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Objective

Computational Determination of the Molecular
Constants of HCl

Zon

Introduction

Calculation of the molecular constants of HCl using ab initio quantum mechan-
ical methods.
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Experiment 36 guides you through the acquisition and analysis of the infrared
spectrum of gaseous HCl with the goal of obtaining its molecular constants. It is
helpful to review here the ultimate objective of that experiment in terms of the
five molecular constants sought. These constants are (1) the harmonic frequency,
V; (2) the anharmonicity constant, #,x.; (3) the rotational constant, B,; (4) the
rotation-vibration coupling constant, a,; and (5) the centrifugal distortion con-
stant, D,

This experiment has the same objective. However, you will not use a tradi-
tional “experimental” approach that relies on getting data from a spectropho-
tometer; instead you will employ computational methods that are based on quan-
tum chemistry. The term “ab initio” cited in the Objective means “from the
beginning,” and it may be interpreted that you will obtain these results from an
entirely mathematical quantum mechanical calculation. The goal of these approaches
is to obtain solutions to the Schrédinger equation by making as few approxima-
tions as possible and by avoiding the use of adjustable parameters.

You will use some of the most advanced and reliable techniques currently avail-
able in standard computational chemistry applications. The methods to be used
do not rely on any expeditious assumptions (or adjustable parameters) to facili-
tate or even permit the calculations to be made. Moreover, these calculations can
be performed on a stand-alone personal computer. Thus, you are the beneficiary
of forty years of research in quantum chemistry, immense advancements in com-
puting power, and the successful efforts of computer programmers.

The quality of the results that can be achieved for small molecules (such as di-
atomics) using advanced quantum chemical calculations permits one to determine
molecular constants to within one percent of the experimental quantities. This
achievement is particularly significant because one can now calculate the molec-
ular constants and thus predict the rotational-vibrational spectra of unstable or
exotic species.

Computational Approach

Before we present the computational details, we will give you the basic outline
of the approach to be followed in this experiment. The strategy is to obtain the
internuclear potential energy (PE) function of HCJ in the vicinity of the potential
minimum, for it is the shape of the PE function in this region that determines the
five molecular constants mentioned. Figure 1 shows a qualitative example of the
PE function of a diatomic molecule and the portion of the curve that we strive
to calculate.

In Step 1, we will use high-level quantum chemical methods to calculate the
electronic energy of HCl at specifically chosen internuclear separations. Then in
Step 2 we will refine these energies using a computational technique called basis
set extrapolation. In Step 3 we will fit these refined PE points to a sixth-order



Figure 1. Qualitative
potential energy curve
for a diatomic molecule.
The section of the curve
that we will calculate is
highlighted.
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power series as a function of the internuclear distance. Finally, in Step 4 we will
use coefficients of this power series to obtain the sought-after five molecular con-
stants. We will assess the quality of the computational results by comparing them
with their experimental counterparts.

You will use a high-level method for obtaining the electronic energy of HCl
called coupled cluster with single, double, and perturbative triple excitations—
abbreviated CCSD(T).! This method is perhaps the most reliable approach avail-#
able that takes into account the correlated interactions of electrons. The basis set
used in the calculations represents the molecular orbitals. It consists of an array
of analytical functions centered on the H and Cl atoms and attempts to capture
the “true” molecular wavefunction. We would like to use a basis set that is as
large as possible, providing sufficiently extensive spatial “coverage” of electronic
motion around the HCI molecule. Ideally this representation requires an infinite
number of basis functions, but this is clearly impractical. To approximate this
goal, however, we will perform three PE calculations for each chosen H-Cl sep-
aration with basis sets possessing increasing numbers of functions. These basis
sets belong to a family called augmented correlation-consistent polarized valence
functions, abbreviated aug-cc-pVXZ,2 where X denotes a quantity called zeta. In
this experiment, zeta will be double, triple, and quadruple (or X =2, 3, and 4).
As zeta gets larger, additional functions are used, increasing both the compact-
ness (tightness) and spatial extent (size) of the basis set. The energies calculated
from these larger basis sets come therefore incrementally closer to the energy that
would be obtained in the limit of infinitely extensive basis functions. We will es-
timate this limiting energy by performing an extrapolation of the energies ob-
tained with X = 2, 3, and 4 basis sets. This extrapolation yields an estimate of
the energy in the complete basis set (CBS) limit.

Test Run of a CBS-Limit Calculation

Before you get started with the HC calculations we will guide you through a CBS
extrapolation of the electronic energy of helium. We choose this example because
the calculations are very fast. You will also be able to see how the energy changes
with increasing zeta and will be able to compare the CBS-extrapolated result of
the helium ground state energy with the experimental value.

