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The usual Morse functions are determined from the energy of dissociation, the equilibrium 
separation of the nuclei, and the fundamental vibration frequency. Two additional spectro­
scopic constants, w,x. and (le, are available for most of the common diatomic molecules and 
permit us to add a two-parameter correction term to the Morse curve. Both the potential 
V/D=(1-~-x)2+cx'(1+bx)e-2x and the extended Morse curve of the Coolidge, James and 
Vernon type, V /D = C2(I-e-x)2+ C.(1-e-x),+ C.(1-e-x), agree with accurate potentials in 
those cases where they are known. Here x=2{J(r-r.)/re• The constants for the first of these 
potentials are easy to evaluate and are given for 25 common diatomic molecules, With only a 
few exceptions, the improved potentials lie above the Morse curves and the corrections for 
moderately large internuclear separations may amount to ten percent of the energy of dissocia­
tion. Our treatment is based on the work of Dunham and the analysis of Coolidge, James and 
Vernon. 

I N this paper the five spectroscopic constants 
which are available for most of the common 

diatomic molecules are used to improve the 
usual three-parameter Morse curves. l The two 
parameters in our correction term are easy to 
determine. In those cases where accurate po­
tentials are known, our functions are satisfactory. 
With only a few exceptions, the improved 
potentials lie above the Morse curves and the 
corrections for moderately large internuclear 
separations may amount to ten percent of the 
energy of dissociation. The corrections are so 
large for some of the molecules that we are led 
to speculate on the existence of a hump or 
maximum in the potential energy. The higher 
vibrational energy levels are not known for most 
molecules, so that it is not possible to determine 
the potential uniquely for large internuclear 
separations from the existing experimental data. 
For these distances, it may be feasible to compute 
the potentials from the first- and second-order 
quantum-mechanical perturbation schemes. Our 
treatment is based on the work of Dunham2 and 
the analysis of Coolidge, James and Vernon.3 

* Presented at the Symposium on the Structure of 
Molecules and Aggregates of Molecules at the Fifth 
Annual Symposium of the Division of Physical and 
Inorganic Chemistry of the American Chemical Society, 
Columbia University, New York, December 30, 1940 to 
January 1, 1941. 

1 P. M, Morse, Phys. Rev. 34, 57 (1929). 
2 J. L. Dunham, Phys. Rev, 41, 713, 721 (1932). 
• A, S. Coolidge, H, M. James and E. L. Vernon, Phys. 

Rev. 54, 726 (1938). 

The vibrational and rotational energy levels 
of a diatomic molecule are usually expressed in 
the form of a double infinite series 

E v,K=LYij (V+t)iKi(K+1)i, (1) 
i, i 

where v is the vibrational and K is the rotational 
quantum number. The Yii are the usual spectro­
scropic constants and are better known in the 
nomenclature: 

Yoo=D, YlO=w., Y 20 = -WeX., 
Y 30 =WeYe, Y 40 = -WeZ., 

YOl=B., Y ll = -ex. (2) 
Y 02 = -D., Y 12 = -(3e 

Our problem is to determine the potential 
energy, V(r) , as a function of the internuclear 
separation r from a knowledge of these experi­
mental constants. To do this we must assume 
a mathematical form for V(r) which contains a 
number of parameters. These parameters are 
then adjusted to give the best fit to the observed 
spectroscopic constants. 
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The Morse curve has been used quite generally 
because of the simplicity of its form and the 
convenience of obtaining the energy levels in 
closed form. It may be written: 

V'I1=D[1-exp (-X)J2, (3) 
where 

x=2{3~; ~=(r-re)/re; 

{3 is a parameter for the Morse curve which has 
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the value 
(3=w./4(B.D)! 

and r. is the equilibrium separation. When the 
rotational quantum number is zero, the Schrod­
inger equation for this potential can be inte­
grated exactly to give 

W.X. = w.2/4D, w.y.=w.z.=··· =0. (4) 

Pekeris4 has calculated the rotational energy by 
a perturbation method. He found that to a good 
approximation: 

[( B.)! B.] a.=6BeXe -- ---, 
X.We X.We 

(5) 

Often spectroscopists assume a priori that 
D.=4B.3/W.2 and fit their curves accordingly. 
Actually this form for D. should only be true if 
the coupling between the rotation of the molecule 
and the spins and motions of the electrons is 
negligible. Deviations from this relation should 
be of interest but most of the published spectro­
scopic constants are computed in such a manner 
as not to show them. When the special relations 
of Eqs. (4) and (5) are not satisfied, it is obvious 
the Morse curve must be corrected. 

