Computational Models
¢ Model Chemistries

In This Chapter: All chemists use models.” Beginning chemistry students use plastic models to help '

them understand and visualize the structures of molecules. Recently, both students I
An Ovorvi.ow of and experienced researchers have begun to use chemical drawing programs for the |
Computational sarme purpose. '
Chemistry

Not all models are physical or pictorial objects. For example, the Sy2 mechanism is a
simple model for a particular class of reactions that successfully explains a lot of
chemistry. What all of these things have in common is that they use a set of
pre-defined objects and rules to approximate real chemical entities and processes.

Model Chemistries

In a similar way, computational chemistry simulates chemical structures and reactions
numerically, based in full or in part on the fundamental laws of physics. It allows
chemists to study chemical phenomena by running calculations on computers rather
than by examining reactions and compounds experimentally. Some methods can be
used to model not only stable molecules, but also short-lived, unstable intermediates
and even transition states. In this way, they can provide information about molecules
and reactions which is impossible to obtain through observation. Computational
chemistry is therefore both an independent research area and a vital adjunct to
experimental studies.

An Overview of Computational Chemistry

There are two broad areas within computational chemistry devoted to the structure of
molecules and their reactivity: molecular mechanics and electronic structure theory.
They both perform the same basic types of calculations:

4 Computing the energy of a particular molecular structure (spatial
arrangement of atoms or nuclei and electrons). Properties related to the
energy may also be predicted by some methods.

' In fact, certain philosophers of science argue that chemistry itself—indeed alt science-—functions as a model
of certain aspects of the physical universe.
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| 4 Performing geometry optimizations, which locate the lowest ener

: & molecular structure in close proximity to the specified starting structure.
By ' Geometry optimizations depend primarily on the gradient of the
: energy—the first derivative of the energy with respect to atomic positions.

4 Computing the vibrational frequencies of molecules resulting from
interatomic motion within the molecule. Frequencies depend on the
: second derivative of the energy with respect to atomic structure, and
i frequency calculations may also predict other properties which depend on
second derivatives. Frequency calculations are not possible or practical for

all computational chemistry methods.

3 Molecular Mechanics
& Molecular mechanics simulations use the laws of classical physics to predict the
{ structures and properties of molecules. Molecular mechanics methods are available in
% many computer programs, including MM3, HyperChem, Quanta, Sybyl, and
' Alchemy. There are many different molecular mechanics methods. Each one is
characterized by its particular force field. A force field has these components:

I 4+ A set of equations defining how the potential energy of 2 molecule varies
with the locations of its component atoms.

' + A series of atom types, defining the characteristics of an element within a
i specific chemical context. Atom types prescribe different characteristics and
# behavior for an element depending upon its environment. For example, a

- # carbon atom in a carbonyl is treated differently than one bonded to three
| hydrogens. The atom type depends on hybridization, charge and the types
g.' of the other atoms to which it is bonded.
1
g’ 4+ One or more parameter sets that fit the equations and atom types to
w} experimental data. Parameter sets define force constants, which are values
: used in the equations to relate atomic characteristics to energy components,
2! and structural data such as bond lengths and angles.
4 Molecular mechanics calculations don’t explicitly treat the electrons in a molecular

- system. Instead, they perform computations based upon the interactions among the
A _ nuclei. Electronic effects are implicily included in force fields through
parametrization.

This approximation makes molecular mechanics computations quite inexpensive
computationally, and allows them to be used for very large systems containing many

' Strictly speaking, optimizations do not always find minimum energy structures. This point will be
discussed at length in Chapter 4.
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An Overview of Computational Chemistry

thousands of atoms. However, it also carries several limitations as well. Among the
most important are these:

4 Each force field achieves good results only for a limited class of molecules,
related to those for which it was parametrized. No force field can be
generally used for all molecular systems of interest.

4 Neglect of electrons means that molecular mechanics methods cannot treat
chemical problems where electronic effects predominate. For example, they
cannot describe processes which involve bond formation or bond breaking.
Molecular properties which depend on subtle electronic details are also not
reproducible by molecular mechanics methods.

Electronic Structure Methods

Electronic structure methods use the laws of quantum mechanics rather than classical
physics as the basis for their computations. Quantum mechanics states that the energy
and other related properties of a molecule may be obtained by solving the
Schrodinger equation:

HY = E¥

For any but the smallest systems, however, exact solutions to the Schrodinger
equation are not computationally practical. Electronic structure methods are
characterized by their various mathematical approximations to its solution. There are
two major classes of electronic structure methods:

4 Semi-empirical methods, such as AM1, MINDO/3 and PM3, implemented
in programs like MOPAC, AMPAC, HyperChem, and Gaussian, use
parameters derived from experimental data to simplify the computation.
They solve an approximate form of the Schrédinger equation that depends
on having appropriate parameters available for the type of chemical system
under investigation. Different semi-emipirical methods are largely
characterized by their differing parameter sets.

4 Ab initio methods, unlike either molecular mechanics or semi-empirical
methods, use no experimental parameters in their computations. Instead,
their computations are based solely on the laws of quantum
mechanics—the first principles referred to in the name ab initio—and on
the values of a small number of physical constants:

& The speed of light
&  The masses and charges of electrons and nuclei
%  Planck’s constant

Exploring Chemistry with Electronic Structure Methods 5
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Gaussian offers the entire range of electronic structure methods. This work provides
guidance and examples in using all of the most important of them.

Ab initio methods compute solutions to the Schrodinger equation using a series of
rigorous mathematical approximations. These procedures are discussed in detail in
Appendix A, The Theoretical Background.

Semi-empirical and ab initio methods differ in the trade-off made between
computational cost and accuracy of result. Semi-empirical calculations are relatively
inexpensive and provide reasonable qualitative descriptions of molecular systems and
fairly accurate quantitative predictions of energies and structures for systems where
good parameter sets exist.

In contrast, ab initio computations provide high quality quantitative predictions for a
broad range of systems. They are not limited to any specific class of system. Early ab
initio programs were quite limited in the size of system they could handle. However,
this is not true for modern ab initio programs. On a typical workstation, Gaussian 94
can compute the energies and related properties for systems containing a dozen heavy
atoms in just a few minutes. It can handle jobs of up to a few hundred atoms, and it
can predict the structures of molecules having as many as one hundred atoms on the
same size computer system.’ Corresponding larger systems can be handled on
supercomputer systems, based upon their specific CPU performance characteristics.

The ab initio methods in Gaussian are also capable of handling any type of atom,
including metals. Gaussian computes a variety of molecular properties in addition to
the energies and structures. Gaussian can investigate molecules in their excited states
and in solution.

Density Functional Methods

Recently, a third class of electronic structure methods have come into wide use:
density functional methods.* These DFT methods are similar to ab initio methods in
many ways. DFT calculations require about the same amount of computation
resources as Hartree-Fock theory, the least expensive ab initio method.

DFT methods are attractive because they include the effects of electron
correlation—the fact that electrons in a molecular system react to one another’s
motion and attempt to keep out of one another’s way—~in their model. Hartree-Fock
calculations consider this effect only in an average sense—each electron sees and

-

Such large calculations will take on the order of one to a few days, depending on the exact molecular system
and computer system. However, even larger calculations are possible, provided you are willing to allocate
the necessary CPU resources to them. What constitutes a “practical” calculation is ultimately a matter of
individual judgement. We'li look at how resource requirements vary with molecule size and calculation type
at appropriate points in the course of this work.

Whether density functional methods are ab initio methods or not is a controversial question which we will
not attempt to address.

6 Exploring Chemistry with Electronic Structure Methods

Mod




tk provides

a series of
in detail in

e between
‘¢ relatively
ystems and
‘ems where

ctions for a
0. Early ab
7 H(;wcver,
aussian 94
vzen heavy
sms, and it
oms on the
andled on
cteristics.

¢ of atom,
1ddition to
ited states

wide use:
iethods in
nputation

f electron
' another’s
rtree-Fock
1 sees and

lecular system
ng to allocate
iy a matter of
fculation type

which we will

Model Chemistries

reacts to an averaged electron density—while methods including electron correlation
account for the instantaneous interactions of pairs of electrons with opposite spin.f
This approximation causes Hartree-Fock results to be less accurate for some types of
systems. Thus, DFT methods can provide the benefits of some more expensive ab
initio methods at essentially Hartree-Fock cost. See Appendix A for more details
about these methods.

Model Chemistries

The theoretical philosophy underlying Gaussian is characterized by the following
principle:

A theoretical model should be uniformly applicable to molecular systems of
any size and type, up to a maximum size determined only by the practical
availability of computer resources.

This is in contrast to an alternate view which holds that the highest—most
accurate—level of theory which is practical ought to be used for any given molecular
system. The Schrodinger equation can be approximated much more closely for small
systems than for large ones (and can even be solved exactly for the smallest possible
system: the hydrogen atom). However, using different levels of theory for different
size molecules makes comparing results among systems unreliable.

This principle has a number of implications:

4+ A theoretical model should be uniquely defined for any given configuration
of nuclei and electrons. This means that specifying a molecular structure is
all that is required to produce an approximate solution to the Schrodinger
equation; no other parameters are needed to specify the problem or its
solution.

4 A theoretical model ought to be unbiased. It should rely on no
presuppositions about molecular structure or chemical processes which
would make it inapplicable to classes of systems or phenomena where these
assumptions did not apply. It should not in general invoke special
procedures for specific types of molecules.

The implementation of such a theoretical model is termed a theoretical-model
chemistry, or simply a model chemistry.

' This is a bit of an oversimplification (see Appendix A).

Exploring Chemistry with Electronic Structure Merhods 7
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Computational Models & Model Chemistries

Once a theoretical model has been defined and implemented, it should be
systematically tested on a variety of chemical systems, and its results should be
compared to known experimental values. Once a model demonstrates that it can
reproduce experimental results, it can be used to predict properties of systems for
which no data exist.

Other desirable features of a model chemistry include:

4

Size consistency: the results given for a system of molecules infinitely
separated from one another ought to equal the sum of the results obtained
for each individual molecule calculated separately. Another way of
describing this requirement is that the error in the predictions of any
method should scale roughly in proportion to the size of the molecule.
When size consistency does not hold, comparing the properties of
molecules of different sizes will not result in quantitatively meaningful
differences.

Reproducing the exact solution for the relevant n-electron problem: a method
ought to yield the same results as the exact solution to the Schrodinger
equation to the greatest extent possible. What this means specifically
depends on the theory underlying the method. Thus, Hartree-Fock theory
should be (and is) able to reproduce the exact solution to the one electron
problem, meaning it should be able to treat cases like H,* and HeH*
essentially exactly.

Higher order methods similatly ought to reproduce the exact solution to
their corresponding problem. Methods including double excitations (see
Appendix A) ought to reproduce the exact solution to the 2-electron
problem, methods including triple excitations, like QCISD(T), ought to
reproduce the exact solution to the three-electron problem, and so on.

Variational: the energies predicted by a method ought to be an upper
bound to the real energy resulting from the exact solution of the
Schrodinger equation.

Efficient: calculations with a method ought to be practical with existing
computer technology.

Accurate: ideally, a method ought to produce highly accurate quantitative
results. Minimally, a method should predict qualitative trends in molecular
properties for groups of molecular systems.

Not every model can completely achieve all of these ideals. We'll look at the
characteristics of the various methods in Gaussian in Appendix A.

8 Exploring Chemistry with Electronic Structure Methods
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Defining Model Chemistries

Gaussian includes many different model chemistries. The theoretical model
chemistries in Gaussian have been subjected to the testing procedure described
previously and so may be recommended for general use with any system for which

they are computationally feasible.
ed by the combination of theoretical procedure and

formed with Gaussian must specify the desired
addition to specifying the molecular system to

Model chemistries are characteriz
basis set. Every calculation per
theoretical model chemistry in
consider and which results to compute for it.

Method

The Gaussian program contains a hierarchy of
approximation methods (commonly referre
Theoretical descriptions for each of them may
we'll be concerned with most often in this work are liste

procedures corresponding to different
d to as different levels of theory).
be found in Appendix A. The ones
d in the following table:

M2 s e
MP4 4N Order Matler-Plesset Perturbation Theory

Availability

Keyword Method
Through 2nd derivatives

HF Hartree-Fock Self-Consistent Field
sity Functional Theory Through 2nd derivatives

BALYP Becke-style 3-Parameter Den

(using the Lee-Yang-Parr correlation functional)
Through 2nd derivatives

MP2 274 Order Moller-Plesset Perturbation Theory
Energies only

(including Singles, Doubles, Triples and Quadruples

by default)
Energies only

QCIsD(f)  Quadratic CI (Single, Doubles & Triples)

More accurate methods become correspondingly more expensive computationally.
Recommended uses of each level of theory will be discussed throughout the work,
and a consideration of the entire range of electronic structure methods is the subject

of Chapter 6.

Basis Set
A basis set is a mathematical represen

molecule. The basis set can be interprete
region of space. Larger basis sets impose
accurately approximate exa
computational resources. Ava
Chapter 5.

tation of the molecular orbitals within a
d as restricting each electron to a particular
fewer constraints on electrons and more
<t molecular orbitals. They require correspondingly more
ilable basis sets and their characteristics are discussed in
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Open vs. Closed Shell

Although not strictly part of a model chemistry, there is a third component to every
Gaussian calculation involving how electron spin is handled: whether it is performed
using an open shell model or a closed shell model; the two options are also referred to
as unrestricted and restricted calculations, respectively. For closed shell molecules,
having an even number of electrons divided into pairs of opposite spin, a spin
restricted model is the default. In other words, closed shell calculations use doubly
occupied orbitals, each containing two electrons of opposite spin.

Open shell systems—for example, those with unequal numbers of spin up and spin
down electrons—are usually modeled by a spin unrestricted model (which is the
default for these systems in Gaussian).! Restricted, closed shell calculations force each
electron pair into a single spatial orbital, while open shell calculations use separate
spatial orbitals for the spin up and spin down electrons (ot and B respectively):

Y— \yj‘___ — 4
v, 4 g w4 v
v, ved +“‘|:§

‘l’,‘#— w‘:.}. + 1

Unrestricted calculations are needed for systems with unpaired electrons, including:

4+ Molecules with odd numbers of electrons (e.g. some ions).

4 Excited states.

4 Other systems with unusual electronic structure (for example, 2 or more
unpaired outer electrons).

¢ Processes such as bond dissociation which require the separation of an
electron pair and for which restricted calculations thus lead to incorrect
products (even though there is an even number of electrons).

In Gaussian, open shell calculations are requested by prepending the method keyword
with a U (for unrestricted); similarly, closed shell calculations use an initial R (for
example, RHF versus UHF, RMP2 versus UMP2 and so on).}

Compound Models

Traditional electronic structure energy calculations consist of a single job. However, a
calculation at a very accurate level of theory can take a very long time to complete. In
an effort to achieve high accuracy results at less computational cost, several new
model chemistries have been defined as a series of calculations to be run and a

' Itis also possible to define spin restricted open shell models (keyword prefix RO). See the Gaussian User’s
Reference for more information.
For some cases, additional measures must be taken to force an unrestricted wavefunction to be used (for

example, Guess=Mix or Guess=Alter)

10 Exploring Chemistry with Electronic Structure Methods
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Model Chemistries

procedure for combining their results to predict an energy value for the molecule
under investigation. Even though multiple calculations are run, their total
computational cost is still significantly less than that of the single, high-accuracy
model which they are designed to approximate.

