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Fig. 15.1 Some of the symmetry elements of
a cube. The twofold, threefold, and fourfold
axes are labelled with the conventional
symbols.

(b)

Fig. 15.2 (a) The NH, molecule has a
threefold (C,) axis and (b) the H,0 molecule
has a twofold (C,) axis.
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In this chapter we sharpen the concept of ‘shape’ into a precise definition of
‘symmetry’, and show that it may be discussed systematically. We shall see
how to classify any molecule according to its symmetry, and how to use this
classification to discuss molecular properties without the need for detailed
calculation. We shall see how to treat systematically many of the topics that
we have mentioned in previous chapters. We shall see, for instance, how to
select linear combinations of atomic orbitals that match the symmetry of the
nuclear framework, and we remarked in Chapter 14 that this grouping of
orbitals is one of the central features of molecular orbital theory. We shall
see how to judge from its symmetry classification alone whether a molecule
is polar or chiral. Through symmetry we shall be able to derive the selection
rules that govern the intensities of spectroscopic transitions, not only of the
electronic transitions that are responsible for the colours of substances, but
also of the rotational and vibrational transitions that give rise to their
microwave and infrared spectra.

The detailed discussion of symmetry is called group theory. Much of
group theory is a systematic summary of common sense about the
symmetries of objects. However, because group theory is systematic, its
rules can be applied in a straightforward, mechanical way, and in some
cases it gives unexpected results. In most cases the theory gives a simple,
direct method for arriving at useful conclusions with the minimum of
calculation, and this is the aspect we stress here.

The symmetry elements of objects

Some objects are ‘more symmetrical’ than others. A sphere is more
symmetrical than a cube because it looks the same after it has been rotated
through any angle about any diameter. A cube looks the same only if it is
rotated through 90°, 180°, or 270° about an axis passing through the centres
of any of its opposite faces (Fig. 15.1), or by 120° or 240° about an axis
passing through any of its opposite corners. Similarly the NH; molecule is
‘more symmetrical’ than the H,O molecule because it looks the same after
rotations of 120° or 240° about the axis shown in Fig. 15.2, whereas H,O _
looks the same only after a rotation of 180°.

An action that leaves an object looking the same after it has been carried
out is called a symmetry operation. There is a corresponding symmetry
element for each symmetry operation; this is the point, line, or plane with
respect to which the symmetry operation is performed. We shall use the
same symbol for the symmetry operation and the corresponding element,
but always say which is intended if it is important to distinguish between
them. We shall see that we can classify molecules by identifying all their
symmetry elements, and grouping together those with identical elements.
This procedure puts a sphere into a different group from a cube, and NH,
into a different group from H,O.

15.1 Operations and elements

There are five kinds of symmetry operation (and five kinds of symmetry
element) that leave at least a single point unchanged and hence give rise to
the point groups. When we consider crystals (Chapter 21), we shall refer to
the symmetries arising from translation through space. These more exten-
sive groups are called space groups.



The identity E consists of doing nothing; the corresponding element is the
entire object. Since every molecule is indistinguishable from itself if nothing
is done to it, every object possesses at least the identity element. One
reason for including it is that some molecules (e.g. CHCIBrF) have only this
symmetry element; another reason is technical and connected with the
formulation of group theory.

An n-fold rotation (the operation) about an n-fold axis of symmetry C,
(the corresponding element) is a rotation through 360°/n. An H,O molecule
has a two-fold axis, C,. An NH; molecule has a three-fold axis C, with
which are associated two operations, one being 120° rotation in a clockwise
sense and the other 120° rotation in a counter-clockwise sense. (There is
only one two-fold rotation associated with a C, axis because clockwise and
counter-clockwise 180° rotations are identical.) A cube has three C, axes,
four C; axes, and six C, axes. However, even this high symmetry is capped
by a sphere, which possesses an infinite number of symmetry axes (along
any diameter) of all possible orders of n. If a molecule possesses several
rotation axes, the one (or more) with the greatest value of n is called the
principal axis.

A reflection (the operation) in a plane of symmetry or a mirror plane o
(the element) may be either parallel or perpendicular to a principal axis of a
molecule. If the plane is parallel to the principal axis, it is called vertical and
denoted g,. An H,O molecule has two vertical planes of symmetry (Fig.
15.3) and an NH; molecule has three. When the plane of symmetry is
perpendicular to the principal axis it is called horizontal and denoted o,,.
The C¢He molecule has a C, principal axis and a horizontal mirror plane (as
well as several other elements). A vertical mirror plane that bisects the
angle between two C, axes (Fig.15.4) is called a dihedral plane and
denoted o,.

In an inversion (the operation) through a centre of symmetry i (the
element) we imagine taking each point in a molecule, moving it to its
centre, and then moving it out the same distance on the other side. Neither
an H,0 molecule nor an NH; molecule has a centre of inversion, but both
the sphere and the cube do have one. A C;H, molecule does have a centre
of inversion, as does a regular octahedron (Fig. 15.5); a regular tetrahedron
and a CH, molecule do not.

An improper rotation or a rotary-reflection (the operation) about an axis
of improper rotation or a rotary-reflection axis S, consists of an n-fold
rotation axis together with a horizontal reflection. A CH, molecule (Fig.
15.6) has three S, axes.

S

—Centre of G
inversion

Fig. 16.5 Fig. 15.6

Operations and elements | 15.1

Fig. 15.3 The H,0 molecule has two mirror
planes. They are both vertical (i.e. contain the
principal axis), and so are denoted o, and a,:.

Fig. 16.4 Dihedral mirror planes (a,) bisect
the C, axes perpendicular to the principal axis.
The staggered conformation of ethane is an
example.

Fig. 15.5 A regular octahedron has a centre
of inversion; a regular tetrahedron does not.

Fig. 15.6 The CH, molecule has a fourfold
rotary-reflection axis (S,): the molecule is
indistinguishable after a 90° rotation followed
by a reflection across the horizontal plane.
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15.2 The symmetry classification of molecules

To classify molecules according to their symmetries, we list their symmetry
elements and group together those with the same list. This procedure puts
CH, and CCl,, which both have the same symmetry as a regular tetra-
hedron, into the same group, and H,O into another group.

The name of the group to which a molecule belongs is determined by the
symmetry elements it possesses. There are two systems of notation
(Box 15.1). The Schoenflies system is more common for the discussion of
individual molecules, and the Hermann—Mauguin system, or International
system, is used almost exclusively in the discussion of crystal symmetry.

inversion.

Box 15.1 The notation for point groups

In the international system for point groups, which is also
called the Hermann—Mauguin system, a number n
denotes the presence of an n-fold axis and a letter m
denotes a mirror plane. A diagonal line / indicates that the
mirror plane is perpendicular to the symmetry axis. It is 3 SR
important to distinguish symmetry elements of the same
type but of different classes, as in 4/mmm when there are y
the three classes of reflection g,, o,, and o,. A bar over a
symbol indicates that that element is combined with an

The table on the right translates the Schoenflies system
into the international system. The only groups listed are  The group D, (222) is sometimes denoted V and called the
the crystallographic point groups (Section 21.1). Vierer group (the ‘group of four’).

a00
t—ls b |

Cz 2 C3 3 C4 4 C(v 6
Cy 2mm C,, 3m C, 4mm Cey 6mm

Coyn 2/m  Cy, 6 Cs 4/m Con 6/m
D, 222 Dy, 32 D, 422 D, 622
D,, mmm D,, 62m D, 4/mmm Dg, 6/mmm
D,y 2m Dy, 3Im S5, & ORI L %]

T 23 T, 48m T, m3

O 432 O, m3m

Fig. 15.7 Examples of molecules belonging to
the groups (a) C,, (b) C;, and (c) C,.
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The groups C,, C;, C,

A molecule belongs to C, if it has no element other than the identity (e.g.
CBrCIFI, Fig. 15.7a), to C; if it has the identity and the inversion (e.g.
meso-tartaric acid, Fig. 15.7b), and to C; if it has the identity and 2 plane of
reflection (e.g. the quinoline molecule, Fig. 15.7c).

HO

(a) Br (b)

The groups C,, C,,, and C,,

A molecule belongs to the group C, if it possesses an n-fold axis. (Note that
C, is now playing a triple role: as the label of a symmetry element, a
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symmetry operation, and a group.) The H,O, molecule (Fig. 15.8) has the
elements E and C, and so belongs to the group C,.

