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LiF are also used for special purposes, but rock salt is the transparent
material used in most infrared spectroscopy studies. (If one has the
opportunity to work in the infrared spectral region, one must re-
member that the cells are, in fact, made of salt and, unless a very
expensive salt solution is desired, water must not be used as a sample
or as a solvent!)

The dispersing element most frequently found in an infrared
spectrometer is a prism made of rock salt. It should be mentioned,
however, that an alternative dispetsing element is available and is
increasingly found in commercial instruments. Instead of a prism,
an appropriately ruled grating can be used. There are some special
advantages to the use of gratings; in particular, their use does away
with the need for preparing large prisms of materials such as NaCl.
Also, since gratings are used as reflection devices, the problems that
arise—particularly, far out in the infrared region—with lack of
transparency of materials are avoided.

Although a heated tungsten filament, as used in an ordinary
light bulb, does give off infrared radiation, it is more satisfactory to
use a heated ceramic element as a source of radiation. Such an ele-
ment is generally heated by means of an electric current until it
appears red or even white.

The nature of the detector that is used is governed by the fact
that the energy of the quanta in the infrared region is so low that
the radiation is not able to eject electrons effectively enough to make
a phototube or a photomultiplier operative. One can, however,
detect infrared radiation through the heating that occurs when the
radiation is absorbed. A very sensitive thermocouple, for example,
can be used as a detector.

Finally, the instruments that will be encountered will operate
with the double-beam principal, will make use of chopped radiation,
and will be so arranged that the absorption spectrum is automati-
cally recorded on chart paper. One of the commercial instruments
that operates in the infrared region is illustrated in Fig. 3-1.

3-2 VIBRATION OF
BALL-AND-SPRING SYSTEMS

As in the previous study of the rotation of molecules, it is first
desirable to treat systems which behave according to the classical,

-
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Figure 3-2 The simple vibrating system of a ball and spring
showing the displacement from the equilibrium position, and
the force f, the restoring force of the spring acting on the ball.

i.e., Newtonian, equations of motion. The way in which molecules
vibrate can be approached by considering first the vibrational mo-
tion of a single ball attached to a spring, as in Fig. 3-2, and then
treating the system consisting of two balls connected by a spring,
the counterpart of a diatomic molecule.

Let us first consider the nature of the spring of Fig. 3-2. We
shall assume that it behaves, as do many ordinary springs, according
to Hooke’s law. This law states that the ball, when it is displaced
from its equilibrium position by a given amount, experiences a re-
storing force acting to bring it back to its equilibrium position that
is proportional to the amount of the displacement. (Later we shall
see that chemical bonds also behave pretty much in accordance with
Hooke's law.) If f represents the force of the spring on the particle
and x measures the displacement from the equilibrium position, one
can write the proportionality equation

fo s @
or the equality
f=(hx 2

The equality is written with a minus sign shown explicitly so that,
although f acts in the direction opposite to that in which x increases,
the proportionality constant & will have a positive value. The
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constant k is known as the force constant of the spring. It measures,
as is seen by noticing that & is the value of the restoring force for a
unit displacement, the stiffness of the spring. A strong, inflexible
spring will have a large value of k; a weak, easily extended or com-
pressed spring will have a small value of k.

Now let us consider the motion of the ball attached to the
spring. The vibratory motion that we expect implies that the
coordinate x that describes the displacement of the ball from its
equilibrium position is some repeating function of the time z. If
one makes measurements of x at various times # or if one solves the
equation that describes the behavior of such systems, one sees that
x varies as the sine or the cosine of # according to an equation of the

type
x = Asin(const) 2  of  x = A cos(const) #. 3)

The term A gives the amplitude of the vibration; and, although in
some connections it is important, we shall not be concerned with
this term here. Either the sine or the cosine function can be used
to describe the oscillating motion of the ball. Here we shall pro-
ceed with the cosine function.