We will consider several of these multi-job models in Chapter 7, including Gaussian-1
and Gaussian-2 theory and their variants and several Complete Basis Set (CBS)

methods.
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In This Chapter:

Computing Energies
of Molecular Systems

Examining
Molecular Orbitals

Predicting Multipole
Moments and
Atomic Charges

Single Point Energy Calculations

In this chapter, we'll elaborate further on the type of calculation we performed in the
Quick Start. A single point energy calculation is a prediction of the energy’ and
related properties for a molecule with a specified geometric structure. The phrase
single point is key, since this calculation is performed at a single, fixed point on the
potential energy surface® for the molecule. The validity of results of these calculations
depends on having reasonable structures for the molecules as input.

Single point energy calculations are performed for many purposes, including the
following:
4 To obtain basic information about a molecule.

4 As a consistency check on a molecular geometry to be used as the starting
point for an optimization.

4+ To compute very accurate values for the energy and other properties for a
geometry optimized at a lower level of theory.

4 When it is the only affordable calculation for a system of interest.

Single point energy calculations can be performed at any level of theory and with
small or large basis sets. The ones we'll do in this chapter will be at the Hartree-Fock
level with medium-sized basis sets, but keep in mind that high accuracy energy
computations are set up and interpreted in very much the same way.

Setting Up Energy Calculations

Setting up an input file for a Gaussian single point energy calculation follows the steps
we used in the Quick Start. To request this type of calculation, you must supply the

following information:

4 The type of job and level of theory for the calculation.
4 Atitle for the job.

t That is, the sum of the electronic energy and nuclear repulsion energy of the molecule at the specified
nuclear configuration. This quantity is commonly referred to as the total energy. However, more complete
and accurate energy predictions require a thermal or zero-point energy correction (see Chapter 4, p. 68).

* This term is defined in detail in Chapter 3.

Exploring Chemistry with Electronic Structure Methods 13
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Single Point Energy Calculations

+  The structure of the molecule: its charge and spin multiplicity and the
locations of the nuclei in space.

These jtems form the route section, the title section, and the molecule specification
section of the input file, respectively. We'll look at each of them again briefly as we set
up an input file for an energy calculation on formaldehyde.

The Route Section

The route section of a Gaussian input file specifies the kind of job you want to run as
well as the specific theoretical method and basis set which should be used. All of these
items are specified via keywords. Recall that the first line of the route section begins
with a # sign (or #T to request terse output).

A single point energy is the default calculation type in Gaussian, so no special
keyword is needed in the route section to request one (although you can include the
SP keyword if you want to); simply specifying a procedure and basis set in the route
section requests a single point energy calculation. We’ll be running our formaldehyde
calculation at the Hartree-Fock level, using the 6-31G(d) basis set.

Here are some other useful keywords for single point energy calculations (and other
types of jobs as well):

Keyword Effect
Test Prevents Gaussian from entering this job’s results into the site archive,

Pop=Reg Displays highest five occupied and lowest five virtual molecular
orbitals and other information not included in the output by default,
Use Pop=Full to display all orbitals.

Units Specifies that alternate units have been used in the molecule
specification (discussed later in this section).

SCF=Tight ~ Requests that the wavefunction convergence criteria be made more
rigorous. The default criteria for single point energy calculations are
chosen as the best tradeoff between accuracy and computation speed,
and they are generally accurate enough for comparing the energies of
similar molecules and for predicting properties such as molecular
orbitals and the dipole moment. SCF=Tight can be used to compute the
energy using even tighter SCF convergence criteria. See Exercise 2.6 for
more details about this topic.

We'll be including Pop=Full in our job in order to include intormation about all of the
molecular orbitals in the output,

14 Exploring Chemistry with Electronic Structure Methods
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Setting Up Energy Calculations

any way that the user desires. It often consists of just one line, and the section ends
with a blank line.

The Molecule Specification Section

All molecule specifications require that the charge and spin multiplicity be specified
(as two integers) on the first line of this section. The structure of the molecule follows,
in either Cartesian coordinates, internal coordinates (a Z-matrix), or a combination
of the two.

Charge on the Molecule

The charge is a positive or negative integer specifying the total charge on the
molecule. Thus, 1 or +1 would be used for a singly-charged cation, -] designates a
singly-charged anion, and o represents a neutral molecule,

Spin Multiplicity

The spin multiplicity for a molecule is given by the equation 25 + 1, where $ is the
total spin for the molecule, Paired electrons contribute nothing to this quantity. They
have a net spin of zero since an alpha electron has a spin of +% and a beta electron has
a spin of -15, Each unpaired electron contributes +% to S. Thus, a singlet—a system
with no unpaired electrons—has a spin multiplicity of 1, a doublet (one unpaired

Molecular Structure

The structure of the molecular system to be investigated follows the initial charge and
spin multiplicity line in the molecule specification section. The structure may be
obtained in a variety of ways: from the coordinates generated by or converted from a
drawing program (as demonstrated in the Quick Start), by constructing a Z-matrix by
hand (see Appendix B), from the experimental literature, from the results of a
Previous calculation, and so on.

Multi-Step Jobs

Multiple Gaussian calculations can be performed from a single input file. See
Appendix B ( Ppage 294) for details on multi-step jobs,

Exploring Chemistry with Electronic Structure Methods 15
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Locating Results in Gaussian Output

Example 2.1: Formaldehyde Single Point Energy
file: e2_01 In this section, we'll identify the major results predicted by a single point energy

16

» calculation by looking at the output of a calculation on formaldehyde. Here is the
complete input file:

" #T RHF/6-31G(d) Pop=Full Test
C Formaldehyde Single Point
~
H 01

c 0.0 0.0 0.0
o 0.0 1.22 0.0
H 0.94 -0.54 0.0
H -0.94 -0.54 0.0

Here we give the molecule specification in Cartesian coordinates. The route section
specifies a single point energy calculation at the Hartree-Fock level, using the
6-31G(d) basis set. We've specified a restricted Hartree-Fock calculation (via the R
prepended to the HF procedure keyword) because this is a closed shell system. We've
also requested that information about the molecular orbitals be included in the
output with Pop=Reg.

We'll look at each of the major items separately, in the order in which they appear in
the output.

Standard Orientation Geometry

This section displays positioning of the atoms in the molecule used by the program
internally, in Cartesian coordinates. This orientation is chosen for maximum
calculation efficiency, and corresponds to placing the center of nuclear charge for the
molecule at the origin. Most molecular properties are reported with respect to the
standard orientation. Note that this orientation usually does not correspond to the
one used in the input molecule specification; the latter is printed eatlier in the output
as the “Z-matrix orientation.”

Exploring Chemistry with Electronic Structure Methods
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Locating Results in Gaussian Output

Here is the standard orientation generated for formaldehyde:

Standard orientation:

Center Atomic Coordinates (Angstroms)
Number Number X Y Z
1 6 0.000000 0.000000 -0.542500
2 8 0.000000 0.000000 0.677500
3 1 0.000000 0.940000 -1.082500
4 1 0.000000 -0.940000 -1.082500

The molecule is positioned in the YZ-plane, with the C=O bond coinciding with the
Z-axis.

Energy
The total energy of the system, computed at the Hartree-Fock level, is given by this
line of the output:

SCF Done: E(RHF) = -113.863697598 A.U. after 6 cycles

The value is in hartrees. The number of cycles it took the SCF calculation to converge
is also given on this line (refer to Appendix A for a discussion of the iterative nature of
the SCF method). When we discuss energies in this work, we will generally use
hartrees (atomic units); when we discuss energy differences, kcal-mol! will often be a
more convenient unit (especially when comparing calculation predictions to
experimental results).

In a higher level energy calculation, values for the energy computed using the more
accurate procedure appear shortly after the Hartree-Fock energy. Here is the output
from a formaldehyde calculation done at the MP2 Jevel (RMP2 replaces RHF in the
route section:

E2 = -0.3029540001D+00 EUMP2 = ~0.11416665769315D+03 "]

The number following EUMP2 is the predicted energy at the MP2 level,
approximately -114.16666 hartrees.

Exploring Chemistry with Electronic Structure Methods 17
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Here is part of the energy output from an MP4 calculation:

SCF DONE: E(RHF) = -113.863697598 A.U. AFTER 6 CYCLES

éé'= -0.3029540001D+00 EUMP2 = -0.11416665769315D+03

E3= ~0.25563412D-02 EUMP3= -0.1141669850323D+03

E4(DQ)= -0.13383605D-02 UMP4(DQ)= -0.1141669872345D+03
E4(SDQ}= -0.31707330D-02 UMP4(SDQ)= -0.1141678953224D+03
E4(SDTQ}= -0.10020409D-01 UMP4 (SDTQ)= -0.114168745328D+03

Notice that the energies for all of the lower-level methods—HF, MP2, MP3,
MP4(DQ) and MP4(SDQ)—are also given in a full MP4(SDTQ) calculation.

Molecular Orbitals and Orbital Energies

The Pop=Reg keyword in the route section requested data about the molecular
orbitals be included in the output. They appear at the beginning of the population
analysis section (output is shortened):

Molecular Orbital Coefficients
1 2 3 4 5
(Al)--0 (Al)~--0 (Al)--0 (Al)--0 (B2)--0
EIGENVALUES — -20.58275 -11.33951 -1.39270 -0.87260 -0.69717

1 1c¢ 1s 0.00000 0.99566 -0.11059 -0.16263 0.00000
2 28 -0.00047 0.02675 0.20980 0.33995 0.00000
3 2PX 0.00000 0.00000 0.00000 0.00000 0.00000
4 2PY 0.00000 0.00000 0.00000 0.00000 0.42014
5 2P2 ~-0.00007 0.00066 0.17258 ~0.18448 0.00000
16 2 0O 1ls 0.99472 0.00038 -0.19672 0.08890 0.00000
17 28 0.02094 -0.00025 0.44186 -0.20352 0.00000
18 2PX 0.00000 0.00000 0.00000 0.00000 0.00000
19 2PY 0.00000 0.00000 0.00000 ©0.00000 0.32128
20 2pPZ -0.00153 0.00029 -0.13538 -0.14221 0.00000
31 3 H 1s 0.00002 -0.00210 0.03017 0.17902 0.19080
33 4 H 1s 0.00002 -0.00210 0.03017 0.17902 -0.19080

The atomic orbital contributions for each atom in the molecule are given for each
molecular orbital, numbered in order of increasing energy (the MO’s energy is given
in the row labeled EIGENVALUES preceding the orbital coefficients). The symmetry
of the orbital and whether it is an occupied orbital or a virtual (unoccupied) orbital
appears immediately under the orbital number.
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Locating Results in Gaussian Output

When looking at the orbital coefficients, what is most important is their relative
magnitudes with respect to one another within that orbital (regardless of sign). For
example, for the first—lowest energy—molecular orbital, the carbon 2s and 2p;, the
oxygen 1s, 2s, and 2p, and the 1s orbitals on both hydrogens all have non-zero
coefficients. However, the magnitude of the 1s coefficient on the oxygen is much,
much larger than all the others, and so this molecular orbital essentially corresponds
to the oxygen ls orbital. Similarly, the important component for the second
molecular orbital is the 1s orbital from the carbon atom.

The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular
orbital (LUMO) may be identified by finding the point where the occupied/virtual
code letter in the symmetry designation changes fromOto V.

Here are the energies and symmetry designations for the next set of molecular orbitals
for formaldehyde:

6 7 8 9 10
(A1)--0 (B1)--0 (B2)--0 (B1)--V (Al)--V
| EIGENVALUES — -0.63955 -0.52296 -0.44079 0.13572 0.24842

For formaldehyde, molecular orbital number 8 is the HOMO, and molecular orbital
number 9 is the LUMO. In this case, the energy also changes sign at the point
separating the occupied from the unoccupied orbitals.

To The Teacher: Molecular Orbitals

When discussing molecular orbitals, three-dimensional models or
visualization software may be very instructive.

However, it is also important to emphasize that orbitals are actually
mathematical conveniences and not physical quantities (despite how real
models may make them seem). While the energy, electron density, and
optimized geometry are physical observables, the orbitals are not. In fact,
several different sets of orbitals can lead to the same energy. Nevertheless,
orbitals are very useful in qualitative descriptions of bonding and reactivity. J

Exploring Chemistry with Electronic Structure Methods 19
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20

Charge Distribution
By default, Gaussian jobs perform a Mulliken population analysis, which partitions

the total charge among the atoms in the molecule. Here is the key part of output for
formaldehyde:

Total atomic charges:

1 cCc 0.128551

2 0 -0.43994s

3 H 0.155697

4 H 0.155697

Sum of Mulliken charges= 0.00000

This analysis places a slight negative charge on the oxygen atom and divides the
balancing positive charge between the remaining three atoms.

Mulliken population analysis is an arbitrary scheme for assigning charges. Indeed, all
such schemes are ultimately arbitrary. Atomic charges—unlike the electron
density—are not a quantum mechanical observable, and are not unambiguously
predictable from first principles. Other methods for assigning charges to atoms are
explored in Exercises 8.4 and 8.5 (beginning on page 194).

Dipole and Higher Multipole Moments

Gaussian also predicts dipole moments and higher multipole moments (through
hexadecapole). The dipole moment s the first derivative of the energy with respect to
an applied electric field. It is a measure of the asymmetry in the molecular charge
distribution, and is given as a vector in three dimensions. For Hartree-Fock
calculations, this is equivalent to the expectation value of X, Y, and Z, which are the
quantities reported in the output.

Here are the predicted dipole and quadrupole moments for formaldehyde:

(o] Dipole moment (Debye):
X= 0.0000 Y= 0.0000 Z= -2.8427 Tot= 2.8427
u=2.84D Quadrupole moment (Debye-Ang) :
XX= -11.5395 YY= -11.3085 2Z= -11.8963
\H XY= 0.0000 XZ= 0.0000 Yz= 0.0000

The dipole moment is broken down into X, Y, and Z components. In this case, the
dipole moment is entirely along the Z-axis. By referring to the standard orientation
for the molecule, we realize that this is pointing away from the oxygen atom, which is

Exploring Chemistry with Electronic Structure Methods
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Predicting NMR Properties

the negatively charged part of the molecule. Dipole moments are always given in units
of debye.!

Quadrupole moments* provide a second-order approximation of the total electron
distribution, providing at least a crude idea of its shape. For example, equal XX, YY,
and ZZ components indicate a spherical distribution. This is approximately the case
for formaldehyde. One of these components being significantly larger than the others
would represent an elongation of the sphere along that axis. If present, the off-axis
components represent trans-axial distortion (stretching or compressing) of the
ellipsoid. Quadrupole (and higher) moments are generally of significance only when

the dipole moment is 0.