If in addition to the identity and a C, axis a molecule has n vertical mirror
planes o,, it belongs to the group C,,. The H,O molecule, for example, has
the symmetry elements E, C,, and 20,, and so belongs to the group C,..
The NH; molecule has the elements E, C,, and 30,, and so belongs to the
group Cy,. A heteronuclear diatomic molecule such as HCI belongs to the
group C., because all rotations around the axis and reflections across it are
symmetry operations. C., is also the group of the linear OCS molecule and
of a cone.

Objects that in addition to the identity and an n-fold principal axis also
have a horizontal mirror plane o, belong to the groups C,,. An example is
trans-CHCI=CHCI (Fig. 15.9), which has the elements E, C,, and oy, and
so belongs to the group C,,. Sometimes the presence of a symmetry element
is implied by others: in this case C, and o}, jointly imply the presence of a
centre of inversion (Fig. 15.10).

(a) (b)

The groups D,, D,,, and D,,

A molecule that has an n-fold principal axis and n two-fold axes perpen-
dicular to C, (Fig. 15.11) belongs to the group D,. Molecules belong to D,,
if they also possess a horizontal mirror plane (Fig.15.12). The planar
trigonal BF; molecule has the elements E, C,, 3C,, and oy, (with one C,
axis along each B—F bond), and so belongs to Dy,. The C4H, molecule has
the elements E, Cs, 6C,, and o, together with some others that these
imply, and so it belongs to Dg,. All homonuclear diatomic molecules, such
as N,, belong to the group D., since all rotations around the axis are
symmetry operations, as are end-to-end rotation and end-to-end reflection;
D.,, is also the group of the linear OCO and HC=CH molecules and of a
uniform cylinder.

A molecule belongs to the group D, if it has the elements of D, and, in
addition, n dihedral mirror planes o,4. The twisted, 90° allene shown in Fig.
15.13a belongs to D,y, and the staggered form of ethane (Fig. 15.13b)
belongs to D;,.

The groups S,

Molecules that have not been classified into one of the groups we have
mentioned so far, but which possess one S, axis, belong to the group S,. An
example is shown in Fig. 15.14. Molecules belonging to S, with n >4 are
rare. Note that the group S, is the same as C,, so such a molecule will
already have been classified as C;.

G

H

Fig. 15.8 The H,0, molecule belongs to the
group C, when it is in the conformation

shown.

Fig. 15.9 (a) Trans-dichloroethene belongs to
C2n and (b} B(OH), belongs to C,,,.

G

Fig. 15.10 The presence of a twofold axis and
a horizontal mirror plane jointly imply the

presence of an inversion
molecule.

centre in the

G

&}

G
G
G
(&)
(&)

Fig. 15.11 A molecule with n twofold rotation

axes perpendicular to an
belongs to the group D,.

n-fold rotation axis
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Fig. 15.12 Three examples of molecules
belonging to D,,,,. (a) C,H, belongs to D,,, (b)
PClg, which has different axial and equatorial
bond lengths, belongs to D, and (c) the
square-planar complex |AuCl,| belongs to
Dy

Fig. 15.13 (a) The 90° allene molecule
belongs to the group D,4 and (b) the
staggered conformation of ethane belongs to
Dy,

\\Y=,

¢

Fig. 15.14 Tetraphenylmethane is an example
of a molecule that belongs to the group S,.
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The cubic groups

A number of very important molecules (e.g. CH,) possess more than one
principal axis. They all belong to the cubic groups, and in particular to the
tetrahedral groups T, T;, and T; or to the octahedral groups O, O,
(Fig. 15.15). A few icosahedral (twenty-faced) molecules, belonging to the
icosahedral group are also known: they include some of the boranes. T
and O, are the groups of the regular tetrahedron (e.g. CH,) and the regular
octahedron (e.g. SFg) respectively. If the object possesses the rotational
symmetry of the tetrahedron or the octahedron, but none of their planes of
reflection, then it belongs to the simpler groups T or O. The group T, is
based on T but also contains a centre of inversion.
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The full rotation group, R,

The full rotation group consists of an infinite number of rotation axes with
all possible values of n. A sphere and an atom belong to R,, but no
molecule does. Exploring the consequences of R, is a very important way of
applying symmetry arguments to atoms and is an alternative approach to the
theory of orbital angular momentum.

Example 15.1: Identifying a point group of a molecule

Identify the point group to which the sandwich molecule ruthenocene (two
eclipsed cyclopentadiene rings) belongs.

a) T,
Answer. The identification of a molecule’s group is simplified by referring to @ T

the flow diagram in Box 15.2 and the shapes shown in Fig. 15.16. The path we
trace through the flow diagram in Box 15.2 is shown by a dotted line; it ends at
D, Since the molecule has a fivefold axis, it belongs to the group Ds,. 6
Comment. If the rings were staggered, the horizontal reflection plane would ]
I

be absent, but dihedral planes would be present.
Exercise. Classify (a) the conformation with staggered rings and (b) benzene. oO—
[(a) DSdr (b) Dﬁh] —O]
] 2 3 4 5 6 @ 2

(b) Oy

Fig. 15.15 Tetrahedral and octahedral
molecules are best drawn in a way that shows
their relation to a cube: they belong to one of
the cubic groups. (a} CCl, belongs to T, and (b}
SFg belongs to O,,.

Y.

D,;, (plane or
bipyramid) [ ]

i ZaN
[ ‘-\- -;' ’ >
Dnd E:l’:l (\
N\ ’
:_J N7 ‘\'l
c“:’.
— = Fig. 15.16 A summary of the shapes
s, o corresponding to different point groups. The
" RN S group to which a molecule belongs can often
N be identified from this diagram without going
W through the formal procedure in Box 15.2,
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Box 15.2 The determination of a point group

To arrive at the point group of a given molecule, work less complete information. The dotted line shows the path
through the following table. The use of a subgroup (i.e. used in Example 15.1.
not travelling to the end of a route) is permissible but gives

!Select C, with highest n.
Then. is nC, perpendicular to C,?
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15.3 Some immediate consequences of symmetry

We can make some statements about the properties of a molecule as soon as
we have identified its point group.

Polarity

A polar molecule is one with a permanent electric dipole moment (HCI,
O;, and NH; are examples). If the molecule belongs to the group C, with
n>1, it cannot possess a charge distribution corresponding to a dipole
moment perpendicular to the axis. However, as the group makes no
reference to operations relating the two ends of the molecule, a charge
distribution may exist that results in a dipole along the axis (Fig. 15.17). The
same remarks apply to C,,, so molecules belonging to any of the C,, groups
may be polar. In all the other groups, such as C.,, D, etc, there are
symmetry operations that take one end of the molecule into the other.
Therefore, as well as having no dipole perpendicular to the axis, such
molecules can have none along the axis, for otherwise these additional
operations would not be symmetry operations.

We can conclude that only molecules belonging to the groups C,, C,,,
and C; may have an electric dipole moment, and in the case of C, and C,.
that that dipole must lie along the rotation axis. Thus O, which is angular
and belongs to the group C,,, may be polar, but CO,, which is linear and
belongs to the group D, is not.

Chirality

A chiral molecule (from the Greek word for hand) is a molecule that
cannot be superimposed on its mirror image. Chiral molecules are optically
active in the sense that they rotate the plane of polarized light (a property
discussed in more detail in Section 22.2). A chiral molecule and its
mirror-image partner constitute an enantiomeric pair.

A molecule may be chiral only if it does not possess an axis of improper
rotation, S,. However, such an axis may be present under a different name
and be implied by other symmetry elements that are present. For example,
molecules belonging to the groups C,, include S, implicitly because they
possess both C, and o,,. Any molecule containing a centre of inversion i also
possesses an S, axis because i is equivalent to C, in conjunction with oy,
which is S, (Fig.15.18). It follows that all molecules with centres of
inversion are non-chiral and hence optically inactive.

A molecule may be chiral if it does not have a centre of inversion or a
mirror plane, which is the case with the amino acid alanine
CH;CH(NH;)COOH but not with glycine CH,(NH,)COOH. However, a
molecule may be non-chiral even though it does not have a centre of
inversion. For example, an S, molecule (Fig.15.19) is non-chiral and
optically inactive, for though it lacks i it does have an S, axis.

Groups, representations, and characters

Many properties may be analysed once the point group of a molecule is
known, but to extract them we often need to use numerical aspects of group
theory. We introduce these here, but we shall do no more than skim the
surface of this very subtle and powerful subject.

Fig. 15.17 A molecule with a C, axis cannot
have a dipole perpendicular to the axis, but it

may have one parallel to the axis.

S,

Fig. 15.18 Some elements are implied by the
other elements in a group. Any molecule
containing an inversion also possesses at least

an S, element because iand S, are
equivalent.