In discussing the way in which x varies with # it is helpful to
look further into the significance of the term written merely as
(const) in Eqs. (3). The periodic nature of the motion makes it
convenient to write this constant coeficient of # as 27v. When this
is done, » can be identified as a frequency of oscillation, i.e., as the
number of vibrations or cycles that the ball makes in 1 sec. One
sees this by recognizing that the cosine function completes a cycle
every time the argument 2sv# increases by 2r. This occurs every
time 7 increases by 1/, and it follows that the time interval 1/v is
the number of seconds required for the ball to move through one
vibration or cycle. Thus if 1/» is the number of seconds per cycle, it
follows that » is the number of cycles per second, i.e., the frequency
of the vibration.

It now remains to relate the properties of the spring system,
i.e., the mass » of the ball and the force constant k of the spring,
to the quantity », the vibrational frequency in the expression
x = A cos 2wyt which describes the motion.

The equation to which the motion of the ball must conform is
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Newton's f = ma relation. We have already seen that the force on
the ball is equal to —kx. Furthermore, it will be recalled that the
acceleration 4 is the rate of change of the velocity with respect to
time and that the velocity itself is the rate of change of x with
respect to time. It follows that the acceleration is the second
derivative with respect to time of x and, writing 42x/ds* for 2 and
—kx for f, Newton's equation has the form

a%x
—kx =m —dt—2
or
k a*x
()= % @

One can now readily verify that description of the motion given
by x = A cos 2mvt satisfies this equation. Substitution for x and for
its second derivative gives

_(,_];) A cos (2mvt) = —4nw2A cos 2wz,

The A cos 2av¢ terms can be canceled and the equality is seen to
hold if

LI
m
or
1 k
= 52 \lm ®

In this way we see that x = A cos 2mv# does satisfy Newton's equa-
tion and that the vibrational frequency » is related to the properties,
k and m, of the system by Eq. (5). This important classical result
implies that for a given spring and mass there is one characteristic,
or natural, frequency of vibration and that this frequency can be
calculated from Eq. (5). In the following section, where quantum
effects are considered, we shall make use of this result; and to
emphasize that it is obtained for ordinary-sized systems, we shall
then write volassical instead of v. (The energy of the vibrating system
would be found to depend on: the amplitude A of the oscillating
mass. We are, however, not concerned with this aspect.)
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Figure 3-3 The vibrating system of two balls and a spring
showing the displacement coordinates x; and x; and the restor-
ing force f.

The other classical ball-and-spring problem that must be solved
in preparation for a study of the vibrations of molecular systems is
the spring-and-two-ball arrangement of Fig. 3-3. One can imagine
the balls as lying on a frictionless table or suspended from long cords.
The vibrational motion of this dumbbell arrangement can be de-
duced in a manner analogous to that used for the single-particle
system. One need only notice that the magnitude of the restoring
force on each ball depends on the extent of stretching or compression
of the spring. The extension of the spring is given by xz — x1, and
by comparison with the one-particle system already treated we can
write the restoring force as f = —k(xy — x1). This force acts, as
indicated in Fig. 3-3, to move particle 2 to the left when it moves
particle 1 to the right. When care is taken with these different
directions, one can substitute the force expression in Newton's
f = ma equation for each particle to give the equations

dle

Fkh(xe — %) = L ©)
and

a2
—k(x — x1) = mzd—;zn D
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We can again look for solution functions of the type found for a
single particle; and in so doing we try

x1 = Ay cos 2mvr ®
and

Xy = Ay cos 2avt, ©)

where the amplitude terms for particles 1 and 2 may be different but
the frequency » must be the same for both particles.

As before, we can relate » to the properties of the system by
substituting these functions back into the equations of motion. We
obtain, first,

kA, cos 2mvt — kAy cos 2avt = —4n%%md; cos 2mv: (10)
and
—kAs cos 2mvr + kA; cos 2mve = —4x%imaAe cos 2mve. (11)

The cos 2wz terms can be canceled, and these two equations can be
simplified and rearranged to give

(—41rzv2m1 + k)A1 = kAz (12)
and
(—k)Al = (41!'2112”22 - k)Ag (13)

Finally, the amplitudes can be eliminated by, for instance, dividing
one equation by the other to give, after rearrangement,

4% o + me
k B mms <14>
or
1 k

where the reduced mass p, equal to mms/(m1 + ms) as introduced in
Sec. 2-1, has again been used. With this symbol the expression for
the vibration of a two-particle system has the same form as that of
Eq. (5) deduced for 4 one-particle system.

