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Check-list of key ideas

1. The classification of spectra as emission, absorption, and Raman
and the experimental techniques used for their study (Section 16.1).

2. The general principles of Fourier transform spectroscopy (Section
16.1).

3. The Einstein transition probabilities, and the coefficients of

stimulated absorption and emission and of spontaneous emission
(Section 16.2).

4. The transition dipole moment (eqn 10), the gross selection rule,
and the specific selection rules of transitions (Section 16.2).

5. The contributions to spectral linewidths (Section 16.3), particu-
larly Doppler broadening (eqn 11) and lifetime broadening (eqn 12).

6. The principles of Lamb-dip spectroscopy (Section 16.3).

7. The rotational energy levels of rigid rotors (Section 16.4) in terms
of the moments of inertia of molecules and their rotational constants
(eqns 14 to 16).

8. The Stark effect on the rotational energies of polar molecules in
electric fields (eqn 17).

9. The effect of centrifugal distortion on the rotational energy levels
of molecules (eqn 18).

10. The selection rules and transition moments of pure rotational
transitions and the contribution of state populations to the intensities
of spectral lines (Section 16.5).

11. The electric polarizabilities of molecules and their contribution to
the detection of rotational Raman transitions (Section 16.6).

12. The Stokes and anti-Stokes lines in a Raman spectrum (eqn 21).

13. The harmonic approximation for the description of the vibrations
of molecules (Section 16.7) and the vibrational terms of a diatomic
molecule (eqn 22).

14. The anharmonicity of molecular vibrations, its description in
terms of the Morse potential (eqn 23), and its effect on the vibrational
spectrum (Section 16.7).

15. The selection rules for vibrational transitions and the appearance
of vibrational spectra (Section 16.8).



16. The use of the Birge-Sponer extrapolation to determine dis-
sociation energies (Section 16.8 and Example 16.9).

17. The formation of P, Q, and R branches in vibration—rotation
spectra (Section 16.9).

18. The vibrational Raman spectra of diatomic molecules (Section
16.10).

18. The number of vibrations of polyatomic molecules (eqn 28) and
their description in terms of normal modes (Section 16.11).

20. The symmetry analysis of normal modes and their infrared and
Raman activities (Section 16.11 and Examples 16.10 to 16.12).

21. The appearance and analysis of the infrared spectra of poly-
atomic molecules (Section 16.12).

22. The exclusion rule for centrosymmetric molecules (Section 16.13)
and information from the depolarization ratios of Raman transitions
about the symmetries of normal modes (Section 16.13).

The origin of spectral lines in molecular spectroscopy is the emission or
absorption of a photon when the energy of a molecule changes. The
difference from atomic spectroscopy is that the energy of a molecule can
change not only as a result of electronic transitions but also because it can
undergo transitions between its rotational and vibrational states. Molecular
spectra are therefore more complex than atomic spectra. However, they
also contain information relating to more properties, and their analysis leads
to values of bond strengths, lengths, and angles. They also provide a way of
measuring a variety of molecular properties, particularly electric dipole
moments,

A pure rotational spectrum (one in which only the rotational state of the
molecule changes) can be observed, but vibrational spectra of gaseous
samples show features that arise from simultaneous rotational transitions.
Similarly, electronic spectra (Chapter 17) show features arising from
simultaneous vibrational and rotational transitions. The simplest way of
dealing with these complexities is to tackle each type of transition in turn,
and Ythen to see how simultaneous changes affect the appearance of the
spectrum.

General features of spectroscopy

All types of spectra have some features in common, and we examine these
first.

16.1 Experimental techniques

In emission spectroscopy, a molecule undergoes a transition from a state
of high energy E, to a state of lower energy E, and emits the excess energy
as a photon. In absorption spectroscopy, the net absorption' of nearly

! We say net absorption, since it will become clear that when a sample is irradiated, both
absorption and emission at a given frequency are stimulated, and the detector measures the
difference, the net absorption.

Experimental techniques | 16.1
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monochromatic incident radiation is monitored as it is swept over a range of
frequencies. The energy hv of the photon emitted or absorbed, and
therefore the frequency v of the radiation emitted or absorbed, is given by
the same Bohr frequency condition as we met for atoms:

hv=E,—E, (1)

This relation is often expressed in terms of the vacuum wavelength A
(usually in nanometers)

c
A=—
= (2a)
or the vacuum wavenumber ¥
STy
V= = (2b)

The units of the latter are almost always chosen as cm™'. Figure 16.1
summarizes the frequencies, wavelengths, and wavenumbers of the various
regions of the electromagnetic spectrum.