The calculations described in this experiment can be performed using Gauss-
ian 03 for Windows (GO3W) or earlier versions. This is a suite of programs that
can be used to carry out a wide range of computational objectives on the Mi-
crosoft Windows platform. The work outlined here can be carried out on a PC
with typical RAM memory and disk storage space. The text you enter into the
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input file sections of the GO3W file appears in typewriter font and the rele-
vant parts of the output file are shown here in smaller font. Underlined boldface
text denotes what you will see in the GO3W input file.

Enter the following text in the Route Section (Gaussian input is case insensitive):

ccsd/cc-pvdz

We perform a CCSD calculation because with only two electrons there are no
triple excitations. In the Title Section section, add whatever text you like
to document your calculation.

The Charge & Multicipl. (“multicipl.” is how GO3W abbreviates “multiplicity”)
window is the place where you enter the charge of the species followed by its spin
multiplicity, here,

0,1

The He atom is neutral; thus its charge is zero. This calculation is on the ground
state, so the electrons are spin-paired, and the total spin quantum number, S, is
zero. The multiplicity (25 + 1) is-therefore 1. .

Next is the Molecule Specification, which contains simply the symbol of the

helium atom (no coordinates are needed).

Calculations

The CCSD energy is found at the end of the output file. For the CCSD/cc-pVDZ
calculation, the result we seek can be found at the bottom of the Gaussian out-
put file in the section called the archive. The archive looks like this (the CCSD
information is in boldface):

N-N = 0.000000000000D + 00 E-N = —6.737201240703D + 00 KE = 2.855176138096D + 00
1/1/UNPC-UNK|SPIRCCSD-FC|CC-pVDZ|He1[PCUSER|02-Dec-2005|0#CCSD/ICC-PY

DZ[He ccsd double zeta|0,1[He[[Version = x86-Win32-G98RevA.9|HF = —2.855

1605|MP2 = —2.8809888|MP3 = —2.8863612|MP4D = —2.887507|MP4DQ =
—2.8873895|MP4

SDQ = ~2.8873903|CCSD = —2.8875948|RMSD = 7.972¢-011[PG = KH|@

The CCSD energy, —2.8875948, is in atomic units (hartrees). This energy repre-
sents the AE for the process

He?* + 2¢~ — He. (1)

Repeat the CCSD calculation using the cc-pVTZ and cc-pVQZ basis sets. Copy
the three coupled cluster energies from the Gaussian output files into a spread-
sheet that supports user-defined regression analysis, such as Excel/SDAS. Arrange
the data in a three-row column containing the double, triple, and quadruple en-
ergies. Enter the numbers 2, 3, and 4 in the cells to the left of these entries,
respectively.

The extrapolation function you will use to obtain the CBS energy consists of
an exponential and a Gaussian term:

E(X) = Ecps + be= X1 4 e~ (X-1), (

[Se]
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Fit your observed CCSD energies for X = 2, 3, and 4 to equation (2) with a non-
linear fit to extract the value of Ecgs. A plot of the CCSD energy versus X is
shown in Figure 2. You should obtain a value of —2.90344 hartrees.

-2.880
-2.885 |-
g

Figure 2. Extrapolation E -2.890 -
of the CCSD(T)cc-pVXZ £
energies of helium to @ -2.895 -
the CBS limit using the E
function in equation (2).
The dotted line ~2.900 -
represents the value of 3
Ecgs: the solid line is the -2.905 !
experimental value the 2 3 4

total helium energy.

Now compare your CCSD/CBS energy of helium with the experiment. The
first two ionization energies (experimental) of helium, reported to be 24.5874 and
54.416 electron volts (eV), respectively, correspond to the processes

He — He* + ¢~ (3a)
and
He* — He2* ¢, ' (3b)

Consider the process in equation (1) and compare your calculated energy with the
sum of these ionization energies. Use the conversion factor 1 h = 27.211396 eV.
What is the percent error in your CCSD(T)/CBS energy?

Now on to HCI.

Step 1
Obtain the CCSD(T) energies for HCI at internuclear distances between 0.8 A to

1.8 A. This type of calculation is called a potential energy scan. Enter the fol-
lowing text in the Route Section:

ccsd (t) /Jaug-cc-pvdz scan

In these calculations we will use the augmented correlation-consistent basis sets.
The scan entry is a keyword that instructs the program that a variable (in this
case the H-Cl distance) will be incremented.