Again we reach the conclusion that the system has a patural



68 Structures of Molecules

frequency of vibration and that this frequency is related to the force
constant and the masses of the system. The amount of energy stored
in the vibrations of such a ball-and-spring system would again be
found to depend on the amplitude of the vibrational motion.

With this introduction to the vibrational motion of systems that
behave classically, we can proceed to see what differences arise when
systems of molecular dimensions are encountered and quantum re-
strictions become important.

3-3 VIBRATIONAL ENERGIES OF
DIATOMIC MOLECULES

In more advanced studies of molecular behavior one might pro-
ceed directly to solve for the allowed vibrational energies of the
molecule by application of Schrédinger’s, rather than Newton's,
equation. As for the treatment of rotation, one can avoid this
procedure and can impose restrictions on the classical results of the
preceding section to obtain the allowed vibrational energies.

The way in which the quantum restrictions are introduced into
a vibrating system is suggested, in part, by Planck’s equation
Ae = hv, which relates the quantum energy to the frequency of the
waves of electromagnetic radiation. The allowed vibrational
energies of atomic- or molecular-sized systems are given by expres-
sions with a similar form. (The relation Ae = by came, in fact, from
Planck’s considerations of the vibrational energy of the atoms of a
hot object emitting radiation.) Thus the vibrational states that the
system is allowed to be in are separated from one another by an
energy Aevin, which is given by the expression

Aeyip, = chlaasical, (16)

where Volassicar i the frequency of the natural vibrations that would
occur if the system behaved as do ordinary-sized systems. The gen-
era] expression for the allowed vibrational energies themselves—in
contrast to the spacing of these levels given by Eq. (16) in molecular-
sized systems—is found to be

€yib = chlusical(v + %) v = 0, 1, 2.... (17)

As for the expression for the allowed rotational energies, an
integer appears, here denoted by v. It is called the vibrational

Spectra and Flexibility 69

quantum number. According to this equation, if the system is in a
state described by » = 0, it will have a vibrational energy of
3PVolassicar; if it is in the » = 1 state, it will have an energy $hvciassical;
if in the v = 2 state, it will have an energy §hvcioesical; and so forth.
One sees that, in spite of the presence of the § term in Eq. (17), the
allowed vibrational energies are spaced by an amount Aveiassical.

In addition to a restriction on the allowed energies, which we
should by now recognize as normal for molecular-dimensioned sys-
tems, a second peculiarity now enters. One sees that the lowest
vibrational energy that a particle governed by Eq. (17) can have
is $hvelussical. This is, of course, in contrast to ordinary-sized sys-
tems which are “‘allowed’” to have zero vibrational energy. There
are, it should be mentioned, some very interesting consequences of
this zero-paint energy that is retained by all vibrating molecular sys-
tems. (At low temperatures, for instance, all the molecules will go
into the allowed energy level with the lowest energy. Since there
is no allowed energy level at the zero of energy, the molecules can-
not get into a zero-energy state.) Thus even at the temperature of
absolute zero, vibrating systems will retain some vibrational energy.

For the particular case of a single atomic particle attached by a
spring-like chemical bond to a fixed reference point, the expression
for the allowed energies is given by Eq. (17) and the expression
Velassical = (1/2w)V'k/m, which relates veiassicat t0 the properties of
the particle and the spring. We can write

evib=%\£—i@+%} v=20,1,2,.... 18)

In a similar manner the allowed vibrational energies of the
chemically more interesting system of a diatomic molecule are given
by Eq. (17) and the relation veisesicat = (1/ 2m)V'E/u deduced for the
classical counterpart of the diatomic molecule. Thus for a diatomic
molecule we write

evib=%-\/§(0+%) v=0,1,2,.... as

This important result allows us to show diagrammatically the al-
lowed vibrational energies of a diatomic molecule, and this is done
schematically in Fig. 3-4. Furthermore, the spectral results to be
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Figure 3-4 The vibrational energies of a diatomic molecule
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given shortly can here be anticipated to allow the scale diagrams of
Fig. 3-5 to be drawn for CO and Cl..