1. DUNHAM'S METHOD 

The potential energy of a diatomic molecule 
may be expressed in the form: 

v =aoe[1 +al~+a2e+a3~3+ . .. ]he, (6) 

where ~= (r-r.)/r., h is Planck's constant and e 
is the velocity of light. This expansion converges 
rapidly for small values of ~ and is therefore 
useful in calculating the energy of the lowest 
vibrational states. This potential should be used 
in the Schrodinger equation to determine the 
vibrational and rotational energy levels in terms 
of the constants an. But the difficulties inherent 
in the integration of the Schrodinger equation 
for general values of the an made it necessary 
for Dunham2 to use the WBK method. To this 
approximation he found that: 

4 C. L. Pekeris, Phys. Rev. 45, 98 (1934). 

(7) 

(8) 

5 2 XeWe 
a2=-a12-- --, (9) 

4 3 Be 

(10) 

45 141 
--a12a2+-a14

• 

8 64 
(11) 

Two other equations show that Wee is the 
classical fundamental frequency for the potential 
V = aohe~2 and that Be = hi (87r2p.re2C) where p. is 
the reduced mass of the molecule. One curious 
feature of these equations is that the coupling 
between the vibrational and rotational states 
manifests itself in al; while the first anharmonic 
correction in the vibrational energy levels, W.X., 
does not appear until a2. This has some inter­
esting consequences in the selection of an 
appropriate potential function, as we shall show 
later. Dunham2 subsequently improved upon the 
WBK approximation by adding corrections good 
to the third power of h. However, the numerical 
values of the correction terms are so small that 
we may neglect them in this treatment. For 
example, in the case of the ground state of 
hydrogen where the correction has its maximum 
effect, we find that We should differ from its 
classical value by only one part in 6000 and Be 
differs by one part in 12,000 from the above 
definition. 

To test further the accuracy of WBK approxi­
mation, one may expand the Morse function to 
obtain the an'S; then, substitute these an'S into 
Dunham's expressions for the spectroscopic 
constants. The vibrational constants w., weX .. 
weY .. and WeZe obtained in this manner agree 
exactly with the expressions of Eq. (4) obtained 
by actual integration of the Schrodinger equa­
tion. While a e calculated in this manner, agrees 
with the correct expression (5), the other 
rotational constants show some disagreement. 
This may be caused either by the approximations 
in the usual integration of the Schr6dinger 
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equation as discussed by Pekeris4 or it may be 
caused in part by the WBK approximation. In 
any case we conclude that the WBK method is 
satisfactory for use in the determination of 
accurate potential energy functions. Experi­
men tal errors in the constants are larger in most 
cases than any errors which could be introduced 
by the use of this method. 

II. THE FIVE-CONSTANT POTENTIAL 

FUNCTIONS 

Any acceptable form for a potential energy 
function should have a large value (if not 
infinite) as the nuclei come together; it should 
pass through a minimum at the equilibrium 
separation; and it should approach the energy 
of dissociation as the nuclei become far apart. 
At large separations, the slope of the function 
should be in agreement with the van der Waals 
forces but this is a refinement which has not 
received attention up to this time. There are an 
infinite number of functions which have a shape 
suitable for potential functions. Of these, the 
Morse function is the simplest and most generally 
useful. The three-parameter Manning and Rosen 5 

function, 
A exp (-cr)+B exp (-2cr) 

V=- (12) 
[l-exp (-cr)J2 

has all of the general attributes of a good 
potential function and even gives the vibrational 
energy levels in closed form. But this function 
has never been generally adopted because most 
people prefer to use functions with greater 
flexibility, i.e., more parameters. The Poschl­
Teller6 function has the same vibrational levels 
as the Morse function but a fourth parameter 
makes it possible to give a better adjustment to 
the rotational levels. It has the form: 

[ 

sinh4 a 
V=D ----­

sinh2 (a+{:l~) 

cosh4 a ] 

cosh2 (a+{:l~) 
(13) 

The potential curve of Hylleraas7 gives excellent 
agreement with the experimental energy levels 
but it has two disadvantages. It has six param­
eters, which is one more than we usually have 

• M. F. Manning and N. Rosen, Phys. Rev. 44, 953 
(1933). 