Add some text to the Title Section, e.g., HC1 scan double zeta, and

type O, 1 in the Charge & Multicipl. box. For the Molecule Specification section,

enter

H
Cl 1 r
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The second line indicates that the Cl atom is attached to atom 1 (H) at a distance
r. The third line is blank. The last line, used in concert with the scan keyword,
tells the program to start with a value of r = 1.0 A, perform the calculation in-
dicated in the Route Section, then increment r by 0.1 A, and repeat the calcula-
tion. This process is carried out for a total of eight 0.1-A steps, thus producing a
scan consisting of 9 points along the H-Cl internuclear potential energy surface.

After this calculation, carry out two additional scans using the triple and
quadruple zeta basis sets. Simply replace the “d” in the basis set in the Route Sec-
tion by “t” and then “q”. The other parts of the input file remain the same (ex-
cept for the entries in the Title Sections).

Step 2

Now we will use the results from Step 1 to obtain the CBS-extrapolated energies
for each of the nine points along the PE curve. Although the results of the scan
are summarized in the Gaussian output file, the energies reported there are un-
fortunately not formatted to- sufficient significant figures. Therefore you will have
to copy the numerical results from the very end of the file, paste them into a word
processor, and arrange them in a single, continuous line with the values separated
by commas (don’t worry about soft line returns). The results of the double zeta
scan, as they appear in the output file, are shown in the Appendix of this exper-
iment. Save this data as an ASCII-delimited text file. Import the file to Excel/SDAS,
using the commas to delimit the values from each other so that they occupy sep-
arate cells in a row. In a similar fashion, transfer the CCSD(T) data from the
triple and quadruple zeta scans to this spreadsheet so that the three energies for
a given H-Cl distance are aligned in a column. Enter the numbers 2, 3, and 4
into another column, and use SDAS to obtain the CBS energies for each H-Cl
scan point, just as you did in the exercise with helium. This process is less tedious
than it might seem because SDAS recalls the user-defined function during a ses-
sion. You can use the same values—Ecps = ~409 and b = ¢ = 1—for the initial
guesses of the parameters in these analyses.

After you complete each CBS extrapolation, copy the CBS energy from the
SDAS Model sheet and paste it into your working spreadsheet (you must use Paste
Special—Values). Arrange these CBS values in a column. Enter the respective H-Cl
distances (in A units) in the cells to the left of the CBS energies. Plot your data;
if all went well, your graph should resemble the bold portion of the curve in Fig-
ure 1.

Step 3
Fit your (E,7) data to the sixth-order polynomial

E(T‘) =ap + aZ(r “u re)z s a3(r i re)3 + 44(7' - re)4 + d5(7‘ — re)s s 46(7 ol re)G: (4)

which has seven parameters. The reason that we use such an extensive function
is that it is able to capture accurately the curvature of the PE function in the vicin-
ity of the minimum and thus yield accurate values of the desired molecular con-
stants. The first parameter, ag, sets the energy at the minimum of the function,
where 7 = 7,. The second-order constant, dz, accounts for the harmonic (para-
bolic) character of the PE function, and the remaining constants describe the an-
harmonic quality of the potential. As we will see in Step 4, the molecular con-
stants can be extracted from these constants.

Fit your CBS scan energies to equation (4). You will probably need initial guess
values of the parameters. You can easily estimate ag and 7, from the position of
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the minimum of your plotted curve, and it is safe to use initial guesses of zero
for a3 and higher. To estimate a3, look at your plot and see how much the en-
ergy increases for a change in 7 of 0.1 A from r,; the increase is approximately
ﬂz(o.l)z.

Step 4

Finally you have to extract the HCI molecular constants from the fitted parame-
ters. To do so, you must first convert the fitted coefficients a,, a3, and a4 to cgs
units. Look carefully at equation (4) and identify the units that these coefficients
currently have. Then convert them so that they use energy units of ergs and length
units of cm; 1 A = 1078 cm and 1 hartree = 4.3597482 x 10~11 erg.

Because the experimental spectroscopic constants with which you will com-
pare values were obtained for H3SCl, you should use the appropriate isotopic
masses of 1.007825032 and 34.96885271 atomic mass units, respectively.3 The
reduced mass is p = mymcyl/(my + mqy).

The first constant, 7., comes directly from the fit to equation (4). For the other
constants, we are guided by the treatment presented by Herzberg:*

1. The rotational constant is determined from the average moment of inertia,
I = p<r>2, of the molecule. It controls the spacings between rotational
levels and is given by

h

B, = —2—.
* 8mewr?