These diagrams allow us to compare typical vibrational energy
level spacings with our reference energy, the room temperature value
of kT. One now finds, in contrast to the situation for rotational
energies, that the spacing is large compared to kT. It follows,
either from the qualitative discussion of Sec. 1-5 that claimed that
few molecules would have an energy much greater than the average
classical amount or from application of Boltzmann's expression, that
at ordinary temperatures most molecules will have the vibrational
energy corresponding to » = 0 or, as we say, will be in the » = 0
state or energy level.

We now have an expression and diagrams for the allowed vi-
brational energies, and we know that most molecules of our sample
will be in the lowest of these levels. We are in a position, therefore,
to understand what happens when infrared radiation, whose quanta
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Figure 3-5 The vibrational energies of CO, which are
spaced by the relatively large amount of 42 X 107 erg, and
those energies of Cl;, which are spaced by the relatively small
amount of 11 X 107 erg, compared with the value of kT
at 25°C.

have energies comparable to the energy spacing of vibrational levels,
falls on a sample of diatomic molecules.

3-4 VIBRATIONAL SPECTRA AND FORCE CONSTANTS OF
DIATOMIC MOLECULES

Most compounds are found to absorb radiation in the infrared
spectral region, and these absorptions can be attributed to changes in
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Figure 3-6 The absorption of infrared radiation by CO
molecules showing the absorption band at 2135 cm™,

the vibrational energy of the absorbing molecule. More specifically,
if carbon monoxide is dissolved in the inert solvent carbon tetra-
chloride, it is found that, as Fig. 3-6 shows, radiation at A =
0.000468 cm—or in terms of the frequency units of centimeters™!
usually used in the infrared region, # = 2140 cm™!-—is absorbed. At
this wavelength the solvent is transparent and the absorption of this
radiation must be attributed to the CO molecules in the sample. In
similar experiments with other diatomic molecules other absorption
bands in this infrared spectral region are observed. We must now
ask how the infrared absorption band of a diatomic molecule is re-
lated to the energy of the molecules of the sample.

The vibrational energy level diagram of Figs. 3-4 and 3-5 sug-
gests that each molecule might absorb a quantum of radiation and
move from the v = 0to v = 1 vibrational energy level. The process
is indicated by the arrow of Fig. 3-7. If the observed infrared ab-
sorption band is attributed to such a transition, the energy spacing
of the two vibrational levels can be deduced from the energy of the
quanta of the radiation absorbed. For the CO case, for example,
the quantum energy of radiation with 7 = 2140 cm—~?, or v =
6.40 X 10*® cycles/sec, is

Ae = by = 4.24 X 10713 erg. Qo)

Spectra and Flexibility 73

&

b ,
Ae—21r ;
0

Figure 3-<7 The transition from the v =0 to the v =1
vibrational energy level that leads to the absorption of infrared
radiation as shown for CO in Fig. 3-6.

Furthermore, the theory of the preceding section tells us that
this energy must be equal to the quantity (5/27)Vk/u, where k and
u are, respectively, the force constant and the reduced mass of the
molecule absorbing the radiation. For the CO example, for which
we deduced in Sec. 2-3 the value of s to be 1.14 X 10~% g, we can

write
4.24 X 10718 = i \/E
2r_Nup

_ 47%(1.14 X 1072)(4.24 X 10715)?
(6.62 X 102y

or

18.4 X 10° dyne/cm.

Thus, when the infrared absorption band corresponding to the vi-
brational transition from v = 0 to v = 1 can be identified, its fre-
quency, called the fundamental frequency, can be used to deduce a
value for the force constant of the bond of the molecule. In a similar
way the infrared absorption bands of other diatomic molecules can
be used to obtain bond force constants. Some results are listed in

Table 3-1.
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Table 3-1

The Positions of the Fundamental Vibrational Absorptions of Some
Diatomic Molecules and the Bond Force Constants Deduced from These
Values