6 G. Poschl and E. Teller, Zeits. f. Physik 83,143 (1933). 
7 E. A. Hylleraas, Zeits. f. Physik 96,661 (1935). 

experimental data to fit, and It IS difficult to 
determine the constants. The Hylleraas potential 
has the form: 

[ 
[1+aJ[I+bJ[exp(2{:l'~)+cJ J2 

V=D 1- [exp(2{:l'~)+aJ[exp(2{:l'~)+bJ[1+cJ ' 

where a, b, c, {:l', D and of course, the re in ~ 
are the adjustable constants. The extended 
Morse curve of Coolidge, James and Vernon3 

appears more useful. It has the form: 

v 
D 

L Cn [1-e-2W <Jn. 
11.=2,3, ... 

(14) 

In actual computations, Coolidge, James and 
Vernon have taken 7 terms in this series. This 
form of potential is flexible but it has one 
disadvantage, (:l' is difficult to determine and in 
fact loses its significance as we take more terms 
in the extended Morse curve. The three-term 
extended Morse function which uses five pa­
rameters is quite comparable in accuracy with 
the other five-parameter functions which we 
consider. The greater difficulty in evaluating 
these parameters makes it slightly less desirable. 

For most diatomic molecules the four spectro­
scopic constants We, WeXe, Be, and lXe are known 
and listed in convenient tables. In addition the 
heats of dissociation are known from thermo­
chemical or spectroscopic data. Therefore, we 
sought a potential function with five parameters 
which could be determined easily from the 
spectroscopic constants. Three of these constants 
could be used to determine the usual Morse 
function leaving two parameters to describe the 
corrections to the Morse curve. We find the 
following function satisfactory: 

Here 

x=2i3~= --We [r-reJ 
2(BeD)'! re 

as in Eq. (3). The constants band c are de­
termined by the relation: 

(16) 

[7 DaoJ/ b=2+ ---" c, 
12 ao 

(17) 
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TABLE I. 

ENERGY 
w, xew~ B. CIt. r. OF DISSOC. D aD 

(CM-I) (eM-I) (eM-I) (eM-I) (A) (KCAL.) 
---------

Hydrogen 
H, 4405.3 125.325 60.872 3.0671 0.7414 103.23 
HD 3817.1 94.958 45.668 1.9931 0.7413 104.06 
D, 3118.8 64.15 30.429 1.0492 0.7417 105.03 
H,(3l:.+) 2665.9252 72.79390 34.22051 1.694884 0.9888 66.09 

Metal hydrides 
ZnH 

1
1607

.
6 1 55.135 1 6.679410.2500 1.5947 19.6 

CdH 1430.7 46.3 5.437 0.218 1.762 15.63 
HgH 1432.7 108.8 5.58 0.373 1.741 8.58 

Hydrogen halides 
HF 14141.305190.866 120.967 ~0.879 

I 
0.9166 147.9 

HCl 2988.95 51.65 10.5909 0.3019 1.2747 102.16 
HBr 2649.67 45.21 8.471 0.226 1.414 86.73 
HI 2309.53 39.73 6.551 0.183 1.604 70.38 

Halogens 
Ch 

1

564

.

