CHAPTER 5

The Harmonic Oscillator and the Rigid
Rotator: Two Spectroscopic Models

The vibrational motion of a diatomic molecule can be approximated as a harmonic
oscillator. In this chapter, we will first study a classical harmonic oscillator and then
present and discuss the energies and the corresponding wave functions of a quantum-
mechanical harmonic oscillator. We will use the quantum-mechanical energies to de-
scribe the infrared spectrum of a diatomic molecule and learn how to determine molec-
ular force constants from vibrational spectra. Then we will model the rotational motion
of a diatomic molecule by a rigid rotator. We will discuss the quantum-mechanical en-
ergies of arigid rotator and show their relation to the rotational spectrum of a diatomic
molecule. We will use the rotational spectrum of a diatomic molecule to determine the
bond length of the molecule.

5-1. A Harmonic Oscillator Obeys Hooke’s Law

Consider a mass m connected to a wall by a spring as shown in Figure 5.1. Suppose
further that no gravitational force is acting on m so that the only force is due to
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;‘} A mass connected to a wall by a spring. If the force acting
“x‘;w 3 upon the mass is directly proportional to the displacement of
\\\-} — ] the spring from its undistorted length, then the force law is
R called Hooke’s law.
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the spring. If we let /, be the equilibrium, or undistorted, length of the spring, then
the restoring force must be some function of the displacement of the spring from its
equilibrium length. Let this displacement be denoted by x =1 — [, where [ is the length
of the spring. The simplest assumption we can make about the force on m as a function
of the displacement is that the force is directly proportional to the displacement and to
write

f=—-k(—-1)=—kx (5.1)

The negative sign indicates that the force points to the right in Figure 5.1 if the spring is
compressed (I < /;) and points to the left if the spring is stretched (I > /). Equation 5.1
is called Hooke’s law and the (positive) proportionality constant k is called the force
constant of the spring. A small value of k implies a weak or loose spring, and a large
value of k implies a stiff spring.

Newton’s equation with a Hooke’s law force is

d*l
md—t—2 =—k( -1 5.2)

If we let x = I — I, then d’1/dr* = d’x/d1’ (; is a constant) and

X =0 (5.3)
m-— X = .
dr?

According to Section 2-3, the general solution to this equation is (Problem 5-1)

x(t) = ¢, sinwt + ¢, coswt 54

where

E\2
w= <’—n—> (5.5)
EXAMPLE 5-1

Show that Equation 5.4 can be written in the form
x(t) = Asin(wt + ¢) (5.6)
SOLUTION: The easiest way to prove this is to write
sin{wt + ¢) = sinwf cos ¢ + cos wt sing
and substitute this into Equation 5.6 to obtain

x(t) = Acos ¢ sinwt + A sin¢ cos wt

= ¢, sinwt + ¢, cos wt

F}ﬁ.\xw.-
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5-1. A Harmonic Oscillator Obeys Hooke's Law

where

c, = Acos¢ and ¢, =Asing

Equation 5.6 shows that the displacement oscillates sinusoidally, or harmonically, with

a natural frequency @ = (k/m)'/?. In Equation 5.6, A is the amplitude of the vibration

and ¢ is the phase angle.

at its initial displacement is A and then

Suppose we initially stretch the spring so th
d so from Equation 5.4, we have

let go. The initial velocity in this case is zero an

x(0)=c,=A

dx
(_d—t—>l=0 =0= Clw

= A in Equation 5.4, and so

and

These two equations imply that ¢, = Oandc,
x(t) = Acoswt 6.7

The displacement versus time is plotted in Figure 5.2, which shows that the mass
oscillates back and forth between A and — A with a frequency of  radians per second,
orv = w/2m cycles per second. The quantity A is called the amplitude of the vibration.

Let’s look at the total energy of a harmonic oscillator. The force is given by
Equation 5.1. Recall from physics thata force can be expressed as the negative derivative

of a potential energy or that

dv
fx)=——= (5.8)
dx
so the potential energy is
Vix) =— / f (x)dx + constant 5.9
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FIGURE 5.2
An illustration of the displacement of a harmonic oscillator versus time.
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Using Equation 5.1 for f(x), we see that

k
Vix) = Ex' + constant

(5.10)

The constant term here is an arbitrary constant that can be used to fix the zero of
energy. If we choose the potential energy of the system to be zero when the spring is

undistorted (x = 0), then we have

Vix) g
=-x
V=3

for the potential energy associated with a simple harmonic oscillator.

The kinetic energy is
1 /di\' 1 [(dx\*
K=-m{—) =-m|—

2 \dt 2 dt
Using Equation 5.7 for x(t), we see that

K = imw?A*sin’ wt
and

V = 1kA’ cos’ wt

Both K and V are plotted in Figure 5.3. The total energy is

E=K+V=1mwA%sin’ ot + jkA® cos® wt

5.11)

(5.12)

5.13)

(5.14)

E=K(x)+ V(x)
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FIGURE 5.3

The kinetic energy [curve labelled K (x)] and the potential energy {curve labelled V(x)] of
a harmonic oscillator during one oscillation. The spring is fully compressed at —A and fully
stretched at +A. The equilibrium length is x = 0. The total energy is the horizontal curve

labelled E, which is the sum of K(x) and V(x).




5-2. Reduced Mass of the Molecule

If we recall that w = (k/m)'/?, we see that the coefficient of the first term is kA?/2, s0

that the total energy becomes

2

kA® ., ,
= T(sm wt + cos” wt)

kA*
(5.15)

2
ant and, in particular, is equal to the potential

energy at its largest displacement, where the kinetic energy is zero. Figure 5.3 shows
how the total energy is distributed between the kinetic energy and the potential energy.
Each oscillates in time between z€ro and its maximum value but in such a way that
their sum is always a constant. We say that the total energy is conserved and that the

system is a conservative system.

Thus, we see that the total energy is aconst

5-2. The Equation for a Harmonic-Oscillator Model of a Diatomic
Molecule Contains the Reduced Mass of the Molecule

r is a good model for a vibrating diatomic molecule. A
oes not look like the system pictured in Figure 5.1 but
Figure 5.4. In this case we have two

The simple harmonic oscillato
diatomic molecule, however, d
more like two masses connected by a spring as in

equations of motion, one for each mass:

d’x
mlTi?l— =k(x,—x, — 1y (5.16)
and
d*x
m, o7 = —k(x,— % — N 5.17)
m, m,
. |
! |
! 1
1 1
1 I
1 I — X
x, X,
FIGURE 5.4

Two masses connected by a spring,
a diatomic molecule.

which is a model used to describe the vibrational motion of
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where [ is the undistorted length of the spring. Note that if x, — x, > [, the spring is
stretched and the force on mass m, is toward the right and that on mass m, is toward the
left. This is why the force term in Equation 5.16 is positive and that in Equation 5.17
is negative. Note also that the force on m, is equal and opposite to the force on m,, as
it should be according to Newton’s third law, action and reaction.