84

CH,

' H
CO,H
CH,
C OH
H
CH,
(a) (b)

Fig. 15.19 (a) An optically active molecule

without a centre of inversion. (b) Although this
molecule has no centre of inversion (i.e. no S,
axis) it is not optically active because it has an

S, axis.
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~

Fig. 15.20 The symmetry operations of the group C,, are shown in the box, and the equivalence
a,C; = d’, is constructed by considering the effect of successive operations.

15.4 Group multiplication

Consider NH,;, which belongs to C;, and is symmetrical under the
operations E, C3, C;5, o,, o,, and o, (Fig. 15.20). C3 is a counter-
clockwise 120° rotation as seen from above, C3 the corresponding clockwise
rotation." It should be obvious that the operation C3 followed by C3 is the
identity. We can express this symbolically by writing

C;Cs=E

Similarly, two successive counter-clockwise rotations by 120° are equivalent
to one clockwise rotation:

CiCy=C3

We can see from Fig. 15.20 that C3 followed by o, is equivalent to oy, and
SO we can write

0,Ci=0y

Note that in working out these relations, all the operations refer to some
fixed arrangement of symmetry elements. That is, the planes and axes
remain where they were first drawn on the page, and are unaffected by the
performance of an operation. Note, too, that the second operation is
written to the left of the first, so in the last example o, is carried out after
C3.

! This sign convention may seem odd, but it matches the convention used for angular
momentum, when a clockwise rotation as seen from below (i.e. counter-clockwise as seen from
above) is associated with positive values of m;,.
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The table of all such combinations is called the group multiplication
table, and for C,, is as follows:

First

Second E €t C€; o o, a

E E c; C; o, o, ol
c3 c;y C; E o, o, o,
C, C, E cy o a, o,
a, o, o, o, E C; C;
al, o, o, o, C; E C,

o, C; C3 E

A glance at the group multiplication table shows that the outcome of
successive symmetry operations is always equivalent to a single symmetry
operation of the group, which is called the group property. The group
property is the main feature of the structure of groups: a set of operations
form a group if they satisfy the group property together with some other
mild conditions (Box 15.3). All symmetry operations on molecules satisfy
the conditions in Box 15.3, which is why the theory of the symmetry of
molecules is called group theory.

Box 15.3 The definition of a group

A group G of order A is a set of & elements (such as the
symmetry operations of a molecule)

G=(gl»g2)'-~rgh}

together with a rule of combination that gives the symbol
8:8; @ meaning (such as the symmetry operation g; followed
by the symmetry operation g,) and which satisfy the
following criteria:

(1) G includes the identity E, the element for which
Eg; =g,E =g, for all the elements of the group

(2) G includes the inverse (g;') of each element, the
element for which

g8 '=8/ '8 =E

(3) The rule of combination is associative, so

8/(8/8:) = (8:8))8x

(4) The elements satisfy the group property that the
combination of any pair of elements is itself an element:

8i8; = 8«

The definition of a group does not require the elements to
commute:

8:8; = 88 is not required

However, if all the elements of a group do commute, the
group is called Abelian.

15.5 The representation of transformations

Expressions like C5C3 = E are symbolic ways of writing what happens
when various physical operations are carried out in succession. However, it
is possible to give them an actual algebraic significance, which means that
we can deal with numbers instead of abstract symbols for operations. By
dealing with numbers we shall arrive at precise conclusions.

The remainder of this section establishes the language and sets out the
background of group theory. It makes use of the properties of matrices,
which are reviewed in the Further information section at the end of the
chapter. The rules needed for applying group theory are set out in Sections

435
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Fig. 15.21 The basis used for the discussion
of the transformation properties of a C,,
molecule. We use the convention that the
basis is always written in the order {O, A, O}
and that the operations move the shapes on
the diagram without affecting the N, A, B, C
labels. The interpretation of the effect of C; is
shown.
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15.8 and 15.9. Most of them can be used simply as recipes without needing
to work through the background material presented in this section.

Matrix representatives

Consider a C,, molecule (such as NH,) with s orbitals on each atom
(Fig. 15.21) and think about what happens to these functions under a
symmetry operation. Under o,, the change

(st SarSc sB) - (sN’ SA> 5B, SC)

takes place. We can express this transformation using matrix multiplication:

1 0 00
(SN,SA,SC,SB)=(SN,SA,SB,SC) 0 00 =(Sn»>Sa, 5B, 5c)D(0,)

0 0 01

0 010

The matrix D(o,) is called a representative of the operation o,.
We can use the same technique to find matrices that reproduce the other
symmetry operations. For instance, C5 has the effect

(SN, Sp,Sc, SA) b (SN9 SasSBy sC)

and we can express the transformation as

1 0 00

0 01 +
(st sBasC’sA)=(sN’ SA>SBs Sc) 0 1 0 O =(SN,SA, sB,sC)D(C3)

0010

The operation ¢, which causes
(5n> 8¢5 5B, 5a) < (SN, Sa, 5B, 5¢)
is represented by the matrix multiplication

(5n> Sy 5B, SA) = (Sns S, S, SC) = (SN Sa, 5B, Sc)D(0V)

- o o ©

00
01
10
00

[~ T e SN

Since the identity leaves (sn, Sa, S, Sc) unchanged,

D(E)=

© = o o

0
0
0
1

[ = BN
S O = o
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Example 15.2: Finding a matrix representative of an operation A Q
Consider the four Hls orbitals of CH,. Find matrix representatives for the c

operations C; and S3. |

Answer. CH, belongs to the group T,. The axis corresponding to C; runs r—»

along a C—H bond (e.g. C—Hy), and so it rotates the other three H atoms ﬁ

into each other in a counterclockwise sense seen from above. A good plan is to
put different shaped receptacles on each atom location (the shapes in Fig.
15.22) and to allow the operations to move them (the letters remaining
stationary): the row vector representing the basis is then determined by writing
the appropriate letter in the receptacle always written in the same order
(O, O, A, D). The effect of C5(D) is

C;(HA) H81 HC’ HD) = (HC7 HA’ HB? HD)

four-dimensional because the basis has four members. .

Exercise. Find the representatives for S,(CD), where the four-fold axis
bisects the H.CHy, angle, and C3(B).

010
0010 2
= (HAv HBy HC! HD) 1 0 O 0 = (HA1 HB9 HCv HD)D(C\ )
SH(AC
0 0 01 1 (AC) P A
§¢ rotates counterclockwise by 90° about a bisector of a CH, angle (e.g. fo g
H,CHc) and then reflects across the perpendicular plane: -
S:(HA’ Hg, He, Hp) = (HB, Hc, Hp, Ha) H |
B
0 001
1 000 5 D
= (Ha, Ha, Hc, Hp) 0100/ (Ha, Hs, He, Hp)D(SJ) a4(AC) A
0010 /
| 7
Comment. The representation depends on the basis selected: in this case it is 7(
B
/

o

0 01 0010 CHAC)
~_]0 0 01 w |0 1 00 : A
DEI=15 1 0 o) G o v
Sofoslo 1000 C K
.
Matrix representations B
A very important property of the D matrices may now be identified. Using D
the rules of matrix multiplication gives
1 0 0 O 1 0 0 0O 1 0 0 0 Fig. 15.22 The symmetry transformations
used in Example 15.2. Note that we are using
D(0,)D(CF) = 01 00}/f0 0 01 - 0 0 01 = D(o” the convention defined in Fig. 15.21.
o 00 1flo 10 0 001 o)D)
001 0/\0 010 0100

The importance of this result is that its structure
D(0,)D(C3) =D(ov)
has exactly the same form as the group multiplication rule
0,C3 =0}
437
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438

Whichever operations of a group we chose, we find that the matrix
representatives multiply in an analogous way. We say that the multiplica-
tions are homomorphous. Therefore, the whole of the group multiplication
table is reproduced by the matrix multiplication of the representatives. The
set of six matrices is called a matrix representation of the C,, group for the
particular basis we have chosen, which in this case consists of the four
orbitals sy, sa, S, and sc. We denote the representation by the symbol I',
and since it is four-dimensional, more specifically as I'®). The discovery of a
matrix representation of the group means that we have found a link
between the symbolic manipulations of the operations and algebraic
manipulations involving numbers.

Example 15.3: Verifying the matrix representation of a group

Confirm that the matrix representatives found in Example 15.2 satisfy the
group multiplication property.