(5)

2. The vibrational frequency ¥, is the natural frequency of vibration of the
atoms connected by the “spring” of the chemical bond. It is determined by
the stiffness of the spring and the masses of the atoms. It is related to @, by

B, = 1 _Zﬂ. (6)
2mc i
3. Because the potential energy curve is not a true parabola, as the vibrational
quantum number increases the average bond length and therefore the
moment of inertia also increases. This change is described by the
rotational-vibrational coupling constant a,, given by

2
o, = _@ (.‘1_32 + 1)_ (7)
Ve ap

4. The molecular spring is not infinitely stiff, so as the molecule rotates faster
and faster, the inertia of the atoms (or the “centrifugal force”) causes the
bond to stretch, increasing the moment of inertia and decreasing the
spacings between rotational energy levels. This effect is controlled by spring
stiffness and the masses, and the associated centrifugal distortion constant
D is given by

3
D=4

Ve

(8)

5. The anharmonicity constant #,x, describes the deviation of the potential
energy curve from a parabola. Because the true PE curve becomes wider
faster than a parabola does as r increases, the spacings between the
vibrational levels become smaller. The decrease in vibrational spacing with
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- Increasing quantum number is described by the anharmonicity constant
: VeXe- It can be calculated from your fit through
£
B, a,P \2 12a4r2
VeXe = < 151 + =2 | — =£840e | 9
'S Tabulate your molecular constants and compare them with the values reported

in Herzberg.3

Questions and Further Thoughts

L. If you were going to obtain the molecular constants for DCI (*H3Cl), explain why
you would not have to repeat the ab initio calculations (or even the polynomial fit). How,
i then, would you proceed to obtain the results?
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2. A mathematical function that qualitatively describes real diatomic potential cuarves is
the Morse potential,

E(r) = D.{1 — exp [-B(r — 7.)]* + C, (10)

where D, is the dissociation energy, B is a constant that determines the curvature, 7, is
the position of the minimum, as before, and C is the energy at the potential minimum
'1{ (see Figure 1). Fit your ab initio data to a Morse potential. You can use the 7, value you
read from your potential curve for an initial guess. D, gives the strength of the molecu-
lar bond; since your data cover only a relatively small region near the bottom of the well,
a reasonable initial guess for D, is two times the range of energies you obtained in your
scan. The Morse function indicates that B must have units of inverse length; 1/B is the
characteristic length over which the potential energy curve “leans over” and begins to ap-
1 proach its asymptote, so 1 A~1 is a reasonable initial guess for B. C + D, is the energy
' of the separated H and Cl atoms; for the calculation you have done, —460 hartrees is a
A workable guess for C. Compare the fitted values of re and D, with those in the litera-
; ture,>3 and comment. Does your estimate of D,, in particular, agree well> What would
you have to do to get a better computational estimate?

3. What is the uncertainty in your value of the harmonic frequency, v,? Use the standard
i deviation of a,—see the Model sheet from your regression analysis.

4. If you want to calculate the molecular constants for an uncommon molecule, try some-
thing like ZH3H or 3H3H.

5. The ionization energy of the helium cation (a one-electron atom) can be calculated ex-
actly from the Schrédinger equation. Its value is —2 hartrees. Determine this value from
a CCSD/CBS calculation of He™* (charge 1, multiplicity 2) and your CCSD/CBS energy
of the neutral atom. See processes (1), (3a), and (3b). Compare your result with the ex-
perimental value.

Notes

1. See I. N. Levine, Quantum Chemistry, 5th ed., pp. 568-573, Prentice Hall (Upper Sad-
/ dle River, NJ), 2000.

' 2. 1. N. Levine, op cit., p. 492.

3. http://physics.m'st.gov/PhysRefData/Compositions/

'ﬁ 4. G. Herzberg, Spectra of Diatomic Molecules, 2nd ed., pp. 66-82, 90-97, 103-115,
Van Nostrand Reinhold (New York), 1950.

5. G. Herzberg, op. cit., p. 534; see also http://webbook.nist.gov/chemistry and enter the
formula for HCI. Check the box for Other Data—Constants of Diatomic Molecules. Scroll
to the bottom of the table where the data for the ground state (X '3%) are listed.

6. See P. Atkins and J. De Paula, Physical Chemistry, 8th ed., pp. 320-328, W. H. Free-
man (New York), 2002.
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Further Readings
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Appendix

J. B. Foresman and & Frisch, Exploring Chemistry with Electronic Structure Methods:
A Guide to Using Gaussian, 1st ed., pp. 112-113, 141, Gaussian, Inc. (Pittsburgh,
PA), 1993.

L. N. Levine, Quantum Chemistry, Sth ed., pp. 492-493, 563-568, Prentice Hall (Upper
Saddle River, NJ), 2000.

The CCSD(T)/aug-cc/pVDZ values obtained from a scan from Step 1 as it appears in the
archive (very bottom) of the Gaussian output file:

CCSD(T) = —460.1820317,—460.2407796,-460.2663741,~460.2722674,— 460.2667144,
—460.2548048,-460.2397061,—460.2234106,—460.2071777
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