If we add Equations 5.16 and 5.17, we find that

2

d
W(mlxl +m,x,) =0 (5.18)

This form suggests that we introduce a center-of-mass coordinate

mx, + m,x,

X = 5.19
i (5.19)
where M = m + m,, so that we can write Equation 5.18 in the form
d*x
M—:- =0 (5.20)
dt-

There is no force term here, so Equation 5.20 shows that the center of mass moves
uniformly in time with a constant momentum.

The motion of the two-mass or two-body system in Figure 5.4 must depend upon
only the relative separation of the two masses, or upon the relative coordinate

x=x,—x —1l (5.21)

If we divide Equation 5.17 by m, and then subtract Equation 5.16 divided by m, we
find that

d’x, d’x, k ( . ( .
2 e 1y ey —
dr? dr? m, LT H T m 1
or
2 1 1
_')(xv - v|) =—k|—+— (X,, X, lo)
de= - m, m,
If we let

1 | m, +m, 1

l’ﬂl 1712 Il’lln’l2 2

and introduce x = x, — x, — [, from Equation 5.21, then we have

= +kx =0 (5.22)

The quantity u that we have defined is called the reduced mass.
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5-3. Expansion of an Internuclear Potential Around its Minimum

Equation 5.22 is an important result with a nice physical interpretation. If we
compare Equation 5.22 with Equation 5.3, we see that Equation 5.22 is the same
except for the substitution of the reduced mass p. Thus, the two-body system in
Figure 5.4 can be treated as easily as the one-body problem in Figure 5.1 by using
the reduced mass of the two-body system. In particular, the motion of the system is
governed by Equation 5.6 but with & = (k/ )2, Generally, if the potential energy
depends upon only the relative distance between two bodies, then we can introduce
relative coordinates such as x, — x, and reduce a two-body problem to a one-body
problem. This important and useful theorem of classical mechanics is discussed in
Problems 5-5 and 5-6.

5_3. The Harmonic-Oscillator Approximation Results from the
Expansion of an Internuclear Potential Around its Minimum

Before we discuss the quantum-mechanical treatment of a harmonic oscillator, we
should discuss how good an approximation it is for a vibrating diatomic molecule.
The internuclear potential for a diatomic molecule is illustrated by the solid line in
Figure 5.5. Notice that the curve rises steeply to the left of the minimum, indicating
the difficulty of pushing the two nuclei closer together. The curve to the right side of
the equilibrium position rises intially but eventually levels off. The potential energy at
large separations is essentially the bond energy. The dashed line shows the potential
%k(l - lo)2 associated with Hooke’s law. Although the harmonic-oscillator potential
may appear to be a terrible approximation to the experimental curve, note that it
is, indeed, a good approximation in the region of the minimum. This region is the

Energy

FIGURE 5.5

A comparison of the harmonic oscillator potential (k(/ — 10)2 /2; dashed line) with the complete
internuclear potential (solid line) of a diatomic molecule. The harmonic oscillator potential isa
satisfactory approximation at small displacements from the minimum.
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physically important region for many molecules at room temperature. Although the
harmonic oscillator unrealistically allows the displacement to vary from O to +00, these
large displacements produce potential energies that are so large that they do not often
occur in practice. The harmonic oscillator will be a good approximation for vibrations
with small amplitudes.

We can put the previous discussion into mathematical terms by considering the
Taylor expansion (see MathChapter I) of the potential energy V (/) about the equilibrium
bond length / = /. The first few terms in this expansion are

v (Y aena L (EYY gy
o=V <7>, w3 (T ) o

1 (d*V
—=F] -1+ 5.23
3 (dl3 ),=,0( o 029

The first term in Equation 5.23 is a constant and depends upon where we choose
the zero of energy. It is convenient to choose the zero of energy such that V (/)
equals zero and relate V (/) to this convention. The second term on the right side
of Equation 5.23 involves the quantity (d V/dl),z,o. Because the point [ = [ is the
minimum of the potential energy curve, dV /dl vanishes there, so there is no linear
term in the displacement in Equation 5.23. Note that dV /d! is essentially the force
acting between the two nuclei, and the fact that dV/dl vanishes at [ =/, means that
the force acting between the nuclei is zero at this point. This is why I =/, is called the
equilibrium bond length.

If we denote | — [ by x, (d* V/dlz)l=lo by k, and (d* V/dl3),=,0 by y, Equation 5.23
becomes

1 o1
Vx) = k(I = 1) + gy(l —L)+-

2 .

1k2+1 P4 (5.24)
= —kx — .

2 6"

[f we restrict ourselves to small displacements, then x will be small and we can neglect
the terms beyond the quadratic term in Equation 5.24, showing that the general potential
energy function V (I) can be approximated by a harmonic-oscillator potential. Note that
the force constant is equal to the curvature of V (/) at the minimum. We can consider
corrections or extensions of the harmonic-oscillator model by the higher-order terms in
Equation 5.24. These are called anharmonic terms and will be considered in Chapter 13.

EXAMPLE 5-2
An analytic expression that is a good approximation to an intermolecular potential
energy curve is a Morse potential

V() = D(1 — 7Pty
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5-3. Expansion of an Internuclear Potential Around its Minimum
First let x = [ — I, so that we can write
V(x) = D(1 — )
where D and B are parameters that depend upon the molecule. The parameter D is
the dissociation energy of the molecule measured from the minimum of V(!) and B

is a measure of the curvature of V (/) at its minimum. Figure 5.6 shows V(I) plotted
against | for H,. Derive a relation between the force constant and the parameters D

and B.