Answer. Identify C;S87 by assessing the effect on the basis of successive
symmetry operations, and confirm the homomorphism by multiplying the
representatives. The effect of the joint operation S; C3 is

S:C3(Ha, Hg, He, Hp) = (Hp, Hy, He, Hy) = o(H 4, Hy, He, Hp)

where the plane of the operation o bisects HL,CHy. The product of the
representatives is

0001/010 0 0 001
100040010} {0100
0100)t1 ooo0) o010
0 010/\0 001 1000

which is the representative of o.

Exercise. Confirm that the representatives for S,(CD) and C;(B) multiply
homomorphously with the elements of the group. (S:C3 =S7(AQ)]

The character of symmetry operations
In common parlance, the rotations C7 and C; of the group C;, have the
same ‘character’ but differ in direction. Likewise, the three reflections have
the same character, but are different from the rotations. We say that the
two rotations belong to the same class of operation, and that the three
reflections form another class. This notion of class can be given precise,
numerical significance.

Inspection of the matrix representation of C,, for the s-orbital basis of
Fig. 15.21 shows a remarkable fact. If we form the trace of each matrix, that
is, sum the diagonal elements of each matrix, we get the following numbers:

D(E) D(C3) D(C3) D(o,) D(o)) D(o))
Trace: 4 1 1 2 2 2

We see that the matrices representing operations of the same class have
identical diagonal sums. We call the trace of the representative the
character y of the operation; hence we can conclude that symmetry
operations in the same class have the same character.



Example 15.4: Calculating the character of an operation

Calculate the characters of the operations C7, §!, and o, in the basis used in
Example 15.3.

Answer. We refer to the representatives calculated in the example, and sum
their diagonal elements.

2(C3)=0+0+0+1=1

x(8)=0+0+0+0=0

x(0)=0+14+14+0=2
Comment. A quick rule for determining the character without first having to
set up the matrix representation is to count 1 each time a basis function is left
unchanged by the operation, because only these functions give a non-zero
entry on the diagonal of the matrix representative. In some cases there is a
sign change, (... —f...) « (...f...); then —1 occurs on the diagonal, and

so count —1. The character of the identity is always equal to the dimension of
the basis since each function contributes 1 to the trace.

Exercise. Calculate the character of (a) C. and (b) 5, in the same basis.

[(a) 0, (b) 0]

The character of an operation depends on the basis. For example, if
instead of considering the four s orbitals, we used only sy as the basis, then
since each operation results in sy < sy, which may be written SN=s8snX1,
with 1 a 1 X 1 matrix, the characters of the operations would be

D(E) D(C3) D(C;) D(s,) D(a)) D(oV)
x= 1 1 1 1 1 1

We shall write this representation I'" because it is one-dimensional. It is
still true that the characters of the operations of the same class are equal;
however, we also see that the characters of different classes may be the
same. Furthermore, it is obvious that because 1 x 1=1, the matrices do
reproduce the group multiplication table. However, as they do so in a trivial
and uninformative way, the representation in which 1 represents each
element is called the unfaithful representation of the group.

15.6 Irreducible representations

The unfaithful representation of the group, although apparently trivial, is a
representation, and should not be discarded as being of no importance. In
the next few sections, in fact, we shall see that it is the most important
representation for many chemical applications.

The direct sum

The representatives in the basis (sn,sa,Ss,Sc) are four-dimensional (i.e.
they are 4 X 4 matrices), but inspection shows that they are all of the form

1000
0 p
0

Irreducible representations | 15.6
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Fig. 15.23 Three linear combinations of three
s orbitals in a C5, molecule. The symmetry

species they span (see later) have been added.
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and that the symmetry operations never mix sy with the other three basis
functions. This suggests that the basis can be cut into two parts, one
consisting of sy alone and the other of (s, 55, 5c). The sy orbital is a basis
for the unfaithful representation, as we have seen, and we now see that the
other three orbitals are a basis for a three-dimensional representation I'®
consisting of the following matrices:

D(E) D(C3) D(C3) D(o,) D(o,) D(0y)
1 00\/001\/010\/100\/010\/001
01 0]l100]{oo0o1]loo1]]l100]l0 10
001/\o1o/\1oo/\o10/\0oo01/\100
x= 3 0 0 1 1 1

The characters still satisfy the rule about symmetry operations of the same
class. The matrices of I'® are the same as those of the four-dimensional
representation, except for the loss of the first row and column. We say that
the original four-dimensional representation has been reduced to the direct
sum of a one-dimensional representation spanned by sy and a three-
dimensional representation spanned by (sa,Ss,Sc). This reduction is
consistent with the common sense view that the central orbital plays a role
different from the other three. The reduction is denoted symbolically by

[‘(4) = F(') + 1"(3)

The reduction of a representation

The one-dimensional representation I'", which consists of the six 1x 1
matrices 1, 1, 1, 1, 1, 1, obviously cannot be reduced any further, and is
called an irreducible representation (or ‘irrep’) of the group.

We can demonstrate that I'® is reducible by switching attention from s,,
sg, and s¢ to the linear combinations

s|=sA+sB+sC Sz=2§'A_SB_SC §3=8p —Sc

These are sketched in Fig. 15.23 (their form is justified later). Even at this
stage it is clear that, because of the presence of the node in s, and s3, these
two have different symmetry from s,. The decomposition

=M 4 @

is beginning to emerge.
The representatives in the new basis can be constructed from the old. For
example, since under o,,

(5a»5c,SB) < (5A,SB,5¢)

it follows (by applying these transformations to the linear combinations)
that

(51, 82, —53) < (51, 52, 53)

The transformation is achieved by writing

S = O
== )

1
(51, 52, —=S3) = (51, §2, 53)| 0
0



which gives us the representative D(o,) in the new basis. The representative
of C7 takes a little more calculation, but depends on the transformation

(SB9 Sc, SA) « (sAv S, SC)

We know how the individual 5o transform (with Q= A, B, and C), and so
by substitution in the expressions defining the new basis gives the
transformation of the s, (with n =1, 2, and 3):

(1, —%52'*' 333, —ész - %ss) <« (54, 52, 53)

This transformation is reproduced by

1 0 0
(51 —ész'*'%ssy —%sz—%s3)=(s,,s2,s_~,) 0 _% _é
0 3 -4

so giving D(C7). The complete representation and its characters may be
found similarly, and are

D(E) D(Cy) D(Cy)
1 00 1 0 0 1 0 o0
010 0 -3 -4 (0 - 1
001 0o 3 -! 0 -3 -}
X= 3 0
D(o,) D(o) D(ov)
1 0 0 1 00 1 0 0
01 0 0 -4 4 0 -4 -4
0 0 -1 0 3 1 0 -2 1
xX= 1 1 1

The new representatives are all in block diagonal form
1 00
» I
0 B
and the s, combination is not mixed with the other two by any operation of
the group. We have therefore achieved the reduction of I'® to ' + I'®,
with s, a basis for the same one-dimensional irreducible representation

(1,1,1,1,1,1) as before and (s,, s3) a basis for a two-dimensional repre-
sentation I'?:

D(E) D(C3) D(C5) D(o) D(o)) D(a))
GG DED6C DG IE D
o VU3 P\ H o -/ Vg 9y
x= 2 -1 -1 0 0 0
It is easy to check that these matrices are a representation by multiplying

pairs together and seeing that they reproduce the original group multiplica-
tion table.

The irreducibility of some representations

No linear combination of s, and s; exists that reduces I'® to two
one-dimensional representations, and so the I'® representation is ir-

Irreducible representations | 15.6
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reducible. We can conclude that while sy and s, ‘have the same
symmetry’—technically, are the bases for the same irreducible repre-
sentation of the group—the pair s,,s; ‘have different symmetry’—they span
a different irreducible representation and must be treated as a pair (because
that representation is two-dimensional). These features agree with what
common sense tells us by inspection of the diagrams in Fig. 15.23.

But how do we know that I'® is irreducible? This information, together
with a great deal more, is included in one of the principal tools of group
theory, the ‘character tables’ of the point groups.

Character tables

The character table of a group is the list of the characters of all its
irreducible representations. The C,, character table is shown below.

Number of elements in the class

Csy E 2C; 30, < Symmetry operations, class by class

AN

A 1 1 1 « Characters

Name of group

Symmetry species (name of irreducible representation)
A, 1 1 -1

Denotes one-dimensional representation
E 2 -1 0

Denotes two-dimensional representation

The columns in the table are labelled by the symmetry operations: it is not
necessary to show the character for every individual operation because all
those in the same class have the same value. The number of operations in
each class is given (e.g. the 2 in 2C;, showing that there are two threefold
rotations). The total number of operations in the group is called its order:
the order of the C;, group is 6.