Another way of obtaining information about the distribution of electrons is by

computing the polarizability. This property depends on the second derivative of the
energy with respect to an electric field. We'll examine the polarizability of

formaldehyde in Chapter 4.

CPU Time and Other Resource Usage

Gaussian jobs report the CPU time used and the sizes of their scratch files upon
completion. Here is the data for our formaldehyde job:

Job cpu time: 0 days 0 hours 0 minutes 9.1 seconds.
File lengths (MBytes): RWF= 5 Int= 0 D2E= 0 Chk= 1 Scr= 1

Predicting NMR Properties

Example 2.2: Methane NMR Shielding Constants

file: ©2_02

NMR shielding tensors are another property that can be computed in the context of a
single point energy calculation. Such a calculation is requested by including the NMR

keyword in the route section for the job. For example:

#T RHF/6-31G(d) NMR Test

We will run this job on methane at the Hartree-Fock level using the 6-31G(d) basis;
our molecule specification is the result of a geometry optimization using the B3LYP
Density Functional Theory method with the same basis set. This combination is cited

 Dipole moments are strictly determined for neutral molecules. For charged systems, its value depends on

the choice of origin and molecular orientation.
$ You must use # rather than #T in order for quadrupole and higher moments to be included in the output.
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4 Describe the general nature of the predicted charge distribution.

Use the 6-31G(d) basis set for your calculation. Obtain the structure for propene
from one of the sources we have discussed, or see Appendix B for detailed
information on setting up a Z-matrix for propene.

Here is the route section for this job:

#T RHF/6-31G(d) Test

Here is the standard orientation from the output:

standard orientation:

Center Atomic Coordinates {(Angstroms)

Number Number X Y A
1 6 1.273694 0.103415 0.000000
2 6 0.000000 0.519712 0.000000
3 6 -1.131346 -0.495403 0.000000
4 1 1.496403 -0.953373 0.000000
5 1 2.077545 0.824680 0.000000
6 1 -0.222709 1.576500 0.000000
7 1 -2.088089 0.026845 0.000000
8 1 -1.058621 ~1.120498 0.889981
9 1 -1.058621 -1.120498 -0.889981

The plane of the molecule corresponds to the XY-plane (since most of the Z values are
0), with the two other hydrogens slightly in front of and behind it. The three carbons

are oriented as in the diagram.

The Hartree-Fock/6-31G(d) energy is -117.06570 hartrees:

SCF Done: E(RHF) = -117.065698056 A.U. after 6 cycles

Exploring Chemistry with Electronic Structure Methods 23
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by Cheeseman and coworkers as the minimum recommended model chemistry for
predicting NMR properties.

Here is the predicted shielding value for the carbon atom in methane:

GIAO Magnetic shielding tensor {(ppm) :

1 ¢ Isotropic = 199.0522 Anisotropy = 0.0000
XX= 199.0522 YX= 0.0000 ZX= 0.0000

XY= 0.0000 YY= 199.0522 Y= 0.0000

XZ= 0.0000 Yz= 0.0000 2= 199.0522
Eigenvalues: 199.0522 199.0522 199.0522

The output gives the predicted value for each atom in the molecule in turn. Here we
see that the predicted value for the carbon atom is about 199.1 parts-per-million.

Shielding constants reported in experimental studies are usually shifts relative to a
standard compound, often tetramethylsilane (TMS). In order to compare predicted
values to experimental results, we also need to compute the absolute shielding value
for TMS, using exactly the same model chemistry. Here is the relevant output for

TMS:
GIAO Magnetic shielding tensor (ppm) :
1 c Isotropic = 195.1196 Anisotropy = 17.5214

To obtain the predicted shift for the carbon atom in methane, we subtract its absolute
value from that of the reference molecule, resulting in a predicted shift of -3.9 ppm,
which is in reasonable agreement with the experimental value of -7.0, Note the sign
convention for shifts: a negative number indicates that there is more shielding in the
specified molecule than in the reference molecule, and a positive number indicates
that there is less shielding than in the reference molecule,

Exercise 2.1: Propene Single Point Energy

file: 2_01 Run a single point energy calculation on propene and determine the following
information from the output;
4 What is the standard orientation of the molecule? In what plane do most of
the atoms lie?
4+ What is the predicted Hartree-Fock energy?
4 What s the magnitude and direction of the dipole moment for propene?
22 Exploring Chemistry with Electronic Structure Methods

T ———_—

[ O

[ S




e T

e

e e e e e T

Chapter Single Point Energy Calculations
Here is the output giving the dipole moment and atomic charges:
|-|3 Total atomic charges:
1
\ H 1 C -0.388420
H, Cz§ yd 2 2 ¢ -0.156442
SNea G 3 ¢ -0.507090
23 \ 4 H 0.170180
HS'= H, 5 H 0.173519
H 6 H 0.183866
5
7 H 0.165399
8 H 0.179494
9 H 0.179495
Sum of Mulliken charges= 0.00000
Dipole moment (Debye):
X= -0.2982 ¥= -0.0310 2= 0.0000 Tot= 0.2998

Exercise 2.2: 1,2-Dic
files: 2_02a (RR)

2 02b (SS)

2 02¢ (meso)

The dipole moment has a magnitude of about 0.3 debye, mostly in the negative X
direction. This is a weak dipole moment, indicating that the centers of positive and
negative charge are relatively close together in this molecule.

The negative charges are confined to the carbons, with the one on the middle carbon
being appreciably smaller than that on the other two carbons. Each hydrogen has a
small positive charge. B

hloro-1,2-Difluoroethane Conformer Energies
Make a table of the energies and dipole moments for the three sterecisomers of
1,2-dichloro-1,2-difluoroethane (stoichiometry: CHFCI-CHFCI). You'll need to set
up and run a HF/6-31G(d) single point energy calculation for each form.

Here are the three forms:;

H F H
ez ™ A et S
‘\’C|—C2-.," '\é,—cz-.,,, I\'Cf—cT-,,
/ lIH, / N F / NP2
ch (N ch Hy ° ol H,

RR SS meso

All three molecules are positioned so that the carbons and chlorines all lie in the plane
of the paper, with other atoms above or below it as indicated. (Appendix B contains
detailed instructions for setting up Z-matrices for these molecules.)

24 Exploring Chemistry with Electronic Structure Methods
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Running all three jobs yields the following results:

Form Energy i
RR -1194.7153 -2.82
SS -1194.7153 -2.82
meso | -1194.7178 0.0
1 hartree = 627.51 keal mol! The RR and SS forms have exactly the same values for the energy and the dipole

moment. The energy difference between them and the meso form is about 2.5
millihartrees, which corresponds to about 1.5 kcal mol™l. This is a small but

significant difference in energy.

The RR and $S forms both have a dipole moment of 2.8 debye along the negative
- Z-axis. To locate this within the molecule, we need to examine the standard

orientation. Here is the output for the RR form:

Standard orientation:
Center Atomic Coordinates (Angstroms)
Number Number X Y Z
1 6 0.000000 0.765000 -0.278044
2 6 0.000000 -0.765000 -0.278044
3 17 -1.660072 1.349604 -0.278044
4 17 1.660072 -1.349604 -0.278044
, 5 9 0.645709 1,222315 0.840358
6 1 0.511868 1.130642 -1.168210
7 9 -0.645709 -1.222315 0.840358
8 1 -0.511868 -1,130642 -1.168210

Here is a graph showing the positions of the carbon
XY-plane, ignoring their common Z-coordinate:

Cig

-
0Of _»

2=~0.27804 x

A
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If we define the positive Z direction as up, the hydrogen atoms lie below this plane,
and the fluorine atoms lie above it. The dipole moment points down, toward the
hydrogen atoms, which is where we expect the positive charge to be. The same is true
for the SS form.

The meso form has no dipole moment. If we look again at the structure, this makes
sense, since the molecule has a center of inversion. M

Exercise 2.3: Acefone Compared to Formaldehyde

file: 2.03

Solution

Acetone has a structure similar to formaldehyde, with methyl groups replacing the
hydrogens on the carbon atom. What is the effect of making this substitution? What
properties change, and which ones do not? (Use the same model chemistry as for the
previous exercise.)

Here is a table of the major results for the two jobs:

Molecule

Energy

Dipole Moment

Formaldehyde

-113.86370

-2.842

Acetone

-191.95961

-3.262

Although the energies are very different, comparing them directly is of little value,
Energies for two systems can be compared only when the number and type of nuclei
are the same. Thus, we could compare the energies of the alternate forms of
1,2-dichloro-1,2-difluorcethane, and we can compare the energies for the reactants
and products of reactions when the total number of nuclei of each type are the same.
But we cannot make any meaningful statement about formaldehyde versus acetone
based upon comparing their energies.

We can compare their dipole moments, however. In this case, we note that the methyl
groups in acetone have the effect of increasing the magnitude of the dipole moment,
which points away from the oxygen along the double bond in both cases, This means
that the centers of positive and negative charge are farther apart in acetone than they
are in formaldehyde. W

26 Exploring Chemistry with Electronic Structure Methods
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Exercise 2.4: Ethylene and Formaldehyde Molecular Orbitals

file: 2 04 Ethylene is another molecule that is similar to formaldehyde. The two compounds are
isoelectronic. In the case of ethylene, the oxygen in formaldehyde is replaced by a
ﬁ carbon with two additional hydrogens attached to it.
C Compare the dipole moment of ethylene and formaldehyde. Then compare the
H 7N H HOMO and LUMO in both molecules. Use the data from the formaldehyde example

earlier in this chapter.

H \c e H Here is the output for the relevant orbitals for formaldehyde for reference:
C 6 7 8 9 10

H/ \H (A1)--0 (B1)--0 (B2)--0 (B1)--V (Al)--V

EIGENVALUES -- -0.63955 -0.52296 -0.44079 0.13572 0.24842

11 c 18 0.01941 0.00000 0.00000 0.00000 -0.12212

2 28 -0.06072 0.00000 0.00000 0.00000 0.14897

3 2PX 0.00000 0.32522 0.00000 0.40259 0.00000

4 2PY 0.00000 0.00000 -0.19817 0.00000 0.00000

5 2PZ -0.37596 0.00000 0.00000 0.00000 -0.21086

6 3s 0.03976 0.00000 0.00000 0.00000 1.98096

7 3PX 0.00000 0.21235 0.00000 0.71120 0.00000

8 3PY 0.00000 0.00000 -0.04485 0.00000 0.00000

9 3PZ -0.08854 0.00000 0.00000 0.00000 -0.74976

10 4XX 0.00549 0.00000 0.00000 0.00000 -0.00273

11 4YY 0.02734 0.00000 0.00000 0.00000 -0.01266

12 477 -0.01933 0.00000 0.00000 0.00000 -0.00459
13 4XYy 0.00000 0.00000 0.00000 0.00000 0.00000 k
14 4XxZ 0.00000 0.03558 0.00000 -0.03289 0.00000 il

15 4YZ 0.00000 0.00000 0.06034 0.00000 0.00000
16 2 0O 18 -0.06967 0.00000 0.00000 0.00000 -0.00099 w
17 28 0.15358 0.00000 0.00000 0.00000 -0.01034 i
18 2PX 0.00000 0.49029 0.00000 -0.38148 0.00000 i
19 2PY 0.00000 0.00000 0.56588 0.00000 0.00000 r
20 2PZ 0.50940 0.00000 0.00000 0.00000 0.05334 i

21 3s 0.32365 0.00000 0.00000 0.00000 0.10031

22 3PX 0.00000 0.35352 0.00000 -0.52798 0.00000

23 3PY 0.00000 0.00000 0.44338 0.00000 0.00000

24 3pz 0.28718 0.00000 0.00000 0.00000 0.05069

25 4XX 0.00485 0.00000 0.00000 0.00000 0.00130

26 4YY 0.00745 0.00000 0.00000 0.00000 -0.01009

27 427 -0.03495 0.00000 0.00000 0.00000 -0.00048

28 4XYy 0.00000 0.00000 0.00000 0.00000 0.00000

29 4Xz 0.00000 -0.04166 0.00000 0.00355 0.00000
30 4YzZz 0.00000 0.00000 -0.01928 0.00000 0.00000 I
31 3 H 18 0.09100 0.00000 -0.18068 0.00000 ~-0.04749 |
32 28 0.07400 0.00000 -0.22489 0.00000 -1.47348 |
33 4 H 18 0.09100 0.00000 0.18068 0.00000 -0.04749 |
34 28 0.07400 0.00000 0.22489 0.00000 -1.47348 ;
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Single Point Energy Calculations

Here are the dipole moments for the two molecules:

Formaldehyde -2.84% (away from the oxygen atom)

Ethylene 0.0

While the oxygen atom induces a dipole moment in formaldehyde, the center of
inversion in ethylene results in no dipole moment.

Here are the HOMO and LUMO for ethylene (some non-significant lines have been
removed from the output):

8 9
(B3U)--0 (B3U)--v
EIGENVALUES -~ -0.37467 0.18399 C (o
11 Cc 1s 0.00000 0.00000
3 2PX 0.37552 0.33994
7 3PX 0.30346 0.74838 LUMO
14 4X2 -0.02553 0.02420
16 2 cC 1s 0.00000 0.00000
18 2PX 0.37552 -0.33994
22 3PX 0.30346 -0.74838
29 4X7 " 0.02553 0.02420
313 H 18 0.00000 0.00000 CHC
33 4 H 18 0.00000 0.00000
35 5 H 18 0.00000 0.00000
37 6 H 18 0.00000 0.00000 HOMO
——— =

Since both molecules have the same number of electrons, the orbital numbered 8 is
the HOMO, and the one numbered 9 is the LUMO in both cases. However, they are
not the same type orbitals. Let’s consider ethylene first.

In ethylene, both the HOMO and LUMO are formed primarily from p, orbitals from
the two carbons. The carbons lie in the YZ-plane, and so the p, orbitals lie above and
below the C-C bond. In the HOMO, the orbitals have like signs, and so they combine
to form a bonding & molecular orbital. In contrast, in the LUMO, they have opposite
signs, indicating that they combine to form an antibonding 7* molecular orbital.

Orbitals 7 and 9 (the latter is the LUMO) of formaldehyde exhibit this same character.
Orbital 7 is a bonding & orbital, and orbital 9 is a 7*. However, the % orbital formed of
the p, orbitals from the carbon and the oxygen (which also lie in the YZ plane) is not
the HOMO. Instead, an orbital formed from py orbitals from the carbon and the
oxygen and from the s orbitals on the hydrogens is the highest occupied orbital. The
contributions from the carbon and oxygen are situated along the double bond while
the HOMO in ethylene was perpendicular to this bond.