SOLUTION: We now expand V(x) about x = 0 (Equation 5.23), using

V(©0)=0 (ﬂ) = (2DB(e P — ™)), _, =0
dx =0

and

2
(ﬂ;) — (—2DB(Be"* — 2PN} _y = 2DB
dx x=0 ’

Therefore, we can write

V(x) = D*x* + -

Comparing this result with Equation 5.11 gives

k=2Dg*
101
8 -
—
= e
o
S 4
g FIGURE 5.6
The Morse potential energy curve
2r V() = D(1 — e™#4~2)? plotted against
the internuclear displacement [ for H,.
0 . . ! — The values of the parameters for H, are

[/pm and [, = 74.1 pm.
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5-4. The Energy Levels of a Quantum-Mechanical Harmonic
Oscillator Are E, = ho(v + 3) withv =0, 1, 2,

The Schrodinger equation for a one-dimensional harmonic oscillator is

h? d>
‘E‘ZLF VO () = EY(x) (5.25)

with V(x) = 1kx*. Thus, we must solve the second-order differential equation

‘; "; (E Hex?) g (x) =0 (5.26)
This differential equation, however, does not have constant coefficients, so we cannot
use the method we developed in Section 2-2. In fact, when a differential equation does
not have constant coefficients, there is no simple, general technique for solving it, and
each case must be considered individually.

When Equation 5.26 is solved, well-behaved, finite solutions can be obtained only
if the energy is restricted to the quantized values

E =h (%)1/2 (v+3)

=hw(w+i)=hv(v+}) v=0,1,2, ... (5.27)

ol—

where

1/2
w = (ﬁ) (5.28)
w

and

1/2
V= 2—1”- <—Z) (5.29)

The energies are plotted in Figure 5.7. Note that the energy levels are equally spaced,
with a separation fiw or hv. This uniform spacing between energy levels is a property
peculiar to the quadratic potential of a harmonic oscillator. Note also that the energy
of the ground state, the state with v =0, is %hv and is not zero as the lowest classical
energy is. This energy is called the zero-point energy of the harmonic oscillator and is
a direct result of the Uncertainty Principle. The energy of a harmonic oscillator can be
written in the form (p*/2u) + (kx*/2), and so we see that a zero value for the energy
would require that both p and x or, more precisely, the expectation values of P? and
X be simultaneously zero, in violation of the Uncertainty Principle.
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The energy levels of a quantum-mechanical harmonic oscillator.

5_5. The Harmonic Oscillator Accounts for the Infrared Spectrum of a
Diatomic Molecule

We will discuss molecular spectroscopy in some detail in Chapter 13, but here we will
discuss the spectroscopic predictions of a harmonic oscillator. If we model the potential
energy function of a diatomic molecule as a harmonic oscillator, then according to
Equation 5.27, the vibrational energy levels of the diatomic molecule are given by

k 172
Ev=h<—) (v+1) v=0,1,2 ... (5.30)
"

A diatomic molecule can make a transition from one vibrational energy state to another
by absorbing or emitting electromagnetic radiation whose observed frequency satisfies

the Bohr frequency condition
AE =hv (5.3

We will prove in Chapter 13 that the harmonic-oscillator model allows transitions only
between adjacent energy states, so that we have the condition that Av = £1. Such a

condition is called a selection rule.
For absorption to occur, Av = -+1 and so

K\ 2
AE=E, —E =h (;) - (5.32)

Thus, the observed frequency of the radiation absorbed is

A ANE
=— |- 5.33
Yo T 2 (M) 39
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or

1 k 1/2
po=— = 5.34
vuhs 2me (,LL) ( )

where the tilde indicates that the units are cm~'. Furthermore, because successive

energy states of a harmonic oscillator are separated by the same energy, AE is the
same for all allowed transitions, so this model predicts that the spectrum consists of
just one line whose frequency is given by Equation 5.34. This prediction is in good
accord with experiment, and this line is called the fundamental vibrational frequency.
For diatomic molecules, these lines occur at around 10° cm™', which is in the infrared
region. Equation 5.34 enables us to determine force constants if the fundamental
vibrational frequency is known. For example, for H¥CL, ., is 2.886 x 10> cm™ and
s0, according to Equation 5.34, the force constant of H”Cl is

k= Qnrcv,)u
= [27(2.998 x 10® m-s~')(2.886 x 10° cm™")(100 cm-m™"))?
(35.0 amu)(1.01 amu)
(35.0+ 1.01) amu
=478 x 10°kg-s? =478 x 10* N-m™'

(1.661 x 1077 kg-amu™")

EXAMPLE 5-3
The infrared spectrum of Br'F consists of an intense line at 380 cm™". Calculate the
force constant of ”Br"F.

SOLUTION: The force constant is given by
k= Q@rcb, ) u

The reduced mass is

_ (75.0 amu)(19.0 amu)

7501 19.0) amu (1.661 x 107 kg-amu™') = 2.52 x 107 kg

and so

k = [27(2.998 x 10® m-s™")(380 cm™')(100 cm-m™")J*(2.52 x 107 kg)
=129kg-s = 129N.m""

l |

Force constants for diatomic molecules are of the order of 10* N-m™'. Table 5.1
lists the fundamental vibrational frequencies, force constants, and bond lengths of some
diatomic molecules. We will also see in Chapter 13 that not only must Av = =1 in the
harmonic-oscillator model but the dipole moment of the molecule must change as the
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TABLE 5.1
The fundamental vibrational frequencies, the force constants, and
bond lengths of some diatomic molecules

Molecule i/cm™ k/N.m™ Bond length/pm
H, 4401 570 74.1
D, 2990 527 74.1
H>*Cl 2886 478 127.5
H™Br 2630 408 1414
H7Y 2230 291 160.9
Berral 554 319 198.8
B Br 323 240 228.4
12771271 213 170 266.7
1600 1556 1142 120.7
MNUN 2330 2243 109.4
2¢i60 2143 1857 112.8
NSO 1876 1550 115.1
BNa®Na 158 17 307.8
BNa*Cl 378 117 236.1
K3l 278 84 266.7

molecule vibrates if the molecule is to absorb infrared radiation. Thus, the harmonic-
oscillator model predicts that HCI absorbs in the infrared but N, does not. We will see
that this prediction is in good agreement with experiment. There are, indeed, deviations
from the harmonic-oscillator model, but we will see not only that they are fairly small

"but that we can systematically introduce corrections and extensions to account for

them.

5-6. The Harmonic-Oscillator Wave Functions Involve
Hermite Polynomials

The wave functions corresponding to the E, for aharmonic oscillator are nondegenerate
and are given by

¥, (x) = N, H,(a'2x)e 2 (5.35)
where
k 12
@ = (#) (5.36)
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TABLE 5.2
The first few Hermite polynomials.