The column on the left labels the symmetry species of the irreducible
representations of the group. An A or B signifies a one-dimensional
representation; A is used when the character is +1 under a principal
rotation and B when it is —1. There are two species of one-dimensional
representation in Cs,, and both have +1 for the character of the principal
rotation; they are therefore labelled A, and A,. A, and A, are distinguished
by the character under a vertical reflection, and in some cases by their
behaviour under a C, rotation perpendicular to the principal axis. An E
denotes a two-dimensional representation, and T denotes a three-
dimensional representation (there is none in Cs,).

The characters of the I'® representation spanned by (s,, s;) are those of
E. Since E is an irreducible representation, we know at once that I'® is
irreducible too.

Perhaps the most surprising feature of the character table is that there are
so few allowed symmetry species. That the three given exhaust all
possibilities is confirmed by an elegant theorem in group theory which states
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that
Number of symmetry species = Number of classes

In Cs, there are three classes (three columns in the character table), and so
there are only three species of irreducible representation.

Although we have introduced these points through the group Cs,, they
are entirely general, and the characters of all possible species of irreducible
representation of any group may be listed. A selection of these very
important tables is given at the end of the Data section.

15.7 Transformations of other bases

We shall now show that the three p orbitals on the central atom are a basis
for another three-dimensional (reducible) representation. Each orbital has

the f
e rorm Px =xf Py =yf pP:= zf

where f is a function of distance from the nucleus. Since the distance of a
point from the nucleus does not change when the molecule is rotated and
reflected, we can ignore f and use the basis (x, y, z).
Under the reflection g, in C,, (Fig. 15.24),
(_x' Y Z) b (x’ s Z)
That is, the p, orbital changes sign. (Note that the coordinate system is an
unchanging background on which these transformations are played out.) We
can express the transformation as a matrix equation:
-1 0 0
010
0 01

(_x’yr Z)=(xryr Z) =(x’y’ Z)D(av)

Similarly, under Cj3,

(_éx + é\/3}’. _%\/Bx - %,V, Z) bt (x> B ) Z)

which can be expressed as

-3 -iV3 0
(—%x+%\/3y,—%\/3x—%y,z)=(x»}’»z) %\/3 _% 0 =(x»va)D(C;)
0 0 1

All the representatives can be compiled in this way, and the complete
representation is

D(E) D(C3) D(C3)
1 00 -1 -3 0 -1 W30
010 W3 -1 o0 V3 -1 o0
0 0 1 0 0 1 0 0 1
xX= 3 0 0
D(o,) D(a.) D(ay)
-1 0 0 i -3 o i W30
01 0f[ivy -1 o -3 -1 0
0 01 0 0 1 0 0 1
x= 1 1 1

y
y
5% X
(
a, Y
y -y
G }
(—ix+31V3y)
~ /i\
X
S \
I
y
Cy
\—
\ X
/ / (1V3x—y)
\
Sl
(—&x—1V3y)

Fig. 15.24 The transformations of the
functions x and y under the operations of the
group C,,. Natice that they take place against
a fixed coordinate system (just as the N, A, B,
C are fixed in Fig. 15.21).
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The representation is reducible because all the matrices have block-
diagonal form and the parts relating to z may be sliced off. The characters
of the matrices for the remaining functions in the basis (x, y) are

2 -1 -1 0 00
By comparing this with the Cs, character table it is clear that (x, y) spans an
irreducible representation of symmetry species E.

Example 15.5: Finding the symmetry species of a representation

Find the symmetry species of the irreducible representations spanned by
(%, y, z) in the group C,,.

Answer. We need to establish the effect of the operations E, C,, o,, and o,
on the three functions. To do so, we write the matrix representation in the
basis, and identify the symmetry species from the characters. The four
transformations are

E:(x,y,2) < (x,9,2) Ci(-x,-y,2) < (x,y 2)
oy (=x,y,2) < (x,9,2) 0. (x,—y,2) < (x,2)

The matrix representation is therefore

D(E) D(C) D(a,) D(a.)
1 00\/-1 00\ /-100\/1 00
010 0 -1 0 010)lo -10
001 0 01 001/ \0 01

This representation is in block-diagonal form, and may be decomposed into
the following one-dimensional irreducible representations

X ] -1 -1 1
y: 1 -1 1 -1
z: 1 1 1 1

The characters of the representatives are the numbers themselves (because
they are 1x 1 matrices), and so the symmetry species of the irreducible
representations spanned by x, y, and z are B,, B,, and A, respectively.

Exercise. What symmetry species does xy span in C,,? [A;]

The conclusion of the analysis given above is that in C,,, z spans an
irreducible representation of symmetry species A, and (x, y) spans one of
symmetry species E. Information like this will turn out to be so important
that the symmetry species of the irreducible representations spanned by x,
y, and z are normally reported in the character table. The same technique
may be applied to the quadratic forms x?, xy, xz, ..., z? which represent
the shapes of the d orbitals, and the symmetry species of the irreducible
representations they span are also usually listed. A complete character table
therefore looks something like the following:

G E 2G 30,

A, 1 1 1 z X*+y?+2?2 222-x*-y?
A, 11 1 R,
E 2 -1 0  (xy) (xzyz2) (xv,x*-y*)  (R.R)




The R,, etc, in the final column denote rotations, and their listing shows
how they transform under the operations of the group. The transformation
properties of rotations can be deduced from those of angular momentum;
for instance, R, transforms as /, =xp, — yp, (Section 12.6), and the linear
momentum components transform like x, y, z.

Example 15.6: Deducing the transformation properties of a rotation
Decide how a rotation around the z-axis transforms in the group C,,.

Answer. We need to consider the transformation properties of the angular
momentum operator

lz = xp y Y y px

Under a C, rotation both x and y and p, and p, change sign, so /, is
unchanged. We know, therefore, that the rotation is the basis for either A, or
A,. Under a reflection in the yz-plane, x and p, both change sign but neither y
nor p, does; therefore I, does change sign, and its character is —1. It has the
same character for reflection in the xz-plane. Hence, from the C,, character
table we can identify the irreducible representation spanned by rotation
around the z-axis as A,.

Exercise. Identify the irreducible representation spanned by a rotation around
the x-axis in Cy. (B}

Using character tables

Although the characters do not carry all the information contained in the
representatives (they are, after all, only the diagonal sums), they do contain
enough to make them of central importance in chemistry. One of the
reasons for the importance of character tables is that they let us say, almost
at a glance, whether an integral is zero. Integrals of interest to chemists
include overlap integrals and ‘transition dipole moments’, which, as we shall
see, govern the intensities of spectroscopic transitions. Thus group theory
enables us to make powerful statements about chemical bonding and the
appearance of spectra.

15.8 Vanishing integrals
Suppose we had to evaluate the integral

I=If,f2d1: 1)

where f; and f, are wavefunctions. For example, f; might be an atomic
orbital on one atom and f; an atomic orbital on another atom, in which case
I would be their overlap integral S. If we knew that the integral is zero, we
could say at once that a molecular orbital does not result from (f;, f5)
overlap in that molecule.

Integrals over the product of two functions

The key point in dealing with 7 is that the value of any integral, and of an
overlap integral in particular, is independent of the orientation of the

Vanishing integrals | 15.8
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¥
TW/

Fig. 15.25 The value of an integral /{e.g. an
area) is independent of the coordinate system
used to evaluate it. That is, /is a basis of a
representation of symmetry species A,.

v

molecule (Fig. 15.25). In group theoretical language we express this by
saying that / is unchanged by any symmetry operation of the molecule, and
that each operation brings about the trivial transformation

I «1

Since the volume element dr is unchanged by a symmetry operation, it
follows that the integral is non-zero only if the product f; f; is unchanged by
any symmetry operation of the molecular point group. If the product of
functions changed sign under a symmetry operation, the integral would be
the sum of equal and opposite contributions, and hence would be zero. It
follows that the only contribution to a non-zero integral comes from
functions for which under any symmetry operation of the molecular point

group
fik < hh

and hence for which the representatives, and the characters, are all equal to
1. Therefore, for I not to be zero, the integrand f; £, must be a basis for the
totally symmetric A, irreducible representation of the molecular point
group.

We use the following procedure?® to deduce the symmetry species spanned
by the product f; f, and hence to see whether it does indeed span A,.

(1) Decide on the symmetry species of the functions by reference to the
character table, and write the characters in two rows in the same order as
in the table.

For example, if f, is the sy orbital in NH, and f; is the linear combination s,
(Fig. 15.23), then since sy spans A, and s is a member of the basis spanning
E, we write

fir 1T 11
fi: 2 -1 0

(2) Multiply the numbers in each column, writing the results in the same
order.