9 

I 
4.0 I 0.243810.0017 I 1.989 57.2 

ICl 384.18 1.465 0.11414 0.000502 2.321 49.64 
Br. 323.2 1.07 0.08091 0.00027 2.284 45.44 
10 214.36 0.593 0.03736 0.00012 2.667 35.56 

Oxides 
O. 11580.36 112.073 11.445610'0158 11.20761 

117.2 
CO 2168.2 13.04 1.9310 0.01744 1.1284 210.8 
NO 1906.52 14.504 1.709 0.0183 1.150 122.0 
SO 1123.73 6.116 0.70894 0.00562 1.4935 92.27 
OH 3727.95 78.15 18.862 0.693 0.9710 99.0 

Alkali.s 
Li, 1351.3461 2.557 0.6729310.0071912.6723 26.3 
Na. 159.23 0.726 0.15471 0.00079 3.079 18.0 
K, 92.64 0.354 0.05622 0.000219 3.923 11.85 

M iseellaneous 
N. r359.61 1 14.445 1 2.007 10.018 

1 

1.095 170.2 
C. 1641.55 11.67 1.6334 0.0149 \.3121 83 

where ao, al and a2 are the Dunham coefficients 
of Eq. (6). Table I gives the values of band c 
for 25 common diatomic molecules. 

In making these calculations we were limited 
to those molecules for which the energy of 
dissociation is known reasonably accurately. 
The spectroscopic constants are those given by 
Herzberg.s The energies of dissociation are taken 
from Bichowsky and Rossini 9 after subtracting 
the rotational, vibrational, and translational 
heat contents at 18°C to get the energy of the 
molecules at absolute zero. The energies of 
dissociation of C2 and of CO are still uncertain 
because of the heat of sublimation of graphite. 
We use the values recommended by Herzberg. 

In all of those cases considered except CI 2 the 
potential becomes large and positive when the 
nuclei come together. This spurious minimum 
for CI 2 is completely unimportant since it does 

8 G. Herzberg, Molecular Spectra and Molecular Struc­
ture, I (Prentice-Hall, 1939). 

9 F. R. Bichowsky and F. D. Rossini, Thermochemistry of 
Chemical Substances (Reinhold Publishing Co., 1936). 

(eM-I) (CM-I) -al a, 2{j e b ---------------
38.292 79.703 1.60774 1.85848 1.4426 -0.1145 -0.704 
38.292 79.762 -1.60798 1.84578 1.4433 -0.1141 -0.654 
38,292 79.915 1.58901 1.75071 1.4446 -0.1000 -0.556 
24,460 51,913 1.64090 1.95250 1.45672 -0.059533 -0.654 3 

1 

7660

1 

96,
729

1 2.50138/ 2.3181613,55361 0.2961 0.6501 
6184 94,119 2.75847 3.83430 3.901 0.2929 0.869 
3695 91,964 3.86052 5.63068 4.844 0.3099 0.671 

153,8261204,4931 2.3800714.1917711.949 1-0•2212 
1-

0
.
351 

37,244 210,884 2.34080 3.59797 2.379 0.0161 5.236 
31,674 207,200 2.39085 3.58717 2.558 0.0653 1.466 
24,628 203,554 2.64138 4.67794 2.8098 0.0599 2.153 

1
20

,298/327,227/ 3.69278/6.10788/4.015 

/ 

0.0803 /-0.545 
17.563 323,274 3.46724 6.47045 4.291 0.1920 , 0.793 
16,063 322,760 3.22156 4.15668 4.482 0.2812 0.661 
12,550 307,483 4,07157 10.14034 4.950 0.1775 1.046 

141'8021431'921 1 2.991431 5.6181413.2145 1 0.0694 1.429 
74,840 608,634 2.69017 4.54428 2.8518 0.0567 1.568 
43,644 531,717 2.99094 5.52423 3.490 0.1430 1.092 
32.842 445,302 3.09425 6.21665 3,6823 0.1597 1.219 
36.548 184,201 2.21025 3.34436 2.2450 0.0155 7.181 

I 9379

1 

45,861 1 1.929761 2.1217912.211 0.1272 0.825 
6379 40.971 ' 1.87592 1.27041 2.534 0.2597 0.516 
4193 38,163 2.06982 1.15739 3.017 0.3139 0.547 

160,7381693,5421 2.757381 4.7057513.379 

1 

0.1840 1.070 
29,865 412,436 2.52793 3.22498 3.718 0.2725 1.017 

not appear for any physically attainable nuclear 
separation. For example, this Rotential gives an 
energy equal to the energy of dissociation when 
the nuclei are only O.06A closer than the corre­
sponding separation given by the Morse curve. 
However, all argument could be avoided in this 
case by using the potential: 

V =D[(l-exp (_X»2 
+cx3 (1 +x) exp (- (3 -b)x)]. (18) 

This function does not have the spurious mtnl­
mum and stilI it has all of the other desirable 
properties of Eq. (15). For some molecules the 
potential of Eq. (18) seems to be a little more 
accurate. But since this function is not generally 
applicable and in the other cases the difference 
between (15) and (18) is always small, we shall 
not use (18) for any general considerations. 