Hy) =1 H (&) =2¢
Hy(§) =48 -2 H,(§) =88 — 12¢
H, (&) = 165" — 487 + 12 H,(§) = 328" — 160&> + 120§

The normalization constant N is

1 o4
N, = oo (;) (5.37)

and the H, (a'”?x) are polynomials called Hermite polynomials. The first few Hermite
polynomials are listed in Table 5.2. Note that H,(§) is a vth-degree polynomial in £.
The first few harmonic oscillator wave functions are listed in Table 5.3 and plotted in
Figure 5.8.

Although we have not solved the Shrodinger equation for a harmonic oscillator
(Equation 5.26), we can at least show that the functions given by Equation 5.35 are
solutions. For example, let’s consider y,(x), which according to Table 5.3 is

D ANA 2

Yo = (=) e
T

Substitution of this equation into Equation 5.26 with E, = %ha) yields

2
d ]/f{) 2/"" (Eo—‘%kx2> '(/fo(x)=0

5 +
dx® n?

AN s s a2 caxtyzy , 2 (RO kex? (a>1/4 —axtn 1
(n) (a*x°e ae )+h2 5 > - e =0

or

s 2 pw  pk 5\ ?
— ———x*) =0
(a”x a)+(h h2x>

TABLE 5.3

The first few harmonic-oscillator wave functions, Equation 5.35. The parameter
o = (kp)'*/h. i

N A\ ’
Y, (0) = (;) e ¥,(x) = <E> Qax? = e /2 '
3

40\ " s SN\ X ;
Y (x) = (———) xe /2 P (x) = (67?) Qax® —3x)e {

T
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FIGURE 5.8
(a) The normalized harmonic-oscillator wave functions. (b) The probability densities for a
harmonic oscillator.

Using the relations o = (ku/h*)'"? and w = (k/w)'/?, we see that everything cancels
on the left side of the above expression. Thus, ¥,(x) is a solution to Equation 5.26.
Problem 5-15 involves proving explicitly that ¥, (x) and ¥, (x) are solutions of Equa-
tion 5.26.

We can also show explicitly that the v (x) are normalized, or that N given by
Equation 5.37 is the normalization constant.

EXAMPLE 54
Show that v,(x) and ¥, (x) are normalized.

SOLUTION: According to Table 5.3,

/4 Ny
4
Y, (x) = (__a ) e and ¥, (x) = (_a_) re—ax'r?
T 7

Then
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a

nd
< 4o V2o 2 —ax? 4o’ 2 1 /m\'/2
‘/_oo llfl (x)(lx = <—n_—‘> f_mx e dx = (_]T—) [5& (;) i| =1

The integrals here are given on the inside cover of this book and are evaluated in
Problem 5-17.

| i

We can appeal to the general results of Chapter 4 to argue that the harmonic-
oscillator wave functions are orthogonal. The energy eigenvalues are nondegenerate,
so we have that

/w ¥, () ¥, (x)dx =0 v

or, more explicitly, that

/ Hv(a'/zx)Hv,(a'/zx)e_“"'zdx =0 v

EXAMPLE 5-5
Show explicitly that ,(x) and ¥, (x) for the harmonic oscillator are orthogonal.

SOLUTION:

174 3\ 174
2 4 2
Y,(x) = (i) e 2 and wl(x) = (__a_) xe—ox¥ 2
T i

© . 2\ 1? s
/ Y, ()Y (x)dx = (2—;:—) / xe™ ™ dx =0

because the integrand is an odd function of x.

I |

Problem 5—16 has you verify that the harmonic oscillator wave functions are orthogonal
for a few other cases.

SO

5-7. Hermite Polynomials Are Either Even or Odd Functions

Recall from MathChapter B that an even function is a function that satisfies

fx)= f(=x) (even) (5.38)

and an odd function is one that satisfies

fx)=—f(=x) (odd) (5.39)



5-8. The Energy Levels of a Rigid Rotator Are E =% J(J + 1)/2]

EXAMPLE 5-6
Show that the Hermite polynomials H () are even if v is even and odd if v is odd.

SOLUTION: Using Table 5.2,
Hy$) =1 is even.

H (§) = 26 = —2(—§) = —H,(—§) and so is odd.
H,(§) = 48> — 2 = 4(—§)* — 2 = H,(—§) is even.
H, (&) = 8% — 126 = —[8(—£)* — 12(—£)] = —H,(—§) and s0 is odd.

Recall that if f(x) is an odd function, then

A
/ fx)dx =0 f(x) odd (5.40)
—A

because the areas from —A to 0 and O to A cancel. According to Equation 5.35, the
harmonic-oscillator wave functions are

¥, (x) = N,H, (@'2x)eex/?

Because the ¥, (x) are even when v is an even integer and odd when v is an odd integer,
¥2(x) is an even function for any value of v. Therefore, x12(x) is an odd function,
and according to Equation 5.40, then,

(x) = /-°° ¥ ()xy,(x)dx =0 (5.41)

Thus, the average displacement of a harmonic oscillator is zero for all the quantum
states of a harmonic oscillator, or the average internuclear separation is the equilibrium
bond length /.

The average momentum is given by

0 d
w=[ v (~m—) ¥, (0)dx (5.42)
oo dx

The derivative of an odd (even) function is even (odd), so this integral vanishes because
the integrand is the product of an odd and even function and hence is overall odd. Thus,
we have that (p) = 0 for a harmonic operator.

5-8. The Energy Levels of a Rigid Rotator Are E = 1*J(J + 1)/21

In this section we will discuss a simple model for a rotating diatomic molecule. The
model consists of two point masses m, and m,, at fixed distances r, and r, from their
center of mass (cf. Figure 5.9). Because the distance between the two masses is fixed,
this model is referred to as the rigid-rotator model. Even though a diatomic molecule
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Center
of mass

FIGURE 5.9
Two masses m, and m, shown rotating about their center of mass.

vibrates as it rotates, the vibrational amplitude is small compared with the bond length,
so considering the bond length fixed is a good approximation (see Problem 5-22).
Let the molecule rotate about its center of mass at a frequency of v_ cycles
per second. The velocities of the two masses are v, = 277 v, and v, =27,V _,
which we write as v, = r,0 and v, = r,w, where  (radians per second) =27y,
and is called the angular speed (Section 4-2). The kinetic energy of the rigid rota-

tor is

Lo 02 1o o2 2 2y 2
K = 3m vy + ymyvy = 5(myry +myry)w

= o (5.43)

where I, the moment of inertia, is given by

I=mr}+myr} (5.44)

Using the fact that the location of the center of mass is given by m r, = m,r,, the
moment of inertia can be rewritten as (Problem 5-29)

[ = ur? (5.45)

where r = r, 4+ r, (the fixed separation of the two masses) and y is the reduced mass
(Section 5-2). In Section 4-2, we discussed a single body of mass m rotating at a
distance r from a fixed center. In that case, the moment of inertia, /, was equal to
mr®. By comparing Equation 5.45 with this result, we may consider Equation 5.45
to be an equation for the moment of inertia of a single body of mass w rotating at
a distance r from a fixed center. Thus, we have transformed a two-body problem
into an equivalent one-body problem, just as we did for a harmonic oscillator in
Section 5-2.