For the NH; calculation,
fifs 2 -1 0

(3) Inspect the row so produced, and see if it can be expressed as a sum
of characters of the irreducible representations of the group. If this sum
does not contain A,, the integral must be zero.

% The procedure here and in the rest of the chapter is based on a very important theorem in
group theory known as the ‘little orthogonality theorem’ which states that

> (O (O (C) =0
C

where the sum is over the classes of the group (the columns in the character table), g is the
number of elements in each class, and I" and I'’ are two different irreducible representations.
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In C5,, for instance, the character of each operation can always be
expressed as

x =cix(Ay) + c2x(Az) + c3x(E)

and the integral must be zero if ¢, =0. In the present example, the
characters 2, —1, 0 are those of E alone, and so the integral must be zero.
Inspection of the form of the functions (Fig. 15.23) shows why this is so: s,
has a node running through sy. Had we taken f, =sy and f2=s, instead,
then since each spans A, with characters 1, 1, 1,

fir ' 111
L1 11
ik 1 11

The characters of the product are those of A, itself. Therefore, s, and sy
may have non-zero overlap.

It is important to note that group theory is specific about when an integral
must be zero, but integrals that it allows to be non-zero may be zero for
reasons unrelated to symmetry. For example, the N—H distance may be so
great that the s,,sy overlap integral is zero simply because the orbitals are
so far apart.

Example 15.7: Deciding if an integral must be zero (1)
May the integral of the function f =xy be non-zero when evaluated over a
region the shape of an equilateral triangle centred on the origin?

Answer. An equilateral triangle has the point-group symmetry C,,. If we refer
to the character table of the group, we see that xy is a member of a basis that
spans the irreducible representation E. Therefore, its integral must be zero,
since the integrand has no component that spans A,.

Comment. In this case we have used a special case of the argument given
above in which the integrand is expressed as a single function. We can regard
£ as present, but as equal to 1.

Exercise. Can the function x*+ y* have a non-zero integral when integrated
over a regular pentagon centred on the origin? [Yes, spans A|]

Integrals over the product of three functions
The same technique may be used to decide whether integrals of the form

1=jf,f2f3dz )]

necessarily disappear. In this case the triple product f, f,f; must contain a
component that spans A,. To test whether this is so, the characters of all
three functions are multiplied together in the same way as in the rules set
out above.
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(a)

(b)

e

Fig. 15.26 Orbitals of the same symmetry
species may have non-vanishing overlap. This
diagram illustrates the three bonding orbitals
that may be constructed from (N2s, H1s) and
{N2p, H1s) overlap in a C,, molecule, and their
symmetry labels. (There are also three
antibonding orbitals of the same species.)
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Example 15.8: Deciding if an integral must be zero (2)
Does the integral [ (3d,:)x(3d.,) d7 vanish in a tetrahedral molecule?

Answer. We must refer to the T, character table (at the end of the Data
section) and find the characters of the irreducible representations spanned by
322 — r? (the form of the d.- orbital), x, and xy; then we can use the procedure
set out above (with one more row of multiplication). Note that 3z° —r*=
222 —x2— y°. We then draw up the following table:

E 8C1 3 Cz 654 60d

(ARSI B O = (B R 1 S (T-2)
fi=x 3 0 -1 -1 1 (T
Pedls A =1 40 00 (@5

b 15 R0 GRS > SN O 1

The characters are the sum of A,+ A,+2E + 2T, + 2T.. Therefore, the
integral is not necessarily zero.

Comment. Closer inspection of the integral (e.g. using the representation
itself, not just the characters) show that the integral must in fact vanish. This is
a warning that arguments based on the character tables, since they carry only
incomplete information in general, show only when an integral is necessarily
zero. A second point is that the decomposition of the result to discover if A, is
included is sometimes a lengthy job. The following procedure® can always be
used if the answer is not obvious:

(1) Multiply the characters (18,0, . . .) by the number of elements in each
class (1,8, ...).

(2) Add together the numbers this produces (18 + 0 + . .. =24).

(3) Divide the sum by the order of the group (the number of elements, 24).

This gives the number of times A, appears in the reducible representation (1).

Exercise. Does the integral [ (2p,)(2p,)(2p.) dt necessarily vanish in an
octahedral environment? [No; spans A,]

Orbitals with non-zero overlap

The rules just given let us decide which atomic orbitals may have non-zero
overlap in a molecule. We have seen that sy may have non-zero overlap
with s, (the combination 1s, + 1sy + 1s¢), and so (sn,s,) overlap bonding
and antibonding molecular orbitals can form (Fig. 15.26a). The general rule
is that:

Only orbitals of the same symmetry species may have non-zero overlap,
and so only orbitals of the same symmetry species form bonding and
antibonding combinations.

3 The procedure is based on an orthogonality thcorem like that given in the previous
footnote. The number of times ¢, that the irreducible representation A, appears in a
representation [ with characters x"” is:

&1=5  £(OF(C)

where h is the order of the group and g is the number of elements in each class C.



It should be recalled from Chapter 14 that the selection of atomic orbitals
that had mutual non-zero overlap is the central and initial step in the
construction of molecular orbitals by the LCAO procedure. We are
therefore at the point of contact between group theory and the material
introduced in that chapter. The molecular orbitals formed from a particular
set of atomic orbitals with non-zero overlap are labelled with the lower-case
letter corresponding to the symmetry species. Thus, the (sy,s,)-overlap
orbitals are called a, orbitals (and af if we wish to emphasize that they are
antibonding).

The s, and s, linear combinations span an irreducible representation of
symmetry species E. Does the N atom have orbitals that have non-zero
overlap with them (and give rise to an e orbital)? Intuition (Fig. 15.26b
and c) suggests that N2p, and N2p, should be suitable. We can confirm this
conclusion by noting that the character table shows that in C,, x and y
jointly span an irreducible representation of symmetry species E. Therefore,
N2p, and N2p, also span E, and so may have non-zero overlap with s, and
s3 (verify this by multiplying the characters: EXE=A,+ A,+E in C,,).
The two e orbitals that result are shown in Fig. 15.26 (there are also two
antibonding e orbitals).

The power of the method can be illustrated by exploring whether any d
orbitals on the central atom can take part in bonding. The d orbitals have
the forms

d=@B22=1)f  da_po=*—yd)f
d,, = xyf d,, =yzf d,. = zxf

Their symmetries can be taken from the character tables by noting how the
quadratic forms xy, yz, etc, transform. Reference to the C,, table shows
that d,: has A, symmetry and that the pairs (d,z_,:,d,,) and (d,.,d,,) each
transform as E. It follows that molecular orbitals may be formed by s,,d,:
overlap and by overlap of the s,,5; combinations with the E d orbitals.
Whether or not the d orbitals are in fact important is a question group
theory cannot answer because that depends on energy considerations, not
symmetry.

Although we have illustrated the technique with the group C,,, it is
entirely general, and the importance of knowing which s, p, and d orbitals
overlap is one of the reasons why the transformation properties of x, xz,
etc, are listed in the character tables.

Example 15.9: Determining which orbitals can contribute to bonding

The four Hls orbitals of methane span A, + T,. With which of the C atom
orbitals can they overlap? What if the C atom had d orbitals available?

Answer. We need to refer to the T, character table (at the end of the Data
section) and look for s, p, and d orbitals spanning A, or T,. An s orbital spans
A,, and so it may have non-zero overlap with the A; combination of Hls
orbitals. The C2p orbitals span T,, and so they may have non-zero overlap
with the T, combination. The d,,, d,., and d,, orbitals span T,, and so may
overlap the same combination. Neither of the other two d orbitals span A,
(they span E), and so they remain nonbonding orbitals.

Vanishing integrals | 15.8
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% Forbidden 82: E! 7

Fig. 16.27 The polarizations of the allowed
transitions in a C,, molecule. The shading

indicates the structure of the orbitals of the
specified symmetry species.
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Comment. It follows that in methane, there are (C2s,H1s)-overlap a, orbitals
and (C2p,Hls)-overlap ¢, orbitals. The C3d orbitals might contribute to the
latter. The lowest energy configuration is probably ajf;, with all bonding
orbitals occupied.

Exercise. Consider the octahedral SF; molecule, with the bonding arising
from overlap of S orbitals and a 2p orbital on each F directed towards the
central S. The latter span A,;+E, +T,,., What S orbitals have non-zero
overlap? Suggest what the ground configuration is likely to be.