Our confidence in the potential of Eq. (15) is 
bolstered by comparing it with the few accurate 
potentials for diatomic molecules which arc 
available-the IsfJ'2sfJ'a~g+, state of H 2, the 
ground state of CdH, and the ground state of N 2. 
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1. The ls0'2s0'3l:+g state of H2 

Coolidge, James and Vernon2 made use of the 
extensive experimental data available for this 
state to examine fourteen different types of 
potential functions and to compare them with 
an excellent nine-constant Morse function which 
fits the energy levels almost perfectly. Our 
five-parameter function (15) is better than any 
of the functions which they considered except a 
six-parameter Hylleraas function and a specially 
fitted Posch I-Teller function. At r= 1.11A (x 
= 0.1811) our function (15) is only 0.017 kcal. 
higher than their nine-parameter function and 
at r= 1.43A (x=0.6491) it is only 0.15 kcal. 
higher. At the same separation the usual Morse 
function is 0.043 and 0.34 kcal. higher, respec­
tively. A five-parameter extended Morse func-

• 10' h bon, 1.e., tree terms of Eq. (14), gives an 
energy which agrees almost perfectly with the 
nine-parameter extended Morse function at 
r=1.11A, but is 0.11 kcal. lower than the 
nine-parameter function at r= 1.43A. The three­
term extended Morse function is thus about as 
far below the correct potential as (15) is above it. 

2. The CdH molecule 

All of the vibrational levels are known for 
CdH and Rydbergll constructed an accurate 
potential function to fit the experimental data. 
Rydbergll used a graphical method based on the 
WBK approximation. Subsequently Hylleraas12 

fitted a six-parameter potential curve by Dun­
ham's method and obtained excellent agreement 
with Rydberg's potential. In Fig. 1 we have 
plotted the Rydberg-Hylleraas potential, the 
three-term extended Morse curve of the Coolidge, 
James and Vernon type (C.J.V.) and our 
potential (15). The constants for the extended 
Morse curve are 

213'=5.1067, C2 =0.5836, C3 =0.2684, C4 =0.1480. 

The maximum deviation of our potential from 
the Rydberg curve is only 0.35 kcal. whereas 
the Morse function deviates by as much as 
1.8 kcal. The extended Morse curve gives about 

10 We have taken 213'= 1.4858; C2 =0.9614· Ca= -01004' 
C.=0.1390 in Eq. (14). ,. , 

11 R. Rydberg, Zeits. f. Physik 73,376 (1932)' 80 514 
(1933). ' , 

12 E. A. Hylleraas, Zeits. f. Physik 96, 661 (1935). 

as good agreement as our potential, the principal 
difference being that our correction is slightly 
too large while theirs is slightly too small (falls 
0.30 kcal. below the Rydberg-Hylleraas curve). 
Actually our potential (18) agrees with the 
Rydberg-Hylleraas potential to within the width 
of the ink lines. Our only reason for not stressing 
(18) is that for some molecules it gives extremely 
large corrections which do not seem physically 
reasonable. All of these five-parameter functions 
therefore agree and are satisfactory for CdH. 

3. The normal N 2' molecule 

Hylleraas10 has fitted the first 22 vibrational 
levels of N 2 with his six-parameter function. In 
Fig. 2 we have plotted his potential. The 
maximum deviation of the Morse curve from 
the Hylleraas curve is 14 kcal. For this case 
potentials (15) and (18) are almost identical. 
Both agree almost perfectly with the Hylleraas 
function although again the deviation from the 
Morse curve is large. The five-parameter 
extended Morse curve (eJ .V.) again falls below 
the Hylleraas curve, being 4.39 kcal. too low at 
r=L743A. (x=2). The constants for this curve 
are 

213' =4.1939, C2=0.6492, C3 =0.2223, C4 =0.1285. 

