED ðRiÞ ¼
100FiiL

2
ipP

i FiiLip

 !
% ½87�

The sum of the diagonal elements in the PED can
exceed 100% due to the neglect of the off-diagonal
contributions.

Use of Symmetry

When a molecule possesses symmetry the vibrational
problem may be simplified by transforming the in-
ternal coordinates to symmetry coordinates. A vib-
ration of a certain symmetry will be composed solely
of symmetry coordinates belonging to the same sym-
metry species.

The transformation to symmetry coordinates RS is
given by

RS ¼ UR ½88�

The symmetry coordinates and hence the coeffici-
ents of the (unitary) symmetrization matrix
are obtained by applying symmetry projection
operators to the internal coordinates. For irreducible
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Figure 13 Representation of common elements of the G matrix. Key: atoms common to both coordinates are double circles in

horizontal line; number of common atoms as superscript; atoms above horizontal belong to first coordinate; those below belong

second;
n
m

� �
� n and m are numbers of (noncommon) atoms above horizontal on left and below horizontal on left, respectively.

c, cos; s, sin; rab¼ 1/rab; ma¼1/mass a.
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Figure 14 Nonlinear triatomic molecule.
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representation i

RS
i ¼ N

X
R̂

wiðR̂ÞR̂� R ½89�

where N is a normalization factor.
A similarity transformation using U is carried out

on the F and G matrices

FS ¼ UFŨ ½90a�

GS ¼ UGŨ ½90b�
The symmetrization process produces the block-
factored matrices FS GS. Hence the product GSFS

will be block-factored and each block may be
diagonalized separately.

Isotopic Substitution in Polyatomic Molecules: The
Teller–Redlich Product Rule

Observation of the changes in frequency that occur
in a vibrational spectrum as a result of isotopic sub-
stitution of one or more atoms is an important meth-
od for assessing the accuracy of molecular force
fields. Isotopic substitution is also important for
making band assignments in large molecules: the on-
ly vibrations to be shifted will be those involving the
isotopically substituted atoms.

For isotopic substitution in which the molecular
point group is unchanged, the Teller–Redlich product
rule links the two sets of vibrational frequencies.
There is one product rule for each symmetry species
of the molecule as follows

Pn
Pn0

¼ M

M0

� �t Ix
I0x

� �rx Iy
I0y

 !ry
Iz
I0z

� �rz

P
m0

m

� �a
( )1=2

½91�

where a prime is used to distinguish properties of the
two molecules and P denotes a product. The prod-
ucts on the left-hand side include all vibrations in the
particular symmetry species to which the equation
applies. M is the molecular mass; t is the number of

translations belonging to the symmetry species in
question (which can be deduced using the methods
described in the section on symmetry); Ix, Iy , and
Iz are moments of inertia about the three Cartesian
axes; rx, ry, and rz are 1 if the respective rotation
belongs to the symmetry species concerned and 0
otherwise; m is the mass of an atom which is a
member of a set of symmetrically equivalent atoms
and a is the number of external (rotational and
translational) symmetry coordinates which these at-
oms give rise to. The product on the right-hand side
involves all sets of symmetrically equivalent atoms.

See also: Chemometrics and Statistics: Optimization
Strategies. Chiroptical Analysis. Fourier Transform
Techniques. Infrared Spectroscopy: Sample Presenta-
tion; Near-Infrared. Photoacoustic Spectroscopy.
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Introduction

Since an infrared spectrum can be recorded from
almost any material, infrared spectroscopy is an

extremely important analytical technique. Mid-
infrared spectroscopy is used extensively in applica-
tions involving qualitative analysis, providing either
functional group or structural information about a
sample or fingerprinting (identifying) a material.
There is also widespread use of the technique for
quantitative purposes, since the absorbance of a band
is proportional to the concentration of the species
that gives rise to the absorption band.
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