F,om™ L, forthev =0tov =1

Molecule absorption band Force constant, dynes/cm
HF 2907 9.7 X 108
HCI 2886 4.8 X 105
HBr 2559 4.1 X 108
HI 2230 3.2 X 108
co 2143 18.4 X 105
NO 1876 15.3 X 108

It should be recognized that the deduction of the stiffness of a
chemical bond, which is the quantity measured by the force constant,
is a rather impressive feat. An appreciation of the results is, per-
haps, most easily reached by comparing the variation in the stiffness
of different molecules. One notices, for example, the great rigidity
of the HF molecule as compared to the HI molecule. Similarly, the
multiple-bonded CO molecule shows a greater rigidity than the
single-bond molecules.

3-5 AMPLITUDE OF MOLECULAR VIBRATIONS

One can also attempt to appreciate the degree of stiffness, or
flexibility, of molecules by investigating the amplitude of their
vibrations when, for example, they have the energy corresponding
to the » = O level. This can be done in a simple, but not entirely
correct, manner by resorting to some extent to the classical picture
of a vibrating system. With this view one can recognize that at the
limits of a vibration, as the particles are turning around to reverse
their direction, there is no kinetic energy and all the energy of the
system must be potential energy. For the molecular case and the
v = 0 level we can ask how much the bond will stretch if the energy
of this level is used up in increasing the potential energy. The
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potential-energy increase that accompanies bond stretching can be
calculated as stored work. If the bond is to be stretched to an ex-
tension x, a force must be exerted in opposition to that of the spring.
We can perform the necessary integration to give the potential
energy of the system as a function of the displacement from the
equilibrium position as

ka2

increase in PE = j; “kx dx = 5 |
]

whence
increase in PE = }kx?. @2))

This general result can be applied to find the maximum displacement,
i.e., the amplitude for the » = O state. The potential energy at
X = Xmax 18 equal to the total energy of the » = 0 state, and one

writes
1/ b ) \//? 1
NG = e @2

For HCI, for example, one has from Table 3-1, k = 4.8 X 105
dynes/cm and with p = 1.61 X 10~ g one can calculate

amplitude of vibration = 0.11 X 108 cm = 0.11 A. (23)

When this result is compared with the equilibrium bond length of
1.27 X 1078 cm, or 1.27 A, obtained by the methods of the preceding
chapter, one sees that the vibrational amplitude is about 10 per cent
of the bond length. This calculation shows that molecules are not
to be thought of as rigid structures even in the lowest allowed
vibrational state. They, in fact, compare with rather flexible spring
systems.

3-6 MECHANISM OF
INFRARED-RADIATION ABSORPTION

Now that we see that molecular properties can be deduced from
an identification of the infrared absorption band of a diatomic mole-
cule with the » = O to v = 1 vibrational transition, we can go back
and comment on the way in which the transfer of energy between the
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Editor’s Foreword

he teaching of general chemistry to beginning students becomes each

day a more challenging and rewarding task as subject matter becomes
more diverse and more complex and as the high school preparation of the
student improves. These challenges have evoked a number of responses; this
series of monographs for general chemistry is one such response. It is an
experiment in the teaching of chemistry which recognizes a number of the
problems that plague those who select textbooks and teach chemistry.
First, it recognizes that no single book can physically encompass all the
various aspects of chemistry that all instructors collectively deem important.
Second, it recognizes that no single author is capable of writing authorita-
tively on all the topics that are included in everybody’s list of what con-
stitutes general chemistry. Finally, it recognizes the instructor’s right to
choose those topics that he considers to be important without having to
apologize for having omitted large parts of an extensive textbook.

This volume, then, is one of approximately fifteen in the General Chemis-
try Monograph Series, each written by one or more highly qualified persons
very familiar with the current status of the subject by virtue of research in it
and also conversant with the problems associated with teaching the subject
matter to beginning students. Each volume deals broadly with one of the
subdivisions of general chemistry and constitutes a complete entity, far
more comprehensive in its coverage than is permitted by the limitation of
the standard one-volume text. Taken together, these volumes provide a
range of topics from which the individual instructor can easily select those
that will provide for his class an appropriate coverage of the material he
considers most important.
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