Exploring Chemistry with Electronic Structure Methods
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This difference is due to the two lone pairs on the oxygen. Of the six valence electrons
on the oxygen atom, two are involved in the double bond with the carbon, and the
other four exist as two lone pairs. In Chapter 4, we'll examine the IR spectra for these
two molecules. The orbitals suggest that we'll find very different frequencies for the
two systems. In Chapter 9, we'll look at the transition to the first excited state in
formaldehyde. B

Exercise 2.5: NMR Properties of Alkanes, Alkenes and Alkynes

files: 2_05a The NMR magnetic shielding for atoms like carbon is affected greatly by what it is
2_05b bonded to and the type of bond to its neighbor. Use the inner carbon atoms of normal
2 05¢ butane as the reference atom and calculate the shift in 13C isotropic shielding for

2-butene and 2-butyne. Can you explain these shifts as a function of the changing
molecular environments?

Run your NMR calculations at the HF/6-31G(d) level; here are the structures of the
three molecules calculated at the B3LYP/6-31G(d) level:

butane trans 2-butene
: ¢ 0.000000 0.767105 0.000000 C 0.000000 0.667614  0.000000 '
C 0.000000 -0.767105 0.000000 C 0.000000 -0.667614  0.000000
¢ 1.407571 1.372311 0.000000 Cc 1.226946 -1.535762 0.000000
¢ -1.407571 -1.372311 0.000000 Cc -1.226946 1.535762  0.000000
HH H H 1.372874 2.467846 0.000000 H -0.957948 -1.192291  0.000000
*H‘ | 1 | H -1.372874 -2.467846 0.000000 H 0.957948 1.192291  0.000000
Hile—C~e—Cwy H 1.974414 1.056859 0.884767 H  2.143559 -0.935724  0.000000
| =i-|l 2 H 1.974414 1.056859 -0.884767 H -2.143559 0.935724  0.000000
H H H H -1.974414 -1.056859 0.884767 H 1.251318 -2.192033 0.880777
H -1.974414 -1.056859 -0.884767 H 1.251318 -2.192033 -0.880777
H -0.554359 1.127932 -0.878287 H -1.251318 2.192033  0.880777
H -0.554359 1.127932 0.878287 H -1.251318 2.192033 -0.880777
H 0.554359 -1.127932 -0.878287 H H
. H 0.554359 -~1.127932 0.878287 | L
LW
2-butyne Hﬁ';-c/ c\c/cwu
C 0.000052 0.000000 -0.604592 H™ Y ]
C -0.000052 0.000000 0.604592 H H
* H C 0.000016 0.000000 -2.066136
\ J A Cc -0.000016 0.000000 2.066136
(_C—CEC—C" H -1.021490 0.000000 -2.466263
e H|.f \ H 0.510752 -0.884627 -2.466360
H H 0.510752 0.884627 -2.466360
M 1.021490 0.000000 2.466263
H -0.510752 -0.884627 2.466360
H -0.510752 0.884627 2.466360
: Note that the inner carbon atoms are the first two atoms listed for each compound.

The predicted NMR shielding values will appear in the output in the same order as
the atoms are listed in the molecule specification section.
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The predicted absolute shielding value for the central carbons in butane is 176.3 ppm,
which is what we will use as the reference value, subtracting the computed shielding
values for the outer carbons in butane and for each type of carbon in the other two
compounds from it.

Here are the predicted shifts with respect to the C2 carbon in butane (all values are
given in ppm):

C1 (outer) C2 (inner)
Compound | cal. exp. calc. exp.

butane -7.8 -11.8 0.0 0.0

2-butene -5.3 -7.6 101.0 100.8
Z-butyne -19.1 48.5 48.4

The agreement with experiment is very good for these cases even with this
inexpensive model.

For the C2 carbons, the shielding decreases greatly as we move from the alkane to the
alkene. This is due to that fact that the sp3 orbitals have a greater ability to oppose the
applied magnetic field. The shift is much smaller when moving to the alkyne, which
has been explained by the fact that the =t bonding present in an sp environment
creates a cylinder of electric charge acting to oppose the applied magnetic field. B

To The Teacher: Magnetic Properties

For another dramatic illustration of chemical shifts, have students calculate
the magnetic shielding of nitrogen in pyridine and compare it to its saturated
cyclohexane analogue,
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cent years. In this exercise

Single Point Energy
olecular orbital,

Fullerene compounds have receieved a lot of attention in re

Advanced Exercise 2.6: Cg0
ok at its highest occupied m

) .
g file: 2_.06
0 we predict the energy of Cgg and lo
predicted at the Hartree-Fock level with the 3-21G basis set’. Include SCE=Tightin the
route section of the job.
re
Solution  Hereis the route section for the job:
#7 HF/3-21G gCF=Tight Pop=Reg Test
The predicted energy is -2259.04767 hartrees. The HOMO is plotted at the left.
1f you forget to include SCF=Tight in your job, it will probably have failed, giving error
messages something like the following:
this >>>>>>>>>> convergence criterion not met.
SCF Done: E(RHF) = ---
- i .
convergence failure —-- run term'lnated.
> the
e the !
thich These messages indicate that the SCF calculation, which is an jterative process, failed !
ment to converge. The predicted energy should accordingly be ignored. W il
n ; E.l
i
I
Advanced Exercise 2.7: CPU Resource Usage by Calculation Size l;'
file: 207 This exercise is concerned with resource usage as @ function of system size and \
} introduces the use of the direct SCF method in Gaussian jobs (it is the default).
te Compare the total CPU time required to compute the Hartree-Fock energies of the \
o series of hydrocarbons described below, using the 6-31G(d) basis set for the ’ﬂ
‘ conventional SCF algorithm (SCF=Conven) and the direct SCF method (the default I
algorithm). Use SCF=Tight to request stricter convergence criteria for the SCF i
wavefunction for the direct jobs (tight convergence is the default for the conventional \
the direct SCF calculations,

clude the keyword 1op(5/19=1)in

SCEF algorithm). Also, in
irely in memory (in-core)-

which prevents them from being run ent

set than usual in order tokeep the calculation manageable.

in-core method for direct SCF when there is enough memory
When we ran these computations, we explicitly prevented Gaussian from using the
in-core method. When you run your jobs, however, the in-core method will undoubtedly be used for some
jobs, and so0 your values may differ. An in-core job is identified by the following line in the output:

Two-electxon integrals will be kept in MEmory -

g
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Plot the CPU time used for each method as a function of the number of carbon atoms
(N). Theoretically, CPU time required should scale as the fourth power of the number
of carbon atoms (N*). How do the actual times depend on N? ‘

The systems we'll use in this exercise are hydrocarbons of the form ChHy, 49, where n
runs from 1 to some upper limit < 10. The place to stop depends on the CPU capacity
of your system. Users of Gaussian 94W will probably want to go no higher than 7 or 8.
We used the 6-31G(d) basis set, but you could substitute a smaller one to save time
(3-21G or STO-3G).

Basis Function Data in Gaussian Output
Gaussian output indicates the number of basis functions for a molecule in its output,
just below the standard orientation:

Isotopes: H-1,C-12,H-1,H-1,H-1
23 basis functions 44 primitive gaussians
5 alpha electrons 5 beta electrons
nuclear repulsion energy 13.4353902217 Hartrees.

This output is for CH,, which uses 23 basis functions with the 6-31G{(d) basis set.

The basic strategy behind the direct SCF method is recomputing certain intermediate
quantities within the calculation—specifically the two-electron integrals—as needed,
rather than storing them on disk. This has the advantage of making it possible to
study systems which would require more disk space than is available on the system.

Direct SCF also has a significant performance advantage over the conventional
algorithm for large systems. There is always a crossover point in terms of molecule
size beyond which direct SCF will be faster than the conventional algorithm. The
exact location of this crossover varies according to the characteristics of the computer
system running the program.,

Here are the results we obtained by running these hydrocarbon single point energy
calculations on a DEC AlphaStation 6005/266 computer (in CPU seconds). In the
table, N is the number of carbons in the system:

SCF CPU and Disk Requirements by Problem Size for Linear CnHones

Conventional SCF Direct SCF
N | # Basis Functions | MB for INT file CPU seconds CPU seconds
1 23 2 8.6 12.8
2 42 4 11.9 19.8
3 61 16 232 38.8
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SCE CPU and Disk Requirements by Problem Size for Linear CnHong2

Conventional SCF Direct SCF
N | # Basis Functions | MB for INT file CPU seconds CPU seconds
4 80 42 48.7 72.1
5 99 92 95.4 122.5
6 118 174 163.4 186.8
7 137 290 354.5 268.0
8 156 437 526.5 375.0
9 175 620 740.2 488.0
10 194 832 1028.4 622.1

Here is our plot. It is a log-log plot, so we can estimate the exponent for N by
computing the slope of each line. The actual scaling for the direct algorithm is more

like N?-% than N*:

..... Conventional SCF - — Direct SCF
10000
1000 |
a - //
° / /,
100 |
™ |
10—
1
1 | |
n Siu (N)

For this computer system, the crossover point where direct SCF beats the
conventional algorithm happens at around 120 basis functions (~N=7). This level
may be lower for some vector processors. n
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Advanced Exercise 2.8: SCF Stability Calculations

4 files: 2_08a (O,)
5 2 08b (0O3)

, _ When Wavefunction
Stability Should Be Tested

s T e~ e ey

e e e

In this exercise, we introduce SCF stability calculations. A stability calculation
determines whether the wavefunction computed for the molecular system is stable or
not: in other words, whether there is a lower energy wavefunction corresponding to a
different solution of the SCF equations. If the wavefunction is unstable, then whatever
calculation you are performing is not being done on the expected/desired state of the
molecule. For example, if a stability calculation indicates an unstable wavefunction
for a system for which you were attempting to model its ground state, then the
calculation does not in fact correspond to the ground state, and any energy
comparisons for or other conclusions about the ground state based on it will be
invalid.

The stability of SCF solutions for unknown systems should always be tested. Stability
considerations apply to and may be tested for in calculations using Density
Functional Theory methods as well.

The following Gaussian keywords will be of use:

Keyword Effect

Stable Tests the stability of the SCF solution computed for the molecule. This
involves determining whether any lower energy wavefunction exists for
the system, obtained by relaxing constraints placed on it by default
(e.g., allowing the wavefunction to become open shell or reducing the
symmetry of the orbitals).

Stable=Opt  Test the stability of the SCF solution and reoptimize the wavefunction
to the lower energy solution if any instability is found. When we speak
of optimizing the wavefunction, we are not referring to a geometry
optimization, which locates the lowest energy conformation near a
specified starting molecular structure. Predicting an SCF energy
involves finding the lowest energy solution to the SCF equations.
Stability ~calculations ensure that this optimized electronic
wavefunction is a minimum in wavefunction space—and not a saddle
point—which is an entirely separate process from locating minima or
saddle points on a nuclear potential energy surface. See Appendix A for
more details on the internals of SCF calculations.

In order to illustrate how stability calculations work, well run the following RHF
calculation on molecular oxygen:

#T RHF/6-31G(d) Stable Test

Oxygen stability: RHF on singlet (!!)
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Solution

Exercises

We can be sure that the RHF wavefunction for molecular oxygen is unstable, since we
know the ground state of the molecule is a triplet. The output from the stability
calculation confirms this:

| The wavefunction has an RHF -> UHF instability. I

This indicates that there is a UHF wavefunction which is lower in energy than the
RHEF wavefunction, which is what we expect in this case. Note that instabilities can be
of many different types. The most common kinds are:

4 The lowest energy wavefunction is a singlet, but not a glosed shell singlet
(e.g., biradicals). This is an RHF-to-UHF instability.

4 There is a lower-lying triplet state than the singlet (the current case). This is
an RHF-to-UHF instability.

4 There is more than one solution to the SCF equations for the system, and
the calculation procedure converges to a solution which is not the
minimum (often a saddle point in wavefunction space). This indicates an
RHF-to-RHF or UHF-to-UHF instability, depending on the wavefunction

type.

Run a stability calculation on the true (triplet) ground state of molecular oxygen.
What is the energy difference between the ground state and the singlet state?

Once you have completed this first calculation, devise and run calculations which will
determine the lowest energy electronic state for ozone. Use the experimental
geometry: O-O bond lengths=1.272 A, 0-O-O bond angle=116.8°.

Running a Stable calculation indicates that the computed UHF wavefunction for
triplet molecular oxygen is stable:

l The wavefunction is stable under the perturbations considered. I

The predicted energy, which appears in the SCF summary section preceding the
stability analysis output, is -149.61266 hartrees, which is about 53.5 kcal/mol lower
than that corresponding to the RHF wavefunction (-149.52735).

Since we knew molecular oxygen is a triplet, we should have performed this
calculation as an open shell calculation.

Ozone is a singlet, but it has an unusual electronic structure and is thus often difficult
to model. An RHF Stable=Opt calculation finds an RHF—UHF instability, and the
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reoptimization of the wavefunction leads to a UHF solution with an energy of
-224,34143 hartrees.

At this point, we might expect that a UHF calculation would be sufficient. However,
when we perform a UHF Stable=Opt calculation, the predicted wavefunction is again
found to be unstable:

I The wavefunction has an internal instability. '

Reoptimization of the wavefunction again leads to the same lower-energy electronic
state as was found by the RHF calculation. Even for a UHF calculation, it is necessary
to modify the default electronic configuration in order to specify the proper ground
state of ozone. This is not surprising given the known significantly biradical character
of ozone resulting from the coupling of the singly-occupied & orbitals on the termiinal
oxygen atoms.

In order to specify the proper electronic state, ozone calculations should be
performed as unrestricted calculations, and the keyword Guess=Mix should always be
included. This keyword tells the program to mix the HOMO and LUMO within the
wavefunction in an effort to destroy a.-B and spatial symmetries, and it is often useful
in producing a UHF wavefunction for a singlet system. Running a UHF Guess=Mix
Stoble calculation confirms that the resulting wavefunction is stable, and it predicts
the same energy (-224.34143 hartrees) as the previous Stable=Opt calculations.

Specific electronic states may also be specified using the Guess=Alter keyword, which
allows you to explicitly designate orbital occupancies. See the Gaussian User’s
Reference for details.

As a final note, be aware that Hartree-Fock calculations performed with small basis
sets are many times more prone to finding unstable SCF solutions than are larger
calculations. Sometimes this is a result of spin contamination; in other cases, the
neglect of electron correlation is at the root. The same molecular system may or may
notlead to an instability when it is modeled with a larger basis set or a more accurate
method such as Density Functional Theory. Nevertheless, wavefunctions should still
be checked for stability with the SCF=Stable option. B
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NMR Calculations

Experimental NMR Results

Direct SCF

P Hydrocarbon Series

SCF Stability and Convergence
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The Theoretical Background

Ab initio molecular orbital theory is concerned with predicting the properties of
atomic and molecular systems. It is based upon the fundamental laws of quantum
mechanics and uses a variety of mathematical transformation and approximation
techniques to solve the fundamental equations. This appendix provides an
introductory overview of the theory underlying ab initio electronic structure
methods. The final section provides a similar overview of the theory underlying
Density Functional Theory methods.