It appears that the extended Morse curve (14) 
and our potential (15) are of about equal 
accuracy, but the constants are more readily 
determined for Eq. (15). Thus we gain confidence 
that our corrections are real rather than illusory. 

In Table II we have used Eq. (15) to calculate 
the magnitude of the corrections to the Morse 

-'-- --
,,-

" ;' 

CdH 
,./ ,// H.-H. 

/~R'rDBERG HYLlERAAS 

, / c..JV. 

It MORSE. 
10 , 

I 
I 

I 
I , 

I 
I 

I 
I 

I , 
I 

'.5 2.0 2.5 R - 3.0 3.5 A 

FIG. 1. 
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curves for three different corresponding inter­
nuclear separations x=l, x=2, x=3 where the 
Morse function gives 40 percent, 75 percent, and 
90 percent of the energy of dissociation, respec­
tively. Figure 3 indicates where these points 
occur. Let us consider the molecules individually. 

4. The hydrogen molecule 

The potential curves for H 2 , HD, and D2 
should be nearly the same. The differences, as 

~rI-------'--------r-~~~_~_~-~----' 
A 
L 

150 

100 _ 

v 

50 

HYLLERAAS 

,i~ ./ I H.-H, 
'I 

// '" ~ :.~~:ERG 
:/ ~ 
'/ MORS E 
I 

I 

25 " 

FIG. 2. 

shown in Tables I and II, are caused primarily 
by the experimental errors which occur normally 
with the two-meter vacuum spectrograph used 
to photograph the spectra,13 According to 
Professor Dieke,14 more accurate experimental 
data should be forthcoming. These discrepancies 
show the order of accuracy of ao, aI, and a2 
which are probably present for other molecules 
in our table. 

The corrections to the Morse curve for 
hydrogen are slight. The coupling between the 
rotation and vibration, a., indicates that the 
true potential should rise less steeply than the 
Morse curve; but the first anharmonic correction 
to the vibrational levels, WeXe, indicates that the 
Morse curve does not rise steeply enough. 
Fortunately these facts are not incompatible 
since a controls al and WeXe controls a2. The 
correction term in Eq. (15) starts out negative 

13 C. R. Jeppeson, Phys. Rev. 49, 797 (1936). 
14 G. H. Dieke, Phys. Rev. 47, 661 (1935). 

at Y. and becomes positive for large separation 
of the nuclei. Qualitatively this must be the 
proper behavior but we cannot be sure that 
Eq. (15) handles this complicated effect quanti­
tatively. Actually this function is an improve­
ment on the Morse curve for small values of the 
internuclear separations and also for the large 
values but in the intermediate range the cor­
rection term may not change sign at the proper 
point. More work on this potential should be 
carried out as soon as the more accurate experi­
mental data is available. 

5. The metal hydrides 

The potential curves for the metal hydrides 
rise much more steeply than the Morse function 
as is illustrated in Fig. 1 for CdH. Professor 
M uIIikenl5 has warned us to look out for the 
possibility of a maximum and a long distance 
minimum in the potential curves for ZnH, CdH, 
and HgH due to the tendential approach of two 
interacting states. While Eq. (15) does not lead 
to these maxima, it is easy to make a slight 
change in the potential which does give the 

TABLE II. 

MAXIMUM 
V/D V/D V/D CORRECTION 

MOLECULE x=1 x=2 x=3 KCAL. 
-----

Hydrogen 
HI -0.0046 0.0068 0.0085 <1 
HD - .0053 .0051 .0073 <1 
D, - .0060 .0016 .0045 <1 

M eloJ hydrides 
ZnH .0661 .0998 .0585 2.2 
CdH .0741 .1175 .0707 2.1 
HgH .0701 .1063 .0625 1.1 

Hydrogen hoJides 
HF - .0194 -.0096 .0008 -3.0 
HCI .0136 .0271 .0180 2.9 
HBr .0218 .0376 .0236 3.4 
HI .0256 .0466 .0299 3.4 