[35(A,), 3p(T1), 3d(E,); difhuet]

Selection rules

In Chapters 16 and 17 we shall see that the intensity of a spectral line arising
from a molecular transition between some initial state with wavefunction ;
and a final state with wavefunction y; depends on the (electric) transition
dipole moment u. The z-component of this vector is defined through

b= e[ wizwide ©)

where —e is the charge of the electron. Stating the conditions for this
quantity (and the x- and y-components) to be zero amounts to specifying
the selection rules for the transition, the statement of which transitions are
possible. The transition moment has the form of the integral in eqn 2, and
so, once we know the symmetry species of the states, we can use group
theory to decide which transitions have zero transition dipole moment and
therefore cannot occur.

As an example, we investigate whether an a; electron in H,O (which
belongs to C,,) can make an electric dipole transition to a b; orbital
(Fig. 15.27). We must examine all three components of the transition
dipole, and take f, in eqn 2 as x, y, and z in turn. Reference to the C,,
character table shows that these transform as B;, B,, and A, respectively.
The three calculations run as follows:

X-component y-component z-component

fi: i 11 1 1 1 1 1 i 11 1 (A)
H(x, y, orz): 1 -1 1 -1 1 -1 -1 1 1 1
Y 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 (B)
hbh: 1 11 1 1 1 -1 -1 1 -1 1 -1
A, A, B,

Only the first product (with f, =x) spans A,, and so only the x-component
of the transition dipole may be non-zero. Therefore, we conclude that the
electric dipole transition a, < b, (and a, — b,) is allowed. We can go on to
state that the radiation emitted (or absorbed) is x-polarized and has its
electric field vector in the x-direction, because that form of radiation
couples with the x-component of a transition dipole.
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Example 15.10: Deducing a selection rule
Is p. < p, an allowed transition in a tetrahedral molecule?

Answer. We must decide whether the product p,gp,, with g=x, y, or z,
spans A, using the 7 character table. The procedure works out as follows:

Apy): 3 0 -1 -1 1(T)
g 30 -1 -1 1(Ty
filp): 30 -1 -1 1(Ty)
fikf: 21 0 -1 -1 1

A, occurs (once) in this set of characters, and so p, — p, is allowed.

Comment. Closer analysis (using the representatives) shows that only g = z
gives a non-zero integral, and so the transition is z-polarized.

Exercise. What are the allowed transitions, and their polarizations, of a b,
electron in a C,, molecule? [by = by(2); by — e(x, y)]

15.9 Symmetry-adapted linear combinations

So far we have only asserted the forms of the linear combinations (such as
s1, etc) that act as bases for irreducible representations. Group theory also
provides machinery that takes an arbitrary basis (s, etc) as input and
generates combinations of the specified symmetry. Because these combina-
tions are adapted to the symmetry of the molecule, they are called
symmetry-adapted linear combinations (SALC). Symmetry-adapted linear
combinations are the building blocks of LCAO molecular orbitals, for they
include combinations such as the v (A)+ 1y, (B) used to construct
molecular orbitals in H,O (Section 14.8) and some of the complex examples
that we have seen since then. The selection of symmetry-adapted linear
combinations of atomic orbitals is the first step in any molecular orbital
treatment of molecules, and is central, for instance, to the construction and
analysis of Walsh diagrams and to the description of d-metal complexes.

The technique for building symmetry-adapted linear combinations is
derived using the full power of group theory. We shall not show the
derivation, which is very lengthy, but present the main conclusions as a set
of rules:*

(1) Construct a table showing the effect of each operation on each orbital
of the original basis.

For example, from the (s, s, 55, 5c) basis in NH; we form the following
table:

* Once again, it is possible to express the rules given here in a succinct formula derived from
group theory. In this case, to form an orbital of symmetry species I' we form Py, where

Py=, 5 A (RIRY
h R
where R is an operation of the group. The implementation of this formula is described in the

following remarks. Note that the actual operations occur in the formula, not the classes as in
the earlier expressions.
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Original basis: sy Sa Sp Sc

Under E SN Sa Sp Sc
Cy Sn S Sc Sa
Cs SN Sc Sa Sp
a, SN Sa Se S
o, SN Sp Sa S
oy SN S¢S Sa

(2) To generate the combination of a specified symmetry species, take
each column in turn and:
(i) Multiply each member of the column by the character of the
corresponding operation.
(ii) Add together all the orbitals in each column with the factors as
determined in (i).
(iii) Divide the sum by the order of the group.

In our example, in order to generate the A, combination we take the
characters for A, (1,1,1, 1,1, 1), and so rules (i) and (ii) lead to

1/1°<SN+SN+...=6SN

The order of the group (the number of elements) is 6, and so the
combination of A, symmetry that can be generated from sy is sy itself.
Applying the same technique to the column under s, gives

Y=4sa+sp+Sctsa+tsp+sc)=3(sa+sp+sc)

The same combination is built from the other two columns, and so they give
no further information. The combination we have just formed is the s,
combination we used before (apart from the numerical factor).

We now form the overall molecular orbital by forming a linear combina-
tion of all the symmetry-adapted linear combinations of the specified
symmetry species. In this case, therefore, the a, molecular orbital is

P =cnSnt 018y

This is as far as group theory can take us. The coefficients must be found by
solving the Schrodinger equation because they do not come directly from
the symmetry of the system.

Suppose we try to generate a symmetry-adapted linear combination of
species A, despite the fact that the previous work has shown that there is no
such combination. The characters for A, are 1, 1, 1, —1, —1, —1. The
column under sy generates zero, and so do the other three. Therefore, we
find that we generate no combination of A, symmetry,

When we try to generate the E symmetry-adapted combinations we run
into a problem because, for representations of dimension 2 or more, where
the characters are the sums of the diagonal elements, the rules generate
sums of the symmetry-adapted combinations. (A more detailed rule based
on the representatives themselves gives the individual combinations.) This
can be seen as follows. The E characters are 2, —1, —1, 0, 0, 0, and so the



column under sy gives
1IJ=ZYN_SN_SN+O+O+O=0
The other columns give
§(25A —sp— sc) #(2sp—sa— sc) #(2sc—sp— Sa)
However, any one can be expressed as a sum of the other two (they are not
linearly independent). The difference of the second and third gives
3(se —sc), and this and the first, 3(2sa —sp—sc), are the two linearly

independent symmetry-adapted combinations we have used in the discus-
sion of e orbitals.

The following chapters will show many more examples of how the
systematic use of symmetry using the techniques of group theory can greatly
simplify the analysis of molecular structure and spectra.

Further information: matrices

Matrices are arrays of numbers with special rules for combining them
together. We shall consider n X n square matrices M with n? elements M,.:

Mll MIZ e Mln
My My ... M,
M= 21 22 2
Mnl Mn2 e Mnn

M, is the element in row r, column ¢ (r,c is a map reference). Two matrices
M and N are equal (written M = N) only if all corresponding elements are
equal: M,. = N, for all r,c.

The addition of two matrices,

M+N=P

is defined through

P.=M, +N,,
That is, add corresponding elements. For example,

1 2 5 6 1+5 2+6 6 8
M=(3 4) N=<7 8) M+N=<3+7 4+8)=<10 12)
The multiplication of two matrices is written
MN=P

and defined through

P.=2 M,N,

q

This rule can be remembered in terms of the following diagram:

r—L Multiply = — 3 r :-—: =\

[LTT111] H ] e =
T ] I/ - _I—_}IE'!-

g o gL J

Further information: matrices | 15
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For example, using the same matrices as above,

1 2)(5 6) (1x5+2x7 1><6+2x8)_(19 22)

3 4/\7 8/ \3x5+4x7 3x6+4x8/ \43 50

In this case NM # MN, and so matrix multiplication is ‘noncommutative’
and depends on the order of multiplication in general.