The Schrédinger Equation

Quantum mechanics explains how entities like electrons have both particle-like and
wave-like characteristics. The Schrodinger equation describes the wavefunction of a
particle:

-h? _, R ih 3¥ (r, 1)
{EV +V}‘{‘(r,t) ol - T [}

In this equation, ¥ is the wavefunction, m is the mass of the particle, h is Planck’s
constant, and V is the potential field in which the particle is moving.” The product of
¥ with its complex conjugate (¥*¥, often written as [P[) is interpreted as the
probability distribution of the particle.

The Schrédinger equation for a collection of particles like a molecule is very similar.
In this case, ¥ would be a function of the coordinates of all the particles in the system
as well as r.

The energy and many other properties of the particle can be obtained by solving the
Schrodinger equation for ¥, subject to the appropriate boundary conditions. Many
different wavefunctions are solutions to it, corresponding to different stationary states
of the system.

! The differential operator on the left side of the equation is known as “del-squared.” The operator del is
equivalent to partial differentiation with respect to x, ¥, and z components:

d, 9, 9
V- 3-;|+Wj+$li

Exploring Chemistry with Electronic Structure Methods 253




The Theoretical Background

If V is not a function of time, the Schrodinger equation can be simplified using the
mathematical technique known as separation of variables. If we write the
wavefunction as the product of a spatial function and a time function:

¥ () = y(r) (1) (2]

and then substitute these new functions into Equation 1, we will obtain two
equations, one of which depends on the position of the particle independent of time
and the other of which is a function of time alone. For the problems in which we are
interested, this separation is valid, and we focus entirely on the familiar
time-independent Schrédinger equation:

Hy(r) = Ey(r) (3]

where E is the energy of the particle, and H is the Hamiltonian operator, equal to:
= ——V24+V [4]

The various solutions to Equation 3 correspond to different stationary states of the
particle (molecule). The one with the lowest energy is called the ground state.
Equation 3 is a non-relativistic description of the system which is not valid when the
velocities of particles approach the speed of light. Thus, Equation 3 does not give an
accurate description of the core electrons in large nuclei.

Note also that Equation 3 is an eigentvalue equation: an equation in which an operator
acting on a function produces a multiple of the function itself as its result, having the
general form:

Opf=cf {51

where Op is an operator, f is a function, and c is a constant. The set of functions for
which the equation holds are its eigenfunctions, each of which has an associated value
for ¢, known as its eigenvalue. In the case of the Schrodinger equation, the eigenvalues
are the energies corresponding to the different stationary states of the molecular
system.
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The Schédinger Equation

The Molecular Hamiltonian

For a molecular system, ¥ is a function of the positions of the electrons and the nuclei
within the molecule, which we will designate as r and R, respectively. These symbols
are a shorthand for the set of component vectors describing the position of each
particle. We'll use subscripted versions, of them to denote the vector corresponding to
a particular electron or nucleus: r; and R;. Note that electrons are treated
individually, while each nucleus is treated as an aggregate; the component nucleons
are not treated individually.

The Hamiltonian is made up of kinetic and potential energy terms:
H=T+V (6l

The kinetic energy is a summation of V2 over all the particles in the molecule:

PEIPY
=- 2ka( 7t T7 "—2] 7

ayk dz,

The potential energy component is the Coulomb repulsion between each pair of
charged entities (treating each atomic nucleus as a single charged mass):

e €
41:e ZZAr: (8]

i k<j

where Ar;; is the distance between the two particles, and ¢jand ey are the charges on

particles j and k. For an electron, the charge is -e, while for a nucleus, the charge is Ze,
where Z is the atomic number for that atom. Thus,

electrons nuclei electrons nuclei Z Z
€
vdel- 2 )2z (Eess (%) v
i j<i I J<1I

The first term corresponds to electron-nuclear attraction, the second to
electron-electron repulsion, and the third to nuclear-nuclear repulsion.
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The Theoretical Background

Atomic Units

The fundamental equations of quantum chemistry are usually expressed in units
designed to simplify their form by eliminating fundamental constants. The atomic
unit of length is the Bohr radius:

h2

= ——; = 0529177254 (10

ag =
4n"m e

Coordinates can be transformed to bohrs by dividing them by a;. Energies are

measured in hartrees, defined as the Coulomb repulsion between two electrons

separated by 1 bohr:

2

Lhartree = = [y
3

Masses are also specified in terms of electron mass units (i.e. define m,=1).

‘We will use these units in all future equations.

The Born-Oppenheimer Approximation

The Born-Oppenheimer approximation is the first of several approximations used to
simplify the solution of the Schrédinger equation. It simplifies the general molecular
problem by separating nuclear and electronic motions. This approximation is
reasonable since the mass of a typical nucleus is thousands of times greater than that
of an electron. The nuclei move very slowly with respect to the electrons, and the
electrons react essentially instantaneously to changes in nuclear position. Thus, the
electron distribution within a molecular system depends on the positions of the
nuclei, and not on their velocities. Put another way, the nuclei look fixed to the
electrons, and electronic motion can be described as occurring in a field of fixed
nuclei.

The full Hamiltonian for the molecular system can then be written as:

nucl 2>

(M +V*(R) 12

elec > nuct o nucl-elec elec

H=T"m+T"'R)+V (R,1) +V

The Born-Oppenheimer approximation allows the two parts of the problem to be
solved independently, so we can construct an electronic Hamiltonian which neglects
the kinetic energy term for the nuclei:
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The Schodinger Equation

electrons 2 ) ) electrons nuclei z
elec _ _l L _8_ _i)_ _ — 1
hT ; (axiﬁay,-”az;"] ; z;’(lm-?,-l)
electrons nuclei [ 1 3]
YD (__1_)+Z Z( z,z, J
i j<i l;i—;jl I J<t Iﬁ,—ﬁjl

Note that the fundamental physical constants drop out with the use of atomic units.

This Hamiltonian is then used in the Schrédinger equation describing the motion of
electrons in the field of fixed nudlei:

Helecwelec ( ;, ﬁ) - Eeﬁ' (ﬁ) ‘velec (:', ﬁ) [14)

Solving this equation for the electronic wavefunction will produce the effective
nuclear potential function E¥ .1 It depends on the nuclear coordinates and describes
the potential energy surface for the system.

Accordingly, ET isalso used as the effective potential for the nuclear Hamiltonian:

Hnucl - Tnucl(i:) . Eeﬁ"(]‘i) (5]

This Hamiltonian is used in the Schrédinger equation for nuclear motion, describing
the vibrational, rotational, and translational states of the nudlei. Solving the nuclear
Schrodinger equation (at least approximately) is necessary for predicting the
vibrational spectra of molecules.

From this point on, we will focus entirely on the electronic problem. We will omit the
superscripts on all operators and functions.

Restrictions on the Wavefunction

We've noted that y? is interpreted as the probability density for the particle(s) it
describes. Therefore, we require that y be normalized; if we integrate over all space,

! Foragiven set of nuclear coordinates, this corresponds to the total energy predicted by a single point energy
calculation, although such calculations, of course, do not solve this equation exactly. The approximation
methods used to solve it will be discussed in subsequent sections of this appendix.
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the probability should be the number of particles (the particles are somewhere),
Accordingly, we multiply y by a constant such that:

+oo
2
_[ ICWI dv = "[mtrlil:lr.vf “6]

We can do this because the Schrodinger equation is an eigenvalue equation, and in
general, if f is a solution to an eigenvalue equation, then ¢f is also, for any value of ¢.
For the Schrodinger equation, it is easy to show that H(cy) = cH(y) and that
E(cy) = c(Ey); thus, if y is a solution to the Schrodinger equation, then cy is as well,

Secondly, y must also be antisymmetric, meaning that it must change sign when two
identical particles are interchanged. For a simple function, antisymmetry means that
the following relation holds:

fG)) = ~fU. D) 171

For an electronic wavefunction, antisymmetry is a physical requirement following
from the fact that electrons are fermions.? It is essentially a requirement that y agree
with the results of experimental physics. More specifically, this requirement means
that any valid wavefunction must satisfy the following condition:

-~

YArn e By ) = =W (C, oy Ty oy Ky, By) [18]

Hartree-Fock Theory

The underlying physical laws necessary for the mathematical theory of a large
part of physics and the whole of chemistry are thus completely known, and the
difficulty is only that the exact application of these laws leads to equations
much too complicated to be soluble.

— P. A. M. Dirac, 1929

! Ify is complex, the integral becomes: C'CII_[: yyddydz = n

Fermions are particles that have the properties of antisymmetry and a half-integral spin quantum number,
among others.
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Hartree-Fock Theory

An exact solution to the Schrodinger equation is not possible for any but the most
trivial molecular systems. However, a number of simplifying assumptions and
procedures do make an approximate solution possible for a large range of molecules.

Molecular Orbitals

The first approximation we'll consider comes from the interpretation of fy}? as a
probability density for the electrons within the system. Molecular orbital theory
decomposes  into a combination of molecular orbitals; 91, ¢y .... To fulfill some of
the conditions on y we discussed previously, we choose a normalized, orthogonal set

of molecular orbitals;
IJ‘J‘¢:¢idx dydz

f I I ¢;¢jdxdydz

The simplest possible way of making \ as a combination of these molecular orbitals is
by forming their Hartree product:

]
—

0; izj
(19]

V() = O(F)) 04ro) e BfF,) [20]

However, such a function is not antisymmetric, since interchanging two of the
r;’s —equivalent to swapping the orbitals of two electrons—does not result in a sign
change. Hence, this Hartree product is an inadequate wavefunction.

Electron Spin

The simplest antisymmetric function that is a combination of molecular orbitals is a
determinant. Before forming it, however, we need to account for a factor we've
neglected so far: electron spin. Electrons can have spin up (+%) or down (-%).
Equation 20 assumes that each molecular orbital holds only one electron. However,
most calculations are closed shell calculations, using doubly occupied orbitals,

holding two electrons of opposite spin. For the moment, we will limit our discussion
to this case.

We define two spin functions, o and B, as follows:

o D=1 od)=0
B(MH=0 B)=1 [21]
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The Theoretical Background

The o function is 1 for a spin up electron, and the B function is 1 when the electron is
spin down. The notation o) and P(i) will designate the values of o and B for
electron #; thus, a(1) is the value of o for electron 1.

Multiplying a molecular orbital function by o or B will include electron spin as part of
the overall electronic wavefunction . The product of the molecular orbital and a spin
function is defined as a spin orbital, a function of both the electron’s location and its
spin.” Note that these spin orbitals are also orthonormal when the component
molecular orbitals are.

We can now build a closed shell wavefunction by defining n/2 molecular orbitals for a

system with n electrons, and then assigning electrons to these orbitals in pairs of
opposite spin:

0, (o(l) 6, (FDB() 0, (F)a() 8y(FBA) - 8 (Fa(l) ¢, (FDB(1)

2 2

02D (BB EIAQ) B FIBQR) - §,(F)(D) $,(FIB)
3 3

o, (RO &, (FIB) ,(FIa) O (EBG) . 0 (FDCLL) @, (FOBE) (22
3 3 ;

,(FOG) HEIBG) 9 FAG) y(FBG) e §,(FC) 8, (FPBU)
3 2

8, (%) &,(FB() By(F)E() Sy (FB(R) oo & () 9, (FBCD)
3 3

Each row is formed by representing all possible assignments of electron i to all
orbital-spin combinations. The initial factor is necessary for normalization. Swapping
two electrons corresponds to interchanging two rows of the determinant, which will
have the effect of changing its sign.

This formulation is not just a mathematical trick to form an antisymmetric
wavefunction. Quantum mechanics specifies that an electron’s location is not
deterministic but rather consists of a probability density; in this sense, it can be
anywhere. This determinant mixes all of the possible orbitals of all of the electrons in
the molecular system to form the wavefunction.

*Some texts use a separate notation for spin orbitals. We will not do so here.
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Hartree-Fock Theory

Basis Sets

The next approximation involves expressing the molecular orbitals as linear
combinations of a pre-defined set of one-electron functions known as basis functions.
These basis functions are usually centered on the atomic nuclei and so bear some
resemblance to atomic orbitals. However, the actual mathematical treatment is more
general than this, and any set of appropriately defined functions may be used.

An individual molecular orbital is defined as:

N
4= D cux, [23]

=1

where the coefficients cy; are known as the molecular orbital expansion coefficients,
The basis functions XXy are also chosen to be normalized. We follow the usual
notational convention of using roman subscripts on molecular orbital functions and
Greek subscripts on basis functions. Thus, Xu refers to an arbitrary basis function in
the same way that ¢; refers to an arbitrary molecular orbital.

Gaussian and other ab initio electronic structure programs use gaussian-type atomic
functions as basis functions. Gaussian functions have the general form:

g(a,;) - anymzl

2
e or [24]
A
where r is of course composed of x, vyandz aisa consfant determining the size
(radial extent) of the function. In a gaussian function, ™" is multiplied by powers
(possibly 0) of x, y, and z, and a constant for normalization, so that:

J- g2 =1 [25]
all space
Thus, ¢ depends on o, I, m and n.
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wavefunction:

|
.1 4 Here are three representative gaussian functions (s, py and d,, types, respectively):
: i s (20)4 2
By glonr) = (;) e
E 3 28]
I. J\\r ;) — 128(15 1 '-'(1[2
i e glor) = > ye [26)
i s (20480 )
3 k gx_\,(a, r) = n3 Xxye
i
: i Linear combinations of primitive gaussians like these are used to form the actual basis
i i functions; the latter are called contracted gaussians and have the form:
! U!
b i -
" Hig Xy = 2ty (7]
- [ 4
3 where the d ‘s are fixed constants within a given basis set. Note that contracted
14 functions are also normalized in common practice.
| . . . . .
; All of these constructions result in the following expansion for molecular orbitals:
Ay
i .%J
% = Xyl = ch‘[ Zdupgr)) (28)
B [ p
1 The Variational Principle
The problem has now become how to solve for the set of molecular orbital expansion
: 1 : coefficients, c .. Hartree-Fock theory takes advantage of the variational principle,
1 which says that for the ground state of any antisymmetric normalized function of the
3 s electronic coordinates, which we will denote =, then the expectation value for the
1 i energy corresponding to E will always be greater than the energy for the exact

E(Z)> E(¥); EZ=#V¥ {2%]

In other words, the energy of the exact wavefunction serves as a lower bound to the
energies calculated by any other normalized antisymmetric function. Thus, the
i problem becomes one of finding the set of coefficients that minimize the energy of the
resultant wavefunction.
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Hartree-Fock Theory

The Roothaan-Hall Equations
The variational principle leads to the following equations describing the molecular
orbital expansion coefficients, c ; , derived by Roothaan and by Hall":

N
D (F,-eS,)c,; =0 p=12.,N
v=l [30}

Equation 30 can be rewritten in matrix form:
FC = SCe i31]

where each element is a matrix. € is a diagonal matrix of orbital energies, each of its
elements €; is the one-electron orbital energy of molecular orbital ;.

F is called the Fock matrix, and it represents the average effects of the field of all the
electrons on each orbital. For a closed shell system, its elements are:

N N

F,, = H;';"+ 2 2 PAO[(}IVIKO) —%(ullvo)] (32]
A=l o=1

where Ha:," is another matrix representing the energy of a single electron in the field
of the bare nuclei, and P is the density matrix, defined as:

occupied

Plo = 22 c;.icci 133

i=1

The coefficients are summed over the occupied orbitals only, and the factor of two
comes from the fact that each orbital holds two electrons.