HoJogens 
Cb .0049 -.0011 -.0034 <1 
ICI .0466 .0727 .0434 3.6 
Bf2 .0632 .0957 .0561 4.4 
I, .0491 .0804 .0491 2.9 

Oxides 
OH .0170 .0346 .0231 3.6 
CO .0197 .0344 .0216 7.3 
0, .0228 .0392 .0245 4.7 
NO .0405 .0667 .0409 8.3 
SO .0479 .0804 .0497 7.6 

AlkoJies 
Li, .0314 .0494 .0296 1.3 
Na, .0533 .0773 .0443 1.4 
K, .0657 .0963 .0555 1.2 

Miscellaneous 
C. .0744 .1211 .0739 10.3 
N. .0515 .0846 .0518 14.7 

16 Robert S. Mulliken, J. Phys. Chern. 41, 5 (1937). 
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maximum and is still consistent with all of the 
experimental information. 

7. The hydrogen halides 

The corrections to the Morse curve for the 
hydrogen halides increase as we go down the 
series HF, HCl, HBr, and HI. However, only 
the lowest few vibrational levels are known for 
these molecules. The corrections to the Morse 
curve for HF are small and may not be signifi­
cant. This may be another example showing 
that the Morse curve works best for those 
molecules which do not have inner shells. 

The potential for HCI is shown in Fig. 4. Here 
the correction is fairly small and agrees with 
that which we would expect on the basis of the 
three-term extended Morse curve. 

2,8' =2.6089, C2 =0.8319, Ca=0.0855, C4 =0.0826. 

The potential curves for HBr and HI behave 
perfectly normally. The maximum corrections 
are 3.5 and 4.5 kcal., respectively. The large 
anharmonicity of the HI molecule accounts in 
part for the difficulty of computing the equi­
librium constants for H 2+ 12P2HI from the 
spectroscopic data.1 6• 17 

Since only the three lowest vibrational levels 
of HI are known, there may be considerable 

16 G. M. Murphy, ]. Chern. Phys. 4, 344 (1936). 
17 Our energy of dissociation of HI was obtained from 

some unpublished data of Crist which he gave us in a 
private communication. 

experimen tal error in We, WeXe and hence in our 
correction term. 

8. The halogens 

The potential curves for ICl, Br2, and 12 rise 
more steeply than the Morse curve, have 
maximum corrections of three or four kcal., but 
otherwise behave quite normally, as seen in 
Fig. 5. The potential hump for ICI which is 
indicated from the absorption spectra and 
predissociation work of Brown does not appear 
from our potential.15 

The potential for Cl2 deviates very little from 
the Morse function. 

9. The alkalies 

A great deal of experimental information is 
available for the alkalies and it would be desirable 
to construct very accurate potentials for them. 
According to Eq. (15), the true potentials rise 
more steeply than the Morse curves, have 
maximum corrections to the Morse curves of 
about a kilocalorie, and seem to behave perfectly 
normally. Our potential for Na2 gives a fifth 
vibrational energy level which differs from the 
experimental value by only 0.015 kcal. 

10. The oxides and OH 

Here the corrections to the Morse curve are 
quite large but the potentials appear quiet 
normal. 
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11. C2 and N2 

The C 2 molecule appears normal with a rather 
large correction to the Morse curve. The molecule 
N2 has been discussed previously. The corrections 
to the Morse curve are very large at intermediate 
distances, but Eq. (15) reproduces the accurate 
Hylleraas potential almost exactly. 

IV. SIGNIFICANCE OF THE SPECTROSCOPIC 

CONSTANTS 

In this treatment we adjusted the potential 
function to fit the spectroscopic constants. 
These constants are readily available and our 
method is convenient. But as Coolidge, James 
and Vernon have pointed out,3 greater accuracy 
can be obtained by making a least square fit of 
the individual energy levels. The reason for this 
is that the spectroscopic constants contain both 
random experimental errors and systematic 
errors resulting from the particular polynomial 
formula which the energy levels are supposed to 
obey. Often (as in the case of N 2) it is found 
that one polynomial is adequate for expressing 
the lower vibrational levels, whereas an alto­
gether different polynomial is required for the 
higher states. This phenomena may be due to 
the fact that a true expression for the energy 
levels might contain an exponential, as for 
example: 

Ev=A[1-exp (-Hv+t))] 
X [1 +0.1 ("lJ+t) - 0.00S(V+t)2]. 