—
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5-8. The Energy Levels of a Rigid Rotator Are E = h>J(J + 1)/21

Following Equations 4.4 and 4.6, the angular momentum L is

L=Iw (5.46)
and the kinetic energy is
L?.
K=— 47
T, (5.47)

There is no potential energy term because in the absence of any external forces (e.g.,
electric or magnetic), the energy of the molecule does not depend on its orientation in
space. The Hamiltonian operator of a rigid rotator is therefore just the kinetic energy
operator, and using the operator K given in Table 4.1 and the correspondences between
linear and rotating systems given in Table 4.2, we can write the Hamiltonian operator
of a rigid rotator as
. n?
=K=—-—WV (r constant) (5.48)
2u
where V2 is the Laplacian operator. We encountered V* in Cartesian coordinates in
Section 3-7, but if the system has a natural center of symmetry, such as one particle
revolving around one fixed at the origin, then using spherical coordinates (Math-
Chapter D) is much more convenient. Therefore, we must convert V2 from Cartesian
coordinates to spherical coordinates. This conversion involves a tedious exercise in the
chain rule of partial differentiation, which is best left as problems (see Problems 5-30
through 5-32). The final result is

19 ) 19 3 1 a2
vt (nl 2 (sing L — (X 5.49
7 ar (r ar)M T 7 sinG 96 (Sm ae)w T e (a¢2),'o (549)

The rigid rotator is a special case where r is a constant, so Equation 5.49 becomes

V2 L 19 sin@ 9 + t 1 & (r constant) (5.50)
= — F— - -y —) r -
r? sinf 99 96 r? sin® 6 9¢*

If we use this result in Equation 5.48, we obtain

A h2 1 9 B 1 32
H= g — 5.51
[sm@ 30 ( sin ae) e <a¢2)] S
Because H = L” /21, we see we can make the correspondence
. 1 9 B 1 9’
L= —h"| — —|sinf— 5.52
[sin@ 26 (Sm ae) +inte (a¢> )] (552)

Note that the square of the angular momentum is a naturally occurring operator in
quantum mechanics. Both 0 and ¢ are unitless, so Equation 5.52 shows that the natural
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units of angular momentum are /2 for atomic and molecular systems. We will make use
of this fact later.

The orientation of a linear rigid rotator is completely specified by the two angles
6 and ¢, so rigid-rotator wave functions depend upon only these two variables. The
rigid-rotator wave functions are customarily denoted by Y (6, ¢), so the Schrodinger
equation for a rigid rotator reads

HY(©,¢) = EY®, ¢)
or

_ﬁ[_l—i( 9i>+—1 (32—)]% )=EY@.¢)  (553)
27 | sn036 \7™ 35 ) " sinte \ag? ,$) = b .

If we multiply Equation 5.53 by sin® @ and let

b= 2IE (5.54)
=73 )
we find the partial differential equation
d Y %Y
sineﬁ (sin 955> + 5¢7 + (Bsin’9)Y =0 (5.55)

The solutions to Equation 5.55 are the rigid-rotator wave functions, which we won’t
need in this chapter. We will encounter Equation 5.55 when we solve the Schrddinger
equation for the hydrogen atom in Chapter 6. We therefore defer discussion of the rigid-
rotator wave functions until we discuss the hydrogen atom in detail. Nevertheless, you
might be interested to know that the solutions to Equation 5.55 are very closely related
to the s, p, d, and f orbitals of a hydrogen atom.

When we solve Equation 5.55, it turns out naturally that g, given by Equation 5.54,
must obey the condition

B=JJ+1D J=0,1 2, ... (5.56)

Using the definition of 8 (Equation 5.54), Equation 5.56 is equivalent to

hZ
E, =—

J+1 J=0,12, ... 5.57
J 211( +1) (3.57)

Once again, we obtain a set of discrete energy levels. In addition to the allowed energies
given by Equation 5.57, we also find that each energy level has a degeneracy g, given
byg,=2J+1.
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5-9. The Rigid Rotator Is a Model for a Rotating Diatomic Molecule

The allowed energies of a rigid rotator are given by Equation 5.57. We will prove
in Chapter 13 that electromagnetic radiation can cause a rigid rotator to undergo
transitions from one state to another, and, in particular, we will prove that the selection
rule for the rigid rotator says that transitions are allowed only between adjacent states
or that

AJ ==l (5.58)

In addition to the requirement that AJ = =1, the molecule must also possess a per-
manent dipole moment to absorb electromagnetic radiation. Thus, HC1 has a rotational
spectrum, but N, does not. In the case of absorption of electromagnetic radiation, the
molecule goes from a state with a quantum number J to one with J + 1. The energy
difference, then, is

2

h..
AE=E, ~E =2J+DU+2-J(J+D]
hZ h2
=70+ =70+ (5.59)

The energy levels and the absorption transitions are shown in Figure 5.10.
Using the Bohr frequency condition AE = hv, the frequencies at which the ab-
sorption transitions occur are

h
v=—U+1 J=0,1,2, ... (5.60)
gl

4

The reduced mass of a diatomic molecule is typically around 107% to 107 kg,
and a typical bond distance is approximately 107'° m (100 pm), so the moment of
inertia of a diatomic molecule typically ranges from 107 to 107 kg-m’. Substi-
tuting I =5 x 107 kg-m? into Equation 5.60 gives that the absorption frequen-
cies are about 2 x 10'° to 10'" Hz (cf. Problem 5-33). By referring to Figure 1.11
in Problem 1—1, we see that these frequencies lie in the microwave region. Con-
sequently, rotational transitions of diatomic molecules occur in the microwave re-
gion, and the direct study of rotational transitions in molecules is called microwave
spectroscopy.
It is common practice in microwave spectroscopy to write Equation 5.60 as

p=2B(J+ 1) 7=0 1,2, ... (5.61)
where
h

B =
82l

(5.62)
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FIGURE 5.10

The energy levels and absorption transitions of a rigid rotator. The absorption transitions occur
between adjacent levels, so the absorption spectrum shown below the energy levels consists of
a series of equally spaced lines. The quantity B is /8w %cI (Equation 5.64).