Finally, the matrix S from Equation 31 is the overlap matrix, indicating the overlap
between orbitals.

Both the Fock matrix—through the density matrix—and the orbitals depend on the
molecular orbital expansion coefficients. Thus, Equation 31 is not linear and must be
solved iteratively. The procedure which does so is called the Self-Consistent Field

! We alter the subscripts slightly here from what has preceded in order to follow common usage.
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(SCF) method. At convergence, the energy is at a minimum, and the orbitals generate
a field which produces the same orbitals, accounting for the method’s name. The
solution produces a set of orbitals, both occupied (¢;; ) and virtual (unoccupied,
conventionally denoted ¢,,, . ). The total number of orbitals is equal to the number of
basis functions used.

The term (Uv|Ao) in Equation 32 signifies the two-electron repulsion integrals. Under
the Hartree-Fock treatment, each electron sees all of the other electrons as an average
distribution; there is no instantaneous electron-electron interaction included. Higher
level methods attempt to remedy this neglect of electron correlation in various ways,
as we shall see.

The general strategy used by the SCF method (after initial setup steps) is as follows:

4 Evaluate the integrals. In a conventional algorithm, they are stored on disk
and read in for each iteration. In a direct algorithm, integrals are computed
a few at a time as the Fock matrix is formed.

4 Form an initial guess for the molecular orbital coefficients, and construct
the density matrix.

4 Form the Fock matrix.
4 Solve for the density matrix.

4+ Test for convergence. If it fails, begin the next iteration. If it succeeds, go on
to perform other parts of the calculation (such as population analysis).

Open Shell Methods

So far, we have considered only the restricted Hartree-Fock method. For open shell
systems, an unrestricted method, capable of treating unpaired electrons, is needed.’
For this case, the alpha and beta electrons are in different orbitals, resulting in two sets
of molecular orbital expansion coefficients:

o a
o = Zcuixu

’ [34]
¢? = cﬁixu

m

! Referalso to the discussion of open shell calculations in Chapter 1 (page 10).
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Electron Correlation Methods

The two sets of coefficients result in two sets of Fock matrices (and their associated
density matrices), and ultimately to a solution producing two sets of orbitals. These
separate orbitals produce proper dissociation to separate atoms, correct delocalized
orbitals for resonant systems, and other attributes characteristic of open shell systems.
However, the eigenfunctions are not pure spin states, but contain some amount of
spin contamination from higher states (for example, doublets are contaminatéd to
some degree by functions corresponding to quartets and higher states).

Electron Correlation Methods

As we've noted several times, Hartree-Fock theory provides an inadequate treatment
of the correlation between the motions of the electrons within a molecular system,
especially that arising between electrons of opposite spin.

When Hartree-Fock theory fulfills the requirement that [¥?| be invarient with respect
to the exchange of any two electrons by antisymmetrizing the wavefunction, it
automatically includes the major correlation effects arising from pairs of electrons
with the same spin. This correlation is termed exchange correlation. The motion of
electrons of opposite spin remains uncorrelated under Hartree-Fock theory, however.

Any method which goes beyond SCF in attempting to treat this phenomenon
properly is known as an electron correlation method (despite the fact that
Hartree-Fock theory does include some correlation effects) or a post-SCF method. We
will look briefly at two different approaches to the electron correlation problem in
this section.

Configuration Interaction
Configuration Interaction (CI) methods begin by noting that the exact wavefunction
¥ cannot be expressed as a single determinant, as Hartree-Fock theory assumes. CI

proceeds by constructing other determinants by replacing one or more occupied
orbitals within the Hartree-Fock determinant with a virtual orbital,

In a single substitution, a virtual orbital, say 4> replaces an occupied orbital ¢; within
the determinant. This is equivalent to exciting an electron to a higher energy orbital.

Similarly, in a double substitution, two occupied orbitals are replaced by virtual

orbitals: ¢, « ¢; and ¢}, « ¢;; for example, ¥, = | ¢y, ... 9, Gasps e Gipp Qs oon Dy
Triple substitutions would exchange three orbitals, and so on.
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Full CI
The full CI method forms the wavefunction W as a linear combination of the
Hartree-Fock determinant and all possible substituted determinants:

¥ = byyo+ D b, [35]

>0

where the 0-indexed term is the Hartree-Fock level, and s runs over all possible
substitutions. The b’s are the set of coefficients to be solved for, again by minimizing
the energy of the resultant wavefunction.

At a physical level, Equation 35 represents a mixing of all of the possible electronic
states of the molecule, all of which have some probability of being attained according
to the laws of quantum mechanics. Full CI is the most complete non-relativistic
treatment of the molecular system possible, within the limitations imposed by the
chosen basis set. It represents the possible quantum states of the system while
modelling the electron density in accordance with the definition (and constraints) of
the basis set in use. For this reason, it appears in the rightmost column of the
following methods chart:

Electron Correlation —
Basis Set Type HF MP2 MP3 MP4 QCISD(T) .. Full CI

Minimal

Split-valence

Polarized
Diffuse

High ang. momentum

HF Schrédinger
Limit Equation

As the basis set becomes infinitely flexible, full CI approaches the exact solution of the
time-independent, non-relativistic Schrodinger equation.
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w(o) +7uy“) +lzw(2) +k3w(3) + ...
EQ AP A ZEP i '8P 4

[37)
E

The perturbed wavefunction and energy are substituted back into the Schrodinger
equation:

H

Hy+ AV (WP ey @ a ) = EQ P+ ) v P ey ey (39

After expanding the products, we can equate the coefficients on each side of the
equation for each power of A, leading to a series of relations representing successively
higher orders of perturbation. Here are the first three such equations (after some
rearranging), corresponding to powers of 0, 1, and 2 of A:

@, (0

(Hy-E

0 1 i 0
Hy-EP)yY = €V _v)y? [39]

0 (0)

Jy =0

2 1 1 2
H,-E®)y® = &M _v)y D E?y

So far, we've presented only general perturbation theory results. We’ll now turn to the
particular case of Meller-Plesset perturbation theory. Here, Hy is defined as the sum
of the one-electron Fock operators:

Hy=YF (40}

The Hartree-Fock determinant and all of the substituted determinants are
eigenfunctions of Hg; these are the solutions to the part of the divided Hamiltonian
for which we have a solution. Thus:

Hyy, = Ey, {41]

for all substituted determinant wavefunctions.

' Flis the Fock operator acting on the i™ electron.
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We'll consider each of the relations in Equation 39 in turn, In the first case, by
forming the inner product of each side with <y, we obtain the following expression
for E©:

0 0 0
WO H-E @y =0 =

0 0

(0 0 0
(¥ )|Ho|w( y = Pty

Since the 's are orthonormal, the inner product of any with itself is one, and the
inner product of any distinct two of them is 0.

Since Hy is the sum of Fock operators, then E9) is the sum of the orbital energies:

E® = (O v'?) = Ye, [43]

The expression for EM also follows easily from simple linear algebra. We begin by
again forming the inner product of both sides of the second relation from Equation

39 with <y(®:

(0))

00
(‘I’(O)I(Ho‘E(O)) vy = (W(O)l(E(l)_v) |‘I’ -

[44]
0 (1) 0 0), (1 D, (0), (0 ()} 0
O lae ) -ECw Py = BV P ) - v O Vv ™

Now, since How(°)=E(O)\y(°) and Hy is an Hermitian operator (HO\V(O)--W(O)HO), the
left hand side of the final Equation 44 goes to 0, leaving this expression for E:

i 0 0
E( ) _ (‘l’( )'VH’( )> 145]

Adding E® and EYY) yields the Hartree-Fock energy (since Hy+V is the full
Y gy 0
Hamiltonian):

[ 1 Q 0 0} 0)
£ 4" = (yOlHu )+ w vy ®)

= w0l + Vv = Ol = BT »

We'll begin examining the third relation in Equation 39 in the same way:

Exploring Chemistry with Electronic Structure Methods 269



The Theoretical Background

2 0 1 ] 2 0 0
O - [u®) = WOl ED - [y 1P O 5

We need to find y) before we can determine E®). We will form it as a linear
combination of substituted wavefunctions and solve for the coefficients:

mn
b4 = Zasw.\' 3 HOWJ‘_'E.\-WJ [48]
¥

We will return to the second relation in Equation 39, and this time use it to find the

coefficients for y'!;

0 1 0
(Hy-E?) Yay, = EV vy [49]
h 1

We will form the inner product of both sides of Equation 49 with an arbitrary
substituted wavefunction y,, and then solve for a, :

(v (Hy-E?) | Faw) = (v ED -]y =
5

2w Ho=E |y = EV ) -y = 5
§

Yo i) - B ) = BV w v ) - (o, vy ™)

5

The left side of the final Equation 50 is nonzero only when s=t, yielding:

0 0
at(E,—E( ) = —(\v,|V|\v( N =

(0)>

<w,|Vlw (5]

I A
" E9-E

The result in Equation 51 indicates that substitutions close in energy to the ground
state make larger contributions to the perturbation. Similarly, the more strongly
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mixed a state is with the ground state, the larger its contribution to the perturbation.
Both of these observations are in line with (quantum mechanical) intuition.

These coefficients result in the following expression for wih:

(y,|¥ v
=y ety v, (52]

g _g
t t

|
W()

We can now return to the expression for E2:

E? = (wOlviy™y = (WO VIZaw) = Xa v |viv)
4

!

¥ _g
t !

e OV vy _zl<w‘°’|v|w,>|2
t

©
E-E
' (53]

The two factors in the numerator of the first expression in the second line are one
another’s complex conjugates, and so reduce to the square of its modulus in the final

expression.

Note that both the numerator and denominator in the final expression are always
positive expressions; in the case of the denominator, we know this because E‘9 is the
lowest energy eigenvalue of the unperturbed system. (The denominator reduces to a
difference in orbital energies.)

In addition, the numerator will be nonzero only for double substitutions. Single
substitutions are known to make this expression zero by Brillouin’s theorem. Triple
and higher substitutions also result in zero value since the Hamiltonian contains only
one and two-electron terms (physically, this means that all interactions between

electrons occur pairwise).

Thus, the value of E?), the first perturbation to the Hartree-Fock energy, will always
be negative. Lowering the energy is what the exact correction should do, although the
Moller-Plesset perturbation theory correction is capable of overcorrecting it, since it
is not variational (and higher order corrections may be positive).

By a similar although more elaborate process, the third and fourth order energy
corrections can be derived. For further details, consult the references.
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Density Functional Theory

Density functional theory-based methods ultimately derive from quantum mechanics
research from the 1920, especially the Thomas-Fermi-Dirac model, and from Slater’s
fundamental work in quantum chemistry in the 1950’s. The DFT approach is based

upon a strategy of modeling electron correlation via general functionals’ of the
electron density.

Such methods owe their modern origins to the Hohenberg-Kohn theorem, published
in 1964, which demonstrated the existence of a unique functional which determines

the ground state energy and density exactly. The theorem does not provide the form
of this functional, however.

Following on the work of Kohn and Sham, the approximate functionals employed by
current DFT methods partition the electronic energy into several terms:

E = ET+EVY + Ef + EXC [54]

where ET is the kinetic energy term (arising from the motion of the electrons), EV
includes terms describing the potential energy of the nuclear-electron attraction and
of the repulsion between pairs of nuclei, E' is the electron-electron repulsion term (it
is also described as the Coulomb self-interaction of the electron density), and EXC s
the exchange-correlation term and includes the remaining part of the
electron-electron interactions.

All terms except the nuclear-nuclear repulsion are functions of p, the electron density.

E is given by the following expression:

1 a a - E Y
E = EIIP (r1) (Arpy) ~p (ry) drydr, [55)

ET+EV+E corresponds to the classical energy of the charge distribution p. The EXC
term in Equation 54 accounts for the remaining terms in the energy:

+ The exchange energy arising from the antisymmetry of the quantum
mechanical wavefunction.

4 Dynamic correlation in the motions of the individual electrons.

' A functional is a function whose definition is itsclf a function: in other words, a function of a function.
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Electron Correlation Methods

Hohenberg and Kohn demonstrated that EXC is determined entirely by the (is a
functional of) the electron density. In practice, EXC is usually approximated as an
integral involving only the spin densities and possibly their gradients:

EXC(p) = Jf(pa(;), pg (), Vp, (1), Vpg(r)) d*r [56]

We use p,, to refer to the o spin density, pp to refer to the B spin density, and p to refer
to the total electon density (pgy + pp)-

EXC is usually divided into separate parts, referred to as the exchange and correlation
parts, but actually corresponding to same-spin and mixed-spin interactions,
respectively:

EXC(p) = EX(p) +EC(p) 1571

All three terms are again functionals of the electron density, and functionals defining
the two components on the right side of Equation 57 are termed exchange functionals
and correlation functionals, respectively. Both components can be of two distinct
types: local functionals depend on only the electron density p, while gradient-corrected
functionals depend on both p and its gradient, vp.t

We'll now take a brief look at some sample functionals. The local exchange functional
is virtually always defined as follows:

3( 3 \1/3 .
Efpa = '5(4_1:) ,[ pt3d*r (58}

where p is of course a function of r. This form was developed to reproduce the
exchange energy of a uniform electron gas. By itself, however, it has weaknesses in
describing molecular systems.

Becke formulated the following gradient-corrected exchange functional based on the
LDA exchange functional in 1988, which is now in wide use:

« < p4/352 "
EBeckess = BLba =Y} (17 6ysinh 1x) % © (591

' Note that this use of the term “local” does not coincide with the use of the term in mathematics; both local
and gradient-corrected functionals are local in the mathematical sense.
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where x = p=#/3|Vp] . yis a parameter chosen to fit the known exchange energies of
the inert gas atoms, and Becke defines its value as 0.0042 Hartrees. As Equation 59
makes clear, Becke’s functional is defined as a correction to the local LDA exchange
functional, and it succeeds in remedying many of the LDA functional’s deficiencies.

Similarly, there are local and gradient-corrected correlation functionals. For example,
here is Perdew and Wang’s formulation® of the local part of their 1991 correlation
functional:

EC = J‘pec(rs(p(;)),C) Sr

rs=[4—2‘5]”3

- Pa—Pp )
pa+pﬁ
f(&

ec (1, §) = €c(p, 0) +ac(rs)f7((%)(l—§“) +lec(p, ) —c (P O)1F(H)EH

[a +C)4l3+ (1_@4/3_2]
(24/3_2)

£(g) =

r, is termed the density parameter. { is the relative spin polarization. {=0 corresponds
to equal o and P densities, {=1 correponds to all o density, and {=-1 corresponds to
all B density. Note that f(0)=0 and f(£1)=1.

The general expression for € involves both ry and . Its final term performs an
interpolation for mixed spin cases.