For small values of (v+t) the energy levels 
would be given by the power series: 

Ev =O.S(v+t) -0.07S(V+t)2+ ... 

but for large quantum numbers, the power 
senes 1S: 

Ev= 1 +O.l(v+t) -0.00S(V+t)2+ . . '. 

The reason for this difference is that exponentials 
of large negative numbers are asymptotically 
zero. Thus it is never safe to trust the accuracy 
of power series developments. 

This same criticism can be made of the 
Dunham method for obtaining the potential 
functions. It is obvious that the power series 
expanSlOn of the potential does not converge 
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rapidly for large internuclear distances and 
therefore Dunham's method is not adapted to 
the calculations of the higher vibrational levels. 
For this purpose we would suggest either one of 
two methods. First, one could substitute the 
assumed potential directly into the Schrodinger 
equation and carry out the integrations numeri­
cally to find the corresponding energy levels. 
Or, one could develop a perturbation method 
using the Morse potential and the Morse wave 
functions for the unperturbed state. The inte­
grals of Pekeris4 would make this method easy 
to carry out. At the present time these refine­
ments are not warranted by the accuracy of the 
spectroscopic data for most molecules. 

Thus we have made a rough survey of the 
corrections which must be made to the Morse 
curve for all of the common diatomic molecules. 
In some cases the corrections are large. As 
Mullikenls has pointed out, there does not seem 
to be any universal form for a potential energy 
function, each molecule having its own peculiar 
properties. Significant advances in the determi­
nation of molecular potential functions will come 
through closer cooperation of the quantum 
mechanician and the spectroscopist. 

One of us (J .O.H.) would like to express his 
gratitude to the Wisconsin Alumni Research 
Foundation for financial aid given to him at the 
beginning of this work. 
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Force Constants in Some Organic Molecules* 
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Consistent normal coordinate treatments, involving force-constants which are related to 
bond structures and which may be transferred from one molecule to another, are applied to 
hydrogen cyanide, methyl cyanide, and the methyl halides. The connection with previous 
treatments of acetylene, ethane, and methyl and dimethyl acetylene is discussed. A method of 
setting up such a consistent treatment is described, and a table of force constants for a number 
of bond structures is given. The structural significance of these force constants is briefly 
discussed. 

I N analyzing the vibrational spectra of poly­
atomic molecules, it has become increasingly 

common to carry out normal coordinate treat­
ments. One important reason for such a treat­
ment is the aid thus given in fixing the funda­
mental frequencies of complicated molecules. 
When a few fundamentals are unambiguously 
assigned, as through symmetry selection rules 
or from polarization data, it often becomes 
possible to locate less certain frequencies, at 
least approximately, by means of a normal co-

* Presented at the Symposium on the Structure of 
Molecules and Aggregates of Molecules at the Fifth 
Annual Symposium of the Division of Physical and 
Inorganic Chemistry of the American Chemical Society, 
Columbia University, New York, December 30, 1940 to 
January 1, 1941. 

** Present address: School of Chemistry, University of 
Minnesota, Minneapolis, Minnesota. 

ordinate calculation in which the force constants 
are evaluated from the unambiguous assign­
ments. In view of the difficulty of vibrational 
analyses· for complex molecules, the importance 
of such aids can scarcely be overemphasized. 

Of more fundamental importance are the 
magnitudes of the force constants which are 
evaluated. If a valence-force potential is used, 
these force constants are an additional property 
of the bonds involved in the molecule, and they 
may be used to study the character of different 
bonds and their variation in different molecules. 
The connection which has been found between 
the force constant of a diatomic molecule and its 
bond lengthl shows us the type of correlation we 
may expect. 

1 R. M. Badger, J. Chern. Phys. 2, 128 (1934); C. H. 
Douglas-Clark, Phil. Mag. 18,459 (1934); and later papers. 
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