is called the rotational constant of the molecule. Also, the transition frequency is
commonly expressed in terms of wave numbers (cm™) rather than hertz (Hz). If we
use the relation b = v/c, then Equation 5.61 becomes

D =2B(J+1) J=0,1,2, ... (5.63)
where B is the rotational constant expressed in units of wave numbers

h

B=_—— (5.64)
8nicl

From either Equation 5.61 or 5.63, we see that the rigid-rotator model predicts that the
microwave spectrum of a diatomic molecule consists of a series of equally spaced lines
with a separation of 2B Hz or 2B cm™ as shown in Figure 5.10. From the separation
between the absorption frequencies, we can determine the rotational constant and

hence the moment of inertia of the molecule. Furthermore, because / = ur?, where r
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Problems

is the internuclear distance or bond length, we can determine the bond length given the
transition frequencies. This procedure is illustrated in Example 5-7.

EXAMPLE 5-7
To a good approximation, the microwave spectrum of H*Cl consists of a series of
equally spaced lines, separated by 6.26 x 10'' Hz. Calculate the bond length of H**CI.

SOLUTION: According to Equation 5.61, the spacing of the lines in the microwave
spectrum of H*Cl is given by

h
2B = ——5~
dr*]
and so
h
m = 626 X 10“ Hz

Solving this equation for /, we have

6.626 x 107* J.s

=— T = 2.68 x 107" kg-m?
47°(6.26 x 10" s7)

The reduced mass of H*Cl is

_ (1.01 amu)(35.0 amu)

360 oo (1.661 x 1077 kg-amu™") = 1.63 x 107" kg

Using the fact that I = ur?, we obtain

(2.68 x 107 kg-m?
F =

172
163 x 107 K ) =128x107"%m =128 pm
. g

Problems 5-34 and 5-35 give other examples of the determination of bond lengths
from microwave data.

A diatomic molecule is not truly a rigid rotator, because it simultaneously vibrates,
however small the amplitude. Consequently, we might expect that although the mi-
crowave spectrum of a diatomic molecule consists of a series of lines, their separation
is not exactly constant. In Chapter 13, we will learn how to correct for the fact that the

bond is not exactly rigid.

Problems

5-1. Verify that x(t) = A sinwt + Bcoswt, where w = (k/m)'/? is a solution to Newton’s
equation for a harmonic oscillator.

5-2. Verify that x(r) = Csin(wt + ¢) is a solution to Newton’s equation for a harmonic oscil-
lator.
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5-3. The general solution for the classical harmonic oscillator is x(t) = Csin(wt + ¢). Show
that the displacement oscillates between +C-and —C with a frequency o radian-s™' or
v = w/2r cycle-s™'. What is the period of the oscillations; that is, how long does it take
to undergo one cycle?

5-4. From Problem 5-3, we see that the period of a harmonic vibration is T = 1 /v. The average
of the kinetic energy over one cycle is given by

1 T 2C2 ,
(K) = —f DY T cosi(wr + @)
T 0 2

Show that (K) = E/2 where E is the total energy. Show also that (V) = E/2, where the
instantaneous potential energy is given by

-

kC 5
V= sin“(wt + ¢)

Interpret the result {K) = (V).

5-5. Consider two masses m and m, in one dimension, interacting through a potential that
depends only upon their relative separation (x, — x,), so that Vix,, x,) = Vix, —x,).
Given that the force acting upon the jth particle is fJ =—@V/ 8xj), show that f, = —f,.
What law is this?

Newton’s equations for m, and m, are

d’x, v d’x, v
—7— and m,—= =
dx, 2 dr? dx,

m, —— =
U ds?

Now introduce center-of-mass and relative coordinates by

_omx + m,x,
M

X

X =Xl —xz

where M = m, +m,. and solve for X, and x, to obtain

m, m
X, =X+ ﬁx and  x, =X — "
Show that Newton’s equations in these coordinates are

d*X mm, *x aVv
m= 2 T T
dt M d: dx

and

d*x mm d*x oV
m 3 + -
cdt M dr dx
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Interpret this result. Now divide the first equation by m and the second by m, and subtract

to obtain
d’x . 1 n 1\aV
dr* m, m,/ 3x
or
dzx_ v
Kag = "o

where p = m m,/ (m, + m,) is the reduced mass. Interpret this result, and discuss how the
original two-body problem has been reduced to two one-body problems.

5-6. Extend the results of Problem 5-5 to three dimensions. Realize that in three dimensions
the relative separation is given by

r|2 = [(x] - x2)2 + ()’, - )’2)2 + (Z[ - 22)2]1/2

5-7. Calculate the value of the reduced mass of a hydrogen atom. Take the masses of the electron
and proton to be 9.109390 x 107! kg and 1.672623 x 107" kg, respectively. What is the
percent difference between this result and the rest mass of an electron?

5-8. Show that the reduced mass of two equal masses, m, is m /2.

5-9. Example 5-2 shows that a Maclaurin expansion of a Morse potential leads to
V(x) = DB*x* + ...

Given that D = 7.31 x 107" J-molecule™ and 8 = 1.81 x 10'® m™~' for HCl, calculate
the force constant of HCI. Plot the Morse potential for HCI, and plot the corresponding
harmonic oscillator potential on the same graph (cf. Figure 5.5).

5-10. Use the result of Example 5-2 and Equation 5.34 to show that

ATRN
ﬂ =2mcv (E‘)

Given that b = 2886 cm™" and D = 440.2 kJ-mol ™' for H**C}, calculate 8. Compare your
result with that in Problem 5-9.

5-11. Carry out the Maclaurin expansion of the Morse potential in Example 5-2 through terms
in x*. Express y in Equation 5.24 in terms of D and 8.