The following function G is used to compute the values of €c(rg,0), £c(r,,1) and
—ac(rg):

; f61]
A (Bt 24 B,yr + Byrd 24 B rPHY)

In Equation 61, all of the arguments to G except r, are parameters chosen by Perdew
and Wang to reproduce accurate calculations on uniform electron gases. The
parameter sets differ for G when it is used to evaluate each of £c(r,0), ec(r,1) and
—ac(l's).

In an analogous way to the exchange functional we examined eatlier, a local
correlation functional may also be improved by adding a gradient correction.
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Electron Correlation Methods

Pure DFT methods are defined by pairing an exchange functional with a correlation
functional. For example, the well-known BLYP functional pairs Becke’s
gradient-corrected exchange functional with the gradient-corrected correlation
functional of Lee, Yang and Parr.

Hybrid Functionals

In actual practice, self-consistent Kohn-Sham DFT calculations are performed in an
iterative manner that is analogous to an SCF computation. This similarity to the
methodology of Hartree-Fock theory was pointed out by Kohn and Sham.

Hartree-Fock theory also includes an exchange term as part of its formulation.
Recently, Becke has formulated functionals which include a mixture of Hartree-Fock
and DFT exchange along with DFT correlation, conceptually defining EXCas:

EXGria = nrEffe + CprrEDfr [62]
where the C's are constants. For example, a Becke-style three-parameter functional
may be defined via the following expression:

-

EXSiyp = Efpa *+ o (EEr—Efpa) + chEf,‘ss +EGyns + ¢ (Efyp-Efwny)  [63]

Here, the parameter c, allows any admixture of Hartree-Fock and LDA local exchange
to be used. In addition, Becke’s gradient correction to LDA exchange is also included,
scaled by the parameter cy. Similarly, the VWN3 local correlation functional is used,
and it may be optionally corrected by the LYP correlation correction via the
parameter cc. In the B3LYP functional, the parameters values are those specified by
Becke, which he determined by fitting to the atomization energies, ionization
potentials, proton affinities and first-row atomic energies in the G1 molecule set:
¢9=0.20, cx=0.72 and cc=0.81. Note that Becke used the the Perdew-Wang 1991
correlation functional in his original work rather than VWN3 and LYP. The fact that
the same coefficients work well with different functionals reflects the underlying
physical justification for using such a mixture of Hartree-Fock and DFT exchange first

pointed out by Becke.

Different functionals can be constructed in the same way by varying the component
functionals—for example, by substituting the Perdew-Wang 1991 gradient-corrected
correlation functional for LYP—and by adjusting the values of the three parameters.
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Integration Grids and DFT Calculations

In general, DFT calculations proceed in the same way as Hartree-Fock calculations,
with the addition of the evaluation of the extra term, EXC. This term cannot be
evaluated analytically for DFT methods, so it is computed via numerical integration.

These calculations employ a grid of points in space in order to perform the numerical
integration. Grids are specified as a number of radial shells around each atom, each of
which contains a set number of integration points. For example, in the (75,302) grid,
75 radial shells each contain 302 points, resulting in a total of 22,650 integration
points.

Uniform and pruned versions of many grids have been defined. Uniform grids contain
the same number of angular points at each radial distance, while pruned grids are
reduced from their full form so that fewer points are used on the shells near the core
and far from the nucleus, where less density is needed for a given level of
computational accuracy. Put another way, pruned grids are designed to be densest in
the region of the atom where properties are changing most rapidly.

For example, the pruned (75,302) grid, denoted “(75,302)p” contains about 7,500
integration points per atom. In general, pruning reduces the size of a uniform grid by
about 66%.

As of this writing, (75,302)p! is the default grid in Gaussian for all but single point
calculations using standard SCF convergence (including SCF=Tight calculations). The
SGI grid, a pruned (50,194) grid containing about 3,600 points per atom is used for
lower-accuracy single point calculations.

(75,302)p produces more accurate results than SG1, and it is accordingly strongly
recommended for final energy calculations (where SCF=Tight should also be used in
general), and for all geometry optimizations and frequency calculations. (75,302)p
also has better rotational invarience properties than SG1, and it is much more suitable
for molecular systems involving transition metals and calculations using
pseudopotentials. The following example illustrates the differences in accuracy that
can result from employing different grids.

Example A.1: Comparing Integration Grids

files: ea_01a (SisH,,)
ea_01b (Al,P,)
ea_0lc (NoSymm)

We ran a BLYP/6-31G(d) single point energy calculation, using tight SCF
convergence, on SisH;, and Al,P, (119 and 152 basis functions, respectively), using
the SG1 and (75,302)p pruned grids, and the unpruned (50,194) and (99,434) grids.
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Here are the predicted relative energies with respect to the results from the large
(99,434) grid for each calculation:

AE(99,434) (kcal-mol" )
Gl’id (Option) SisH 12 A14P4
(50,194)p
Int=5G1 0.292 -0.373
uniform (50,194)
InH{Grid=50194) 0.277 -0.287
(75,302)p
Int=FineGrid -0.029 0.060

$G1 seems to have more trouble with second-row atoms than first-row atoms. The
energy differences between the SG1 and the large (99,434) grids are small but
significant. In contrast, the default (75,302)p grid reproduces the energy predictions
of the larger grid very well. The energy differences between SG1 and the default grid

are 0.321 and -0.313 for the SisH,, and Al P,, respectively.

SG1 also suffers from substantial rotation invarience: changing the orientation of the
molecule can substantially alter the predicted energy. All DFT methods using finite
grids will exhibit some degree of rotational invarience, but SG1 is more sensitive than
most grids—the effect is generally more pronounced with smaller grids—as the
following results on Al P indicate. This table gives the change in predicted energy
when molecular symmetry is ignored in the calculation with respect to the default
procedure (taking advantage of symmetry) for SG1 and the default grid:

AENoSymm
Grid (Option) | (kcal-mol")
(50,194)p
n=SG1 0.354
(75,302)p
Int=FineGrid 0.079

The default (75,302)p grid results in only minor changes in energy between the two
molecular orientations. However, the SG1 grid’s predicted energy is very different for
the two orientations of the molecule.
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The Complete Basis Set Extrapolation

As we noted in Chapter 7, the CBS family of methods all include a component which
extrapolates from calculations using a finite basis set to the estimated complete basis
set limit. In this section, we very briefly introduce this procedure.

The extrapolation to the complete basis set energy limit is based upon the
Moller-Plesset expansion E= E©@ + E() + E@ 4+ E®) 4 E@ ¢ as described earlier in
this appendix. Recall that E® + E(!) is the Hartree-Fock energy. We will denote E©)
and all higher terms as E>™, resulting in this expression for E:

E = EHF4+ E() 4 E3o= [64]

Remember that the CBS models begin with a large enough SCF calculation to obtain
the desired level of accuracy (see Chapter 7); therefore, no explicit extrapolation of
the SCF energy is included. CBS extrapolation involves computing the second-order
and infinite-order corrections to the energy.

Schwartz has shown that for a helium-like ion, the contribution to the second-order
Mpller-Plesset energy from the [ angular momentum component can be
approximated by the following expression:

. 43 1)+
Jim a0 =75 143) 163}

This expression describes how the energy converges as we add successive s functions,
p functions, d functions, f functions, and so on, to spherical atoms.

Petersson and coworkers have extended this two-electron formulation of asymptotic
convergence to many-electron atoms. They note that the second-order Moller-Plesset
correlation energy for a many-electron system may be written as a sum of pair
energies, each describing the energetic effect of the electron correlation between that
pair of electrons:
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The Complete Basis Set Extrapolation

occ occ virt
B = 3o = X YV
ij ij ab
vab = (if] (Aryp) ~'|ab) 16¢]
ab
cab = 4

where the V? are Hamiltonian matrix elements coupling occupied orbitals i and j

1
with virtual orbitals a and b. Cg}” are the coefficients of the first-order wavefunction.

For otf electron pairs, the coefficient matrix C may be diagonalized, yielding the pair
natural orbital (PNO) expansion of the pair energies:

ﬁ PNO

o

) =

e = Zc;;av;;a 1671
a

ae (,-2~) has been shown to have

In natural orbital form, the asymptotic convergence of * i

the following form, resulting in the CBS limit, e (,%)(CBS):

. 25 -1
Pe2NCBS) = Nlnl)n:"e,.gz’(m - (&) PrN+3)
8 N (48]
11
cl.gz)(N) = 2 C&“V;’j"
a=2

fis the overlap factor, and it provides the exact attenuation of the interorbital pairs
relative to intraorbital pairs for a model involving two infinitely-separated

helium-like ions.

tain size consistency in the CBS extrapolation for finite

The parameter d;; serves to re
abeif.”)(N), may be obtained from the

values of N. Full CI pair energies,
diagonalization of the pair CI Hamiltonian:

ol [69]

where ¢‘:b is a configuration in which occupied orbitals i and j are replaced by virtual
orbitals @ and b. It has been shown that the resulting infinite-order pair energies
converge to the CBS limit according to the following expression:
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The Theoretical Background

2
N
aB () . aB () ol 5.«
€; (CBS) =Nh_r’n"° € (N) - aglcfj, q (313) f;‘j (N+5ij)-l [70]

The sum over CI coefficients is an interference factor resulting from the fact that the
full CI pair energies converge faster than the second-order pair energies.

CBS model chemistries make the correction resulting from these extrapolations to the
second-order (MP2) correlation energy:

AE® = Y [e{D(CBS) - eX(N) ] 71
7

An infinite-order correction is similarly made to MP4 or QCISD(T) energies
(approximate full CI energies):

2

vint

N, +1
AE(=) = ;{ ; Cu,., [eP(CBS) ~e(N) ]} 72)
i)

Because the interelectronic cusp is difficult to describe well with one-electron basis
functions, pair correlation energies converge much more slowly (as N°!) than SCF
energies (which converge as I'%). This fact makes the use of CBS extrapolations of the
correlation energy very beneficial in terms of both accuracy and computational cost.

' o and PP (triplet) pair energies converge as N*¥3,
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f (N+8 T [70)

om the fact that the
iergies.

:xtrapolations to the

71]

»

2CISD(T) energies

S

. one-electron basis
(as N"))t than SCF
xtrapolations of the
'mputational cost.

The Complete Basis Set Extrapolation

CBS extrapolation is illustrated in the following figure which depicts the
extrapolation for the helium atom:

.1.

T

e%:,)ls(N) ‘mEM

CBS
Limit

000 025 030 075 100

Ec N + 5

The filled and hollow circles indicate the contributions of each successive natural
orbital. The filled circles correspond to complete shells. Only these points are useful
for extrapolating to the complete basis set limit.

Consult the works listed in the references for a full discussion of CBS extrapolation.
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Quantum Mechanics

Electronic Structure Theory

MP Perturbation Theory

Coupled Cluster and QCt

Density Functional Theory
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In This Appendix:

Gaussian Input
File Format

Constructing
Z-matrices

Overview of Gaussian Input

We've already looked briefly at Gaussian input in the Quick Start. Here we present a
more formal definition and discuss the various molecule specification options.

Gaussian input is designed to be free-format and extremely flexible. For example, it is
not case-sensitive, and keywords and options may be shortened to a unique
abbreviation.

Input File Sections

Gaussian input (which is the same for all versions of the program, including the
Window version) has the basic structure described in the following table. Note that
the input sections marked with an asterisk are required in every input file:

Input Section Contents

Link 0 Commands Defines the locations of scratch files and job resource limits,
*Route Section Specifies the job type and model chemistry.

*blank line Separates the route section from the title section.

*Title Section Describes the job for the output and archive entry.

*blank line

*Molecule Specification Gives the structure of the molecule to be studied.
*blank line

Variables Section Specifies values for the variables used in the molecule
blank line specification.

Note that the separate input sections are separated from one another by blank lines.
These blank lines are inserted automatically into input files created with the Job Entry
window in the Windows version and need not be entered by the user. If you choose to
create a Gaussian input file using an external Windows editor, however, you must
follow the same rules for input as under other versions of Gaussian.

Note that some job types require additional sections not listed.

Input lines have a maximum length of 80 characters.
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The Route Section

The first line of the route section always begins with a pound sign (#) in the first
column. This section specifies the theoretical procedure, basis set, and desired type of
calculation. It may also include other keywords. The ordering of keywords is not
important. Some keywords require options; the following input line illustrates the
possible formats for keywords with options:

#T RHF/6-31G(d) SCF=Tight Units=(Bohr,Radian) Opt Test
Keyword with: a single option > 2 options no options

The amount of spacing between items is not significant in Gaussian input. In the
route section, commas or slashes may be substituted for spaces if desired (except
within parenthesized options, where slashes don’t work). For example, the previous
route section used a slash to separate the procedure and basis set, spaces to separate
other keywords, and commas to separate the options to the Units keyword.

The route section may extend over more than one line if necessary. Only the first line
need begin with a pound sign, although any others may. The route section is
terminated by a blank line,

The Title Section

The title section consists of one or more lines of descriptive information about the
job. It is included in the output and in the archive entry but is not otherwise used by
Gaussian. This section is terminated by a blank line,

Specifying Molecular Structures

Gaussian accepts molecule specifications in several different formats:

4 Cartesian coordinates
4 Z-matrix format (internal coordinates)
4+ Mixed internal and Cartesian coordinates

All molecule specifications require that the charge and spin muitiplicity be specified
(as two integers) on the first line of this section. The charge is a positive or negative
integer specifying the total charge on the molecule. Thus, 1 or +1 would be used for a
singly-charged cation, -1 designates a singly-charged anion, and 0 represents a neutral
molecule.

Spin Muktiplicity

The spin multiplicity is given by the equation 25 + 1, where § is the total spin for the
molecule. Paired electrons contribute nothing to this quantity. They have a net spin of
zero since an alpha electron has a spin of +% and a beta electron has a spin of -% .
Each unpaired electron contributes +% to S. Thus, a singlet—a system with no
unpaired electrons—has a spin multiplicity of 1, a doublet {(one unpaired electron)
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Input File Sections

has a spin multiplicity of 2, a triplet (two unpaired electrons of like spin) has a spin
multiplicity of 3, and so on.

Units

The units in a Z-matrix are angstroms for lengths and degrees for angles by default;
the default units for Cartesian coordinates are angstroms. These are also the default
units for lengths and angles used in Gaussian output. You can change them to bohrs
and/or radians by including the Units keyword in the route section with one or both of
its options: Bohr and Radian.

Cartesian Coordinate Input

Cartesian coordinate input consists of a series of lines of the form:

Atomic-symbol X-coordinate Y-coordinate Z-coordinate

For example, here is the molecular structure for formaldehyde, given in Cartesian
coordinates:

01

c 0.0 0.0 0.0
o 0.0 1.22 0.0
H 0.94 -0.54 0.0
H -0.94 -0.54 0.0
Z-Matrix Input

The other syntax for supplying molecular structures to Gaussian 94 is the Z-matrix. A
Z-matrix specifies the locations of and bonds between atoms using bond lengths,
bond angles, and dihedral (torsion) angles.