Several types of matrix have special names or properties. Among them
are the following:

A diagonal matrix is one in which all M,. =0 unless r = c. For example,

1 0y, ..
(0 5) is diagonal

0
(5 (1)) is not diagonal

My =(

The unit matrix 1 diagonal with all diagonal elements equal to 1. Thus, the

2 X 2 unit matrix is
10
1=(p 1)
01

The transpose of a matrix M is related to M by interchange of rows and

columns:
(1 2 T_(l 3)
M‘(3 4) M= 4

The inverse of a matrix M ™! satisfies
MM '=M"'M=1
The inverse can be constructed as follows:
(1) Calculate the determinant, det M, of the matrix M:

M=(1 2) detM=’; i=1><4—2><3=—2

3 4

If det M = 0 the matrix is singular and M ™! does not exist (just as 07" is not
defined in ordinary arithmetic).
(2) Form the transpose of M:

13
-3 )
2 4
(3) Form the matrix M’ of cofactors of M”, where a cofactor of an

element is the determinant formed from the matrix with row r, column ¢
struck out and multiplied by (—1)"*:

L 4 -2
M"(-s 1)

(4) The inverse is then
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An important application of matrices (apart from their role as repre-
sentatives of symmetry operations) is in the solution of simultaneous

equations. A set of equations
M||X| + M]zXZ +...+ M,,,x,, =
M2|x| + M22x2 +...+ Mznx,, =C;

Mnlxl + Mn2x2 +...+ Mnnxn =,
can be expressed in the compact form

Mx=c

where M is the matrix of coefficients and x and c¢ are the 1 X n matrices (or

‘column vectors’)

Xy Cy
X2 ¢
X = . c= .
Xn Cn

Then, on multiplying both sides of the matrix equation by M ' we obtain

x=M7'¢c

Hence, solving the set of equations amounts to finding the inverse of the

matrix of coefficients.

Further reading

F. A. Cotton, Chemical applications of group theory. Wiley, New York (1971).
S. F. A. Kettle, Symmetry and structure. Wiley, New York (1985).
D. C. Harris and M. D. Bertolucci, Symmetry and spectroscopy. Oxford University

Press (1978).

B. E. Douglas and C. Hollingsworth, Symmetry in bonding and structure. Academic

Press, New York (1985).

P. W. Atkins, Molecular quantum mechanics (2nd edn). Oxford University Press

(1983).

D. M. Bishop, Group theory and spectroscopy. Oxford University Press (1973).
P. W. Atkins, M. S. Child, and C. S. G. Phillips, Tables for group theory. Oxford

University Press (1970).

Exercises

15.1 The point group D; has four symmetry species of
irreducible representation. How many classes of symmetry
operations does it contain?

15.2 The CH,Cl molecule belongs to the point group C,,.
List the symmetry elements of the group and locate them in
the molecule.

15.3 Which of the following molecules may be polar? (a)
pyridine (C,,), (b) nitroethane (C.), (c) gas-phase HgBr,
(De), (d)  ByN;H, (D), (e) CH,Ql (G, (D
HWy(CO),o (Dav), (g) SnCl, (T,).

15.4 Use symmetry properties to determine whether or not

the integral [ p,zp, dt is necessarily zero in a molecule with
symmetry C,,.

155 Show that the transition A, — A, is forbidden for
electric dipole transitions in a C,, molecule.

15.6 Show that a set of five hybrid orbitals in a molecule of
C,, symmetry and the characters

E 2C, C, 20, 204
51 1 3 1

may have the composition p'd*,
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15.7 Show that the function xy has symmetry species B, in
the group C,..

15.8 Molecules belonging to the point groups Dy, Cy,, T,
and T, cannot be chiral. Which elements of these groups rule
out chirality?

15.9 The group D,, consists of the elements E, C,, C3, and
C4, where the three twofold rotations are around mutually
perpendicular axes. Construct the group multiplication table.

15.10 Identify the point groups to which the following
objects belong: (a) a sphere, (b) an isosceles triangle, (c) an
equilateral triangle, (d) an unsharpened cylindrical pencil, (e)
a sharpened cylindrical pencil, (f) a three-bladed propellor,
(g) a four-legged table, (h) yourself (approximately).

15.11 List the symmetry elements of the following molecules
and name the point groups to which they belong: (a) NO;, (b)
N,O, (¢) CHCl,;, (d) CH;~=CH., (e) cis-CHCI=CHCI, (f)
trans-CHCI=CHCI.

15.12 List the symmetry elements of the following molecules

and name the point groups to which they belong: (a)
naphthalene, (b) anthracene, (c) the three dichlorobenzenes.

15.13 Which of the molecules in Exercises 15.11 and 15.12
can be (a) polar, (b) chiral?
15.14 Consider the C,, molecule NO,. The combination

p.(A) — p.(B) of the two O atoms (with x perpendicular to
the plane) spans A,. Is there any orbital of the central N atom
that can have a non-zero overlap with that combination of O
orbitals? What would be the case in SO,, where 3d orbitals
might be available?

15.15 The ground state of NO, is A, in the group C,,. To
what excited states may it be excited by electric-dipole
transitions, and what polarization of light is it necessary to
use?

15.16 The ClO, molecule (which belongs to the group C,,)
was trapped in a solid. Its ground state is known to be B,.
Light polarized parallel to the y axis (parallel to the OO
separation) excited the molecule to an upper state. What is
the symmetry of that state?

15.17 What states of (a) benzene, (b) naphthalene may be
reached by electric dipole transitions from their (totally
symmetrical) ground states?

15.18 Confirm that the z component of orbital angular
momentum is a basis for an irreducible representation of A,
symmetry in Cs,.

15.19 Write f, =sin 0 and f, = cos 8, and show by symmetry
arguments using the group C, that the integral of their
product over a symmetrical range around the origin is zero.

Problems

15.1 List the symmetry elements of the following molecules
and name the point groups to which they belong: (a)
staggered CH,CHj, (b) chair and boat cyclohexane, (c) B,Hs,
(d) [Co(en);]** where en is ethylenediamine (ignore its
detailed structure), (e) crown-shaped S;. Which of these
molecules can be (i) polar, (ii) chiral?

15.2 The group C,, consists of the elements E, C,, oy, &
Construct the group multiplication table and find an example
of a molecule that belongs to the group.

15.3 The group D,, has a C, axis perpendicular to the
principal axis and a horizontal mirror plane. Show that the
group must therefore have a centre of inversion.

154 Consider the H,O molecule, which belongs to the
group C,,. Take as a basis the two Hls orbitals and the four
valence orbital of the O atom and set up the 6 X 6 matrices
that represent the group in this basis. Confirm by explicit
matrix multiplication that the group multiplications (a)
C,o,=0, and (b) o,0,=C,. Confirm, by calculating the
traces of the matrices, (a) that the representation is reducible,
and (b) that the basis spans 3A, + B, +2B,.

155 The (one-dimensional) matrices D(C;)=1 and
D(C,) =1, and D(C;) =1 and D(C;) = —1 both represent the
group multiplication C;C,=Cs in the group C, with
D(Cg) = +1 and —1 respectively. Use the character table to
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confirm these remarks. What are the representatives of o,
and o, in each case?

15.6 What irreducible representations do the four Hls
orbitals of CH, span? Are there s and p orbitals of the central
C atom that may form molecular orbitals with them? Could d
orbitals, even if they were present on the C atom, play a role
in orbital formation in CH,?

15.7 Suppose that a methane molecule became distorted to
(a) C,, symmetry by the lengthening of one bond, (b) C,
symmetry, by a kind of scissors action in which one bond
angle opened and another closed slightly. Would more d
orbitals become available for bonding?

15.8 The algebraic forms of the f orbitals are a radial
function multiplied by one of the factors

(a) z(5z2—3r%, (b) y(5y*—3r’), (c) x(5x* — 3r%)

(d) z(x*-y?), () y(x* - 2°), (O x(2* - y*), (g) xyz
Identify the irreducible representations spanned by these
Ol‘bitals in (a) CZva (b) CSV’ (C) T:!v (d) Oh' COﬂSider a
lanthanide ion at the center of (a) a tetrahedral complex, (b)

an octahedral complex. What sets of orbitals do the seven f
orbitals split into?

15.9 Which of the following transitions is allowed in (a) a



tetrahedral complex, (b) an octahedral complex: (i) d,, —
d., (i) d, — f.,,.?

15.10 Does the product xyz necessarily vanish when inte-
grated over (a) a cube, (b) a tetrahedron, (c) a hexagonal
prism, each centred on the origin?

15.11 Treat the naphthalene molecule as belonging to the
group C,, with the C, axis perpendicular to the plane. Classify
the irreducible representations spanned by the carbon 2p,
orbitals and find their symmetry-adapted linear combinations.

15.12 The NO, molecule belongs to the group C,,, with the

Problems | 15

C, axis bisecting the ONO angle. Taking as a basis the N2s,
N2p, and O2p orbitals, identify the irreducible repre-
sentations they span, and construct the symmetry-adapted
linear combinations.

15.13 Construct the symmetry-adapted linear combinations
of C2p. orbitals for benzene, and use them to calculate the
Hiickel secular determinant. This procedure leads to equa-
tions that are much easier to solve than using the original
orbitals, and show that the Hiickel orbitals are those specified
in Section 14.10.
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