5-12. It turns out that the solution of the Schridinger equation for the Morse potential can be
expressed as

E,=0(v+41)-0%(v+1)
where

licv

F=—
4D

Given that U = 2886 cm™' and D = 440.2 kJ-mol~" for H*CI, calculate ¥ and 7 ¥.
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5-13. In the infrared spectrum of H°Br, there is an intense line at 2630 cm™'. Calculate the
force constant of H”Br and the period of vibration of HBr.

5-14. The force constant of Br’Br is 240 N-m™~'. Calculate the fundamental vibrational
frequency and the zero-point energy of "Br’°Br.

5-15. Verify that ¥, (x) and ¥,(x) given in Table 5.3 satisfy the Schrodinger equation for a
harmonic oscillator.

5-16. Show explicitly for a harmonic oscillator that ¥,(x) is orthogonal to ¥, (x), ¥,(x), and
¥, (x) and that ¥, (x) is orthogonal to ¥, (x) and ¥, (x) (see Table 5.3).

5-17. To normalize the harmonic-oscillator wave functions and calculate various expectation
values, we must be able to evaluate integrals of the form

o 2
I(a) = f xe™ dx v=0,1,2, ...

o0

We can simply either look them up in a table of integrals or continue this problem. First,
show that

* 2
I(a)=2 / xe™ " dx
0

The case v = 0 can be handled by the following trick. Show that the square of I (a) can be

written in the form
(=] [+1] 2 Y
IXa) = 4/ / dxdye >+
o Jo

Now convert to plane polar coordinates, letting
rP=x*+y> and dxdy = rdrdd

Show that the appropriate limits of integration are 0 < r < oo and 0 <6 < 7/2 and that

nf2 0
Ig(a) = 4/ dG/ drre="’
0 0

which is elementary and gives

or that

a

Now prove that the / (a) may be obtained by repeated differentiation of 1, (a) with respect
to ¢ and, in particular, that

ThD _ Lyt @y
da

Use this result and the fact that I (a) = (7r/a)'* to generate 1,(a). L,(a), and so forth.
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5-18. Prove that the product of two even functions is even, that the product of two odd functions
is even, and that the product of an even and an odd function is odd.

5-19. Prove that the derivative of an even (odd) function is odd (even).
5-20. Show that

h
(k)

for a harmonic oscillator. Note that (x?)'/? is the square root of the mean of the square of
the displacement (the root-mean-square displacement) of the oscillator.

5-21. Show that

2 b 5
(x°)y = / ¥, ()X Y, ()dx = 5

() = / ¥, (0) Py, (0)dx = § h(uk)"”?
for a harmonic oscillator.

5-22. Using the fundamental vibrational frequencies of some diatomic molecules given below,
calculate the root-mean-square displacement (see Problem 5-20) in the v = 0 state and
compare it with the equilibrium bond length (also given below).

Molecule v/em™ l,/pm
H, 4401 74.1
Bkl 554 198.8
NN 2330 109.4

5-23. Prove that

EU
(K) =(V(x)) = >
for a one-dimensional harmonic oscillator for v = Oandv =1,

5-24. There are a number of general relations between the Hermite polynomials and their
derivatives (which we will not derive). Some of these are

dH (§)
T2 T XHEO-H,®)

H,,(§)—25H (&) +20H _(§) =0
and

dH, )
e = 20H,,©)

Such connecting relations are called recursion Sormulas. Verify these formulas explicitly i
using the first few Hermite polynomials given in Table 5.2.

5-25. Use the recursion formulas for the Hermite polynomials given in Problem 5-24 to show

that (p) = Oand (p?) = A(uk)'>(v + 1)- Remember that the momentum operator involves
a differentiation with respect to ¥, not £.

S s
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5-26. It can be proved generally that

yolosno P 4
@ =gt =mm )

and that
, 3 3
(x*y = W(2v2 +2v4+1) = m(zv- +2u+1)

for a harmonic oscillator. Verify these formulas explicitly for the first two states of a
harmonic oscillator.

5-27. This problem is similar to Problem 3-35. Show that the harmonic-oscillator wave func-
tions are alternately even and odd functions of x because the Hamiltonian operator obeys
the relation H(x) = H(—x). Define a reflection operator R by

ﬁu(x) = u(—x)

Show that R is linear and that it commutes with A. Show also that the eigenvalues of R
are 1. What are its eigenfunctions? Show that the harmonic-oscillator wave functions are

eigenfunctions of R. Note that they are eigenfunctions of both A and R. What does this
observation say about 4 and R?

5-28. Use Ehrenfest’s theorem (Problem 4-27) to show that (p,) does not depend upon time
for a one-dimensional harmonic oscillator.

5-29. Show that the moment of inertia for a rigid rotator can be written as I = ur?, where
r =r, +r, (the fixed separation of the two masses) and u is the reduced mass.

5-30. Consider the transformation from Cartesian coordinates to plane polar coordinates where

x =rcosf r=(x*+4y)'»2
(1
y=rsin@ 6 = tan™! (X)
X
y
A
______________________ (r,0)
,
) ;
— x

If a function f(r, §) depends upon the polar coordinates  and 6, then the chain rule of
partial differentiation says that

(), - (50, (). + (). (3, ®
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0 a ar d a6
D-@E-EE, e
dy ar ay /., 90 ), \dy/,
For simplicity, we will assume r is constant so that we can ignore terms involving derivatives
with respect to r. In other words, we will consider a particle that is constrained to move on

the circumnference of a circle. This system is sometimes called a particle on a ring. Using
Equations 1 and 2, show that

(21;) —ii'r‘—e (%) and (‘;J;) Corse (%) (rfixed) (4
Now apply Equation 2 again to show that
(azf) _ 39)
ax*/, - x 8x
_{ [ sin@ (_}: ]} ( sm6>
N 36
n’6

sinfcosf (df f
=T (—5 r <392> (7 fixed

and that

Similarly, show that

f sin@cos@ [3f cos*f (3 f
Sy 2 = - | = fixed
(ayz).r 7 <39>,+ 7 (692>r o fxed

32f 32f 1 32f
Vif = ﬁ + —3)’—2 e 7 (—a'e—z)r (r fixed)

and that

Now show that the Schrédinger equation for a particle of mass m constrained to move on
a circle of radius r is (see Problem 3-28) -

1 8y (6)

—57 gt = EV® 0<8<2r

where I = mr? is the moment of inertia.