Each atom in the molecule is described on a separate input line within the Z-matrix.
As we consider the procedure for creating a Z-matrix, we'll use hydrogen peroxide as
an example. These are the steps to do so:

1. Choose a starfing atom in the molecule, and conceptually
place it at the origin in three dimensional space.

The first line of the Z-matrix consists solely of the label for this atom. An atom label is
made up of its atomic symbol optionally followed by an integer (no spaces), used to
distinguish it from the other atoms of the same type (e.g. H1 for the first hydrogen,
H2 for the second one, and so on).

We'll use the left oxygen atom in the illustration as our first atom:

01
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Overview of Gaussian Input

2. Choose another atom bonded to the first atom. Place it along
the Z-axis, and specify the length of the bond connecting the
two atoms.

This second input line will include the atom label of the second atom, the label of the
atom it is bonded to (the first atom), and the bond length, in that order. Items may be
separated by spaces, tabs or commas.

We'll use the hydrogen atom bonded to the first oxygen for our second atom:

0l
Hl1 o1 .9

3. Choose a third atom bonded to either of the previous two
atoms and specify the angle formed by the two bonds.

This angle locates the molecule’s position in the XZ-plane. This input line will include
the new atom’s label, the atom it is bonded to and the bond length, the label of the
other atom forming the bond angle, and the angle’s value.

We have only one choice for the third atom in our Z-matrix, the second oxygen atom:

(o2
H1 Ol 0.9
02 01 1.4 H1 105.0

The new line illustrates an important point about numeric values within Z-matrices.
Since they correspond to floating point quantities, they must include a decimal point,
as in the value above. This is true even for a value of 0.

4. Describe the positions of all subsequent atoms by specifying:

Its atom label.

An atom it is bonded to and the bond length.

A third atom bonded to it {or to the second atom), and the value of the
resulting bond angle.

A fourth atom bonded to either end of the previous chain, and the value of
the dihedral (torsion) angle formed by the four atoms.

+ e

Dihedral angles describe the angle the fourth atom makes with respect to the plane
defined by the first three atoms; their values range from 0 to 360 degrees, or from -180
to 180 degrees. Dihedral angles are easy to visualize using Newman projections. The
illustration shows the Newman projection for hydrogen peroxide, looking down the
O-0 bond. Positive dihedral angles correspond to clockwise rotation in the Newman
projection.
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More Complex Z-Matrices

Obviously, we'll use the remaining hydrogen atom for the fourth line of our Z-matrix
for hydrogen peroxide. Here is the completed molecule specification:

01 Charge and multiplicity.
ol Oxygen atom #1.
H1 o1 .9 Hydrogen #1, connected to oxygen #1 by a bond of 0.9 A.

02 01 1.4 H1 105. Oxygen #2: 02-01 = 1.4 A; - HI-01-02 = 105°.
H2 02 .9 01 105. H1 120. Hydrogen #2: H2-02 bond =0.9 A; - H2-02-01 = 105°;
dihedral angle H2-02-01-H1=120°.

Sources for bond lengths, bond angles, and dihedral angles include the published
literature, standard references like the CRC series, and previous calculations.
Z-matrices may also be created by the NewZMat utility from data generated by a wide
variety of drawing packages. Refer to the Quick Start for a sample conversion
operation for your version of Gaussian.

Mixed Internal and Cartesian Coordinates

It is also possible to specify the molecular structure in a format which combines
Cartesian coordinates and Z-matrix style input; this format is referred to as mixed
internal and Cartesian coordinates. It is useful for systems where some parts of the
molecule are more easily specified in Cartesian coordinates and others are more easily
described as a Z-matrix. Consult Exercise C.2 (page 293) and Appendix B of the
Gaussian 94 User’s Reference for more information on this topic.

More Complex Z-Matrices

Constructing a Z-matrix for propene provides a more challenging example. Note that
the atoms inside the red line in the illustration all lie in a plane. First we'll specify the
carbon atoms:

01 Charge and multiplicity.
cl Carbon atom at the head of the double bond.
C2 C1 1.34 Carbon atom on the other end of the double bond.

C3 C2 1.52 ¢c1 120. Third carbon atom.

Next, we'll specify the hydrogens on C1 and C2. The bond angles formed with the

double-bonded carbons and each of these hydrogens is 120°. We'll pick simple
dihedral angles for each of them:
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H1 C1 1.09 C2 120.

H2 C1 1.09 C2 120.

C3 0.

The dihedral with respect to the C-C single bond is 0°.
Note that the decimal point must be included. !

Cc3 180. The dihedral with respect to the same bond is 180°,

sintce it is on the opposite side of the double bond from
carbon C3.

H3 €2 1.09 c1 120. H1 180. Thisisan equivalent dihedral to the previous one,

substituting H1 for the third carbon.

The planar hydrogen on C3 is specified in a similar manner:

H4 C3 1.09 €2 109.5 C1 180. Justlike the diedral we formed for H2.

The geometry of the carbon we've labelled C3 is tetrahedral; the bond angle of each of
the hydrogens with respect to the C3-C2 bond is about 109.5°.

The dihedrals for the remaining two hydrogens are best visualized with a Newman
projection. They are located above and below the plane of the C-C-C bond. H5 is the
hydrogen below the plane, and its dihedral is 60°. The dihedral for H6 could be
expressed as either 300° or -60° we'll use the latter to express the symmetry of the
molecule. Here are the Z-matrix lines for these atoms:

H5 C3 1.09 ¢2 109.5 C1
H6 C3 1.09 €2 109.5 C1 -60.

60.

Using Variables in a Z-matrix
Here is a complete input file for an optimization of this molecule:

#T RHF/6-31G(d) Opt Test

Propene Optimization

01

Cl

C2 C1 ccp

C3 C2 cCs C1 a1l

H1 C1 CH C2 A1 C3
H2 C1 CH €2 A1 C3
H3 C2 CH cC1 a1 H1
H4 C3 CH C2 A2 C1
H5 C3 CH C2 A2 C1L
H6 C3 CH C2 A2 C1

0.

180.
180.
180.

Z-matrix with variables.

" Note that there are no blank lines within the Z-matrix, despite its appearance here. The extra spacing in this
example is simply an artifact of the commentary.
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More Complex Z-Matrices

Variables:
CcCcD=1.34 C-C double bond length.
cCcs=1.52 C-C single bond length.
CH=1.09 C-H bond length.
A1=120.0 C-C-C and some C-C-H bond angles.
A2=109.5 C-C-H bond angles for hydrogens on C3.
D=60.0 Magnitude of the dihedral angle for non-planar hydrogens.

This file introduces the concept of variables within the molecule specification. Here,
variables are simply named constants; variable names are substituted for literal values
within the Z-matrix, and their values are defined in a separate section following it.
The two sections are separated by a blank line, or a line with a blank in the first
column and the label Variables: placed elsewhere on it (this is one exception
Gaussian makes in its requirement for completely blank lines).!

Notice that we used D and - D respectively for the dihedral angles for the non-planar
hydrogens, as opposed to two separate variables. This is done to ensure symmetry
within the molecule.

Exercise B.1: Z-Matrices for 1,2-Dichloro-1,2-Difluorcethane isomers

Try your hand at constructing Z-matrices for these three isomers of 1,2-Dichloro-
1,2-Difluoroethane:

H F Hy
. ™ 2 ;"
F] k‘. H'| a F] k‘.
C‘ — C2--'"”H C'| '—C2-:,"”F CI—_ c’""'"F
/ N 2 / 2 /S N\, F2
Cly Fa Cly Ha chy Hy
RR SS meso

Solution  We'll construct the Z-matrix for the RR form first. We'll use the CI-C-C-Cl plane as
our major reference. Here are the lines for the carbons and chlorines:

Cc1
€2 C1 1.53 Bonded to C1 at a distance of 1.53A.

Ccli ¢l 1.76 C2 109.5 Bonded to C1 at 1.76A; £CI-C-C=109.5".

c12 €2 1.76 C1 109.5 C11 180. Bonded to C2 (1.76A); £C-C-Cl =109.5°% and
Cl-C-C-Cl dihedral angle is 180° (the 2 chlorines
are on opposite sides of the carbon chain).

t Variables represent labels for the internal degrees of freedom being specified for the structure. As we note,
the values of the variables are defined in a separate section below the Z-matrix. It is also possible to specifya
third section for constanrs, which immediately follows the variables section; its separator line is either blank
or it contains the label Constant s: preceded by one or more spaces. In traditonal Opi=Z-Matrix geometry
optimizations, the values of variables are optimized while the values of constants remain fixed throughout.
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reference atom

60°

paade

c2
Ccl
c2
c2
c1
cl

292 Exploring Chemistry with Electronic Structure Methods

l

109.
109.
109.
109.
109.
109.

-60°

27\

5

5 Cl11
5 Cl2
5 C12
5 Cl1
5 Cl1

Newman projections are helpful in determining the proper dihedral angles for the
fluorines and hydrogens. Here are diagrams for the RR isomer, looking down the C-C
bond in both directions:

Cl,
Fy Hy
Fy Hy
F |1 %.

reference atom

The left diagram places the C; carbon in front, and indicates the angles for the
fluorine and hydrogen attached to it, using the two carbons and the chlorine attached
to the other carbon (Cl,) to form the dihedral angle:

F1 C1 1.37 C2 109.5 C12 -60.
H1 C1 1.09 C2 109.5 Cl12

60.

A similar process, using the Newman projection diagram on the right, which places
C, in front of C,, and uses Cl; as the third atom for the dihedral angles, results in the
last two lines of the Z-matrix:

F2 C2 1.37 c1 109.5 Cl1l1 -60.
H2 €2 1.09 C1 109.5 Cl1

60.

Here is the complete Z-matrix for the RR form:

180.
-60.
60.
~60.
60.

In the SS form, the positions of the fluorine and the hydrogen on each carbon are
interchanged. This results in a corresponding exchange of their dihedral angles, while
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More Complex Z-Matrices

all other values in the Z-matrix remain the same. Here is the complete Z-matrix for
the SS form:

01

Ccl

c2 €1 1.53

Cl1l Cl 1.76 C2 109.5

Cl2 €2 1.76 C1 109.5 C11 180.
F1L C1 1.37 C2 109.5 Cl2 60.
Hl Cl1 1.09 C2 109.5 Cl2 -60.
F2 C2 1.37 C1 109.5 Cl1 60.
H2 C2 1.09 C1 109.5 C1l1 -60.

The meso form swaps the hydrogen and fluorine on only one of the carbons, leaving
the other two unchanged with respect to the RR form. This will result in the dihedral
angles for the hydrogens and fluorines having different signs on the two carbons:

01

Ccl

c2 €1 1.53

Cll C1 1.76 C2 109.5

€l2 €2 1.76 C1 109.5 Cl1 180.
F1 C1 1.37 €2 109.5 Cl2 -60.
HL C1 1.09 C2 109.5 Cl2 60.
F2 C2 1.37 C1 109.5 C11 60.
H2 C2 1.09 C1 109.5 Cl1l1 -60.

Exercise B.2: Mixed Cartesian and Internal Coordinates

Hn
o H//"pf
X
\c///l,cl ‘\\\\c
r.

\ A /
cv | Ve
oZ ¢

1
o

Here is a molecule specification for Cr(CO)g, expressed in Cartesian coordinates;

0 1

Cr 0.00 0.00 0.00
C 1.93 0.00 0.00
c -1.93 0.00 0.00
(o 0.00 1.93 0.00
c 0.00 -1.93 0.00
o 0.00 0.00 1.93
(o 0.00 0.00 -1.93
o] 3.07 0.00 0.00
o -3.07 0.00 0.00
(o] 0.00 3.07 0.00
[¢) 0.00 -3.07 0.00
[¢] 0.00 0.00 -3.07
o] 0.00 0.00 3.07

Replace one of the carbonyls with an ammonia group, and construct a new molecule
specification.
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Multi-Step Jobs
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We replace the final carbon atom with a nitrogen, specifying the Cr-N bond length as
2.27, and then express the three hydrogen atoms via a Z-matrix. Note that Cartesian
coordinates are included within a Z-matrix by specifying the bonded-to-atom as 0:

0 1

Cr 0 0.00 0.00 0.00
CO0 1.93 0.00 0.00
Cc0-1.93 0.00 0.00
cCO0 0.00 1.93 0.00
CO0 0.00 -1.93 0.00
cCo0 0.00 0.00 1.93
60 3.07 0.00 0.00
00 -3.07 0.00 0.00
Q¢ 0.00 3.07 0.00
00 0.00 -3.07 0.00
00 0.00 0.00 -3.07
N O 0.00 0.00 2.27
H12R1A 2 0.
H12R1A13 D
H12R1A13 -D

R 1.02

A 115.0

D 120.0

See Appendix B of the Gaussian 94 User’s Reference for more information about and
examples of constructing Z-matrices. B

Multiple Gaussian calculations may be combined within a single input file. The input
for each successive job is separated from that of the preceding job step by a line of the
form:

--Linkl--

Here is an example input file containing two job steps:

#T RHF/6-31G(d) Test Route section for the first job step

Formaldehyde Energy Title section for the first jobstep

01 Molecule specification section

H2 O 1. H1 120. End of Z-matrix
Blank line ending the molecule specification section

--Linkl-- Starts a new job step

294 Exploring Chemistry with Electronic Structure Methods




the Cr-N bond length as
rix. Note that Cartesian
bonded-to-atom as 0:

aformation about and

< input file. The input
b step by a line of the

tfication section

#T RHF/6-31G(d) Test Route section for the second job step

Peroxide Energy Title section for the second job step
Input continues...

When placing multiple jobs within a single input file, it is imperative that the final
section of each job end with a blank line, a requirement that is not always strictly
enforced for single-step jobs. If you want to run a single job from a multistep input
file, you must copy the relevant lines to a new file, and then execute Gaussian 94 using
the new file.

Here is an example of an input file containing two job steps in which the second
calculation depends upon and uses the results of the first job step:

$Chk=freq First job step
#T HF/6-31G(d) Freq

Frequencies at STP

Molecule specification

~-Linkl-- Separator line
%Chk=freq Second job step
$NoSave

#T HF/6-31G(d) Geom=Check Guess=Read Freq=(ReadFC, Readlsotopes)
Frequencies at 300 K
charge and multiplicity

300.0 2.0
Isotope specifications

This input file computes vibrational frequencies and performs thermochemical
analysis at two different temperatures and pressures: first at 298.15 K and 1
atmosphere, and then again at 300 K and 2 atmospheres. Note that a blank line must
precede the --Link1- line.

The %Chk command in each job step specifies the name for the checkpoint file—one
of Gaussiar's scratch files—and it tells the program to save the file after the job
finishes (normally, all scratch files are deleted automatically). The %NoSave
command in the second job step tells the program to delete the checkpoint file after
that step concludes even though %Chk has been included.

The most common purpose for specifying and saving the checkpoint file is so that
molecular structures and other calculation results can be retrieved from it for use in a
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subsequent calculation. For example, in the second job step, the molecular structure,
SCF initial guess, and frequency results are retrieved from the checkpoint file and
used to predict thermochemical properties at a different temperature and pressure.
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