5.31. Generalize Problem 5-30 to the case of a particle moving in a plane under the influence
of a central force; in other words, convert
2 2
V= 9

ax’ | 3y

to plane polar coordinates, this time without assuming that r is a constant. Use the method
of separation of variables to separate the equation for this problem. Solve the angular

equation.

5-32. Using Problems 5-30 and 5-31 asa guide, convert V? from three-dimensional Cartesian
coordinates to spherical coordinates.
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5-33. Show that rotational transitions of a diatomic molecule occur in the microwave region or
the far infrared region of the spectrum.

5-34. In the far infrared spectrum of H™Br, there is a series of lines separated by 16.72 cm™.,
Calculate the values of the moment of inertia and the internuclear separation in H”Br.,

5-35. The J = 0to J = I transition for carbon monoxide (*C"*0) occurs at 1.153 x 10° MHz.
Calculate the value of the bond length in carbon monoxide.

5-36. Figure 5.11 compares the probability distribution associated with the harmonic oscillator

wave function ¥,,(§) to the classical distribution. This problem illustrates what is meant
by the classical distribution. Consider

x(t) = Asin(wt + ¢)

which can be written as

wt == sin™! (%) —¢
Now

dr = & 4x (1)

VA —x?
This equation gives the time that the oscillator spends between x and x + dx. We can

convert Equation 1 to a probability distribution in x by dividing by the time that it takes

for the oscillator to go from —A to A. Show that this time is 7 /w and that the probability
distribution in x is

dx
TV A? = x? @

Show that p(x) is normalized. Why does p(x) achieve its maximum value at x = +A?
Now use the fact that & = '?x, where o = (ke /h®'2  to show that

i 3
T/aA? — g2

p(x)dx =

p(§)dé =

n

¥ (8)

FIGURE 5.11

The probability distribution function of a

harmonic oscillator in the v = 10 state. The

dashed line is that for a classical harmonic

oscillator with the same energy. The vertical
lines at £ ~ 4.6 represents the extreme

4 limits of the classical harmonic motion.
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Show that the limits of & are +(zA%)'/* = £(21)', and compare this result to the vertical
lines shown in Figure 5.11. [Hint: You need to use the fact that kA%2 = E, (v=10)]
Finally, plot Equation 3 and compare your result with the curve in Figure 5.11.

5-37. Compute the value of LY (8, ¢) for the following functions:
b. (3/4m)"? cosf

a. 1/(4m)'"?
d. (3/87)"?sinfe™"*

c. (3/8m)"*sinfe
Do you find anything interesting about the results?

Problems 5-38 through 543 develop an alternative method for determining the eigenvalues
and eigenfunctions of a one-dimensional harmonic oscillator.

5-38. The Schrédinger equation for a one-dimensional harmonic oscillator is
Hy () = EY (x)

where the Hamiltonian operator is given by

B4 1
+ —kx?

H=———
2udx? 2

where k = pw? is the force constant. Let P and X be the operators for momentum and
position, respectively. If we define p = (uhw) 2P and & = (uo/h)'* X, show that

Pk ho

el Li5p e
m + 2 > (p*+ %%
Use the definitions of p and X to show that
. . d
= —]—
P dx

and

5-39. We will define the operators &_ and d, to be

1 1
4 =—@G+ip) and 4, =-—F4E&—ip) n
where % and p are given in Problem 5-38. Show that
a_a, = LE+ilp, 1+ p) = ;B + ¥+ 1D )
and that
a0 =P+ 3)

Now show that the Hamiltonian operator for the one-dimensional harmonic oscillator can

be written as

-+

A~ hw . .
H=—(_a

2 + + 7+a—)
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5-42. In Problem 5-41, we proved that v > 0. Because a vy, <y

Chapter 5 / The Harmonic Oscillator and the Rigid Rotator: Two Spectroscopic Models

Now show that a_a_+a_a_ is equal to 24 +a_ + 1 so that the Hamiltonian operator can
be written as

A=ho(a,a_+)

The operator &, 4_ is called the number operator, which we will denote by 9, and using this
definition we obtain

H=ho(5+1) @)

Comment on the functional form of this result. What do you expect are the eigenvalues

of the number operator? Without doing any calculus, explain why % must be a Hermitian
operator,

5-40. In this problem, we will explore some of the properties of the operators introduced in

Problem 5--39. Let ¥, and E be the wave functions and energies of the one-dimensional
harmonic oscillator. Start with

Ay, =ho(8,4_+1)v,=Ey,
Multiply from the left by @ and use Equation 2 of Problem 5-39 to show that

H@_¥,) = (E, - ho)@_y,)

or that

a—wu & wu—-l

Also show that

H@.y,) = (E, +ho)@,v,)

or that

[I+ .‘//u & ¢u+l

Thus, we see that 4 , operating on v, gives ¥, (to within a constant) and that &_ ¥, gives
¥,_, to within a constant. The operators & . and a_ are called raising or lowering operators,
or simply ladder operators. If we think of each rung of a ladder as a quantum state, then

the operators . and d_ enable us to move up and down the ladder once we know the wave
function of a single rung.

5-41. Use the fact that £ and p are Hermitian in the number operator defined in Problem 5-39

to show that
/w:ﬁwudx >0

v—; and v > 0, there must be
some minimal value of v, Upnin- Argue that a_y, = 0. Now multiply & _ ¥, =O0bya,

and use Equation 3 of Problem 5-39 to prove thzi"tmumin =0,and thatv = 0. [, 2, ...
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5-43. Using the definition of @_ given in Problem 5-39 and the fact that a_i, = 0, determine
the unnormalized wave function ¥,(x). Now determine the unnormalized wave function

¥, (x) using the operator @ o
Problems 5—44 through 5-47 apply the idea of reduced mass to the hydrogen atom.

5.44. Given the development of the concept of reduced mass in Section 5-2, how do you think
the energy of a hydrogen atom (Equation 1.22) will change if we do not assume that the

proton is fixed at the origin?

5-45. In Example 1-8, we calculated the value of the Rydberg constant to be 109737 em™'.

What is the calculated value if we replace m_ in Equation 1.25 by the reduced mass?
Compare your answer with the experimental result, 109 677.6 cm™'.

5-46. Calculate the reduced mass of a deuterium atom. Take the mass of a deuteron to be
3.343 586 x 107" kg. What is the value of the Rydberg constant for a deuterium atom?

5.47. Calculate the ratio of the frequencies of the lines in the spectra of atomic deuterium and
atomic hydrogen.
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