Emission and absorption spectroscopy give the same information about
energy level separations, but practical considerations generally determine
which technique is employed. In practice, emission spectroscopy, if it is
used at all, is used only for optical and ultraviolet spectroscopy; absorption
spectroscopy is much more widely used, and we shall concentrate on it.

All absorption spectrometers consist of a source of radiation, a sample
cell, usually a dispersing element, and a detector, and the characteristics of
each component depend on the region of the electromagnetic spectrum
being considered. Most spectrometers also include a monochromator.
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Fig. 16.1 The electromagnetic spectrum and the classification of the spectral regions.



Sources of radiation

The source generally produces radiation spanning a range of frequencies,
but in a few cases it generates monochromatic—single frequency—
radiation. One such case is the klystron, an electronic device used to
generate microwaves. Lasers—which we discuss in more detail in the next
chapter—give monochromatic radiation that can often be tuned over a
range of frequencies. For the far infrared, the source is a mercury arc inside
a quartz envelope, most of the radiation being generated by the hot quartz.
A Nernst filament is used to generate radiation in the near infrared. This
consists of a heated ceramic filament containing rare-earth oxides, which
emits radiation closely resembling that of a true black body. For the visible
region of the spectrum, a tungsten/iodine lamp is used, which gives out
intense white light. A discharge through deuterium gas or xenon in quartz is
still widely used for the near ultraviolet.

For certain applications, synchrotron radiation from a synchrotron
storage ring is appropriate. A synchrotron ring consists of an electron beam
(actually a series of closely spaced packets) travelling in a circle of several
metres in diameter. Since accelerated charges emit radiation, and electrons
travelling in a circle are being constantly accelerated by the forces that
constrain them to their path, the beam emits radiation. The emitted
radiation spans a wide range of frequencies, up to and including the far
ultraviolet, and in all except the microwave region is much more intense
than can be obtained by most conventional sources. The disadvantage of the
source is that it is so large and costly that it is essentially a national facility,
and not a laboratory commonplace.

The dispersing element and Fourier spectroscopy
In all but specialized techniques using monochromatic microwave radiation,
spectrometers include a component for separating the frequencies of the
radiation so that the variation of the absorption with frequency can be
monitored. In conventional spectrometers, this component is a dispersing
element that separates different frequencies into different spatial directions.
The simplest dispersing element is a glass or quartz prism (Fig. 16.2),
which utilizes the variation of refractive index with frequency of the incident
radiation. High-frequency radiation generally (but not always) results in a
higher refractive index than low-frequency radiation, and therefore un-
dergoes a greater deflection when passing through the prism. Problems of
absorption by the prism can be avoided by replacing it by a diffraction
grating. A diffraction grating consists of a glass or ceramic plate into which
fine grooves have been cut about 1000 nm apart (comparable to the
wavelength of visible light) and covered with a reflective aluminium coating.
The grating causes interference between waves reflected from its surface,
and constructive interference occurs at specific angles that depend on the
frequency of the radiation being used. By shaping the grooves appropri-
ately, the process called blazing (Fig. 16.3), the intensity of the interference
pattern can be enhanced.

Fourier transform techniques

Modern spectrometers, particularly those operating in the infrared, now
almost always use Fourier transform techniques of spectral detection and

Experimental techniques | 16.1

Long A, low v
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Fig. 16.2 One simple dispersing element is a
prism, which separates frequencies spatially
by making use of the higher refractive index of
high-frequency radiation. The shortest
wavelengths for which a glass prism can be
used is about 400 nm, but quartz can be used
down to 180 nm.

Fig. 16.3 A diffraction grating is ‘blazed’ as
shown here in order to enhance the intensity
of the diffracted radiation in each direction.
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Fig. 16.4 A Michelson interferometer. The
beam-splitting element divides the incident
beam into two beams with a path difference
that depends on the location of the mirror M,.
The compensator ensures that both beams
pass through the same thickness of material.
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Fig. 16.5 An interferogram produced as the
path length pis changed in the interferometer
shown in Fig. 16.4 and radiation of wavelength
A is present.

analysis. The heart of a Fourier transform spectrometer is a Michelson
interferometer, which is a device for analyzing the frequencies present in a
composite signal. The total signal from a sample is the analogue of a chord
played on a piano, and the Fourier transformation of the signal is equivalent
to the separation of the chord into its individual notes, the spectrum. The
advantage of this procedure is the greater sensitivity that stems from the fact
that the detector monitors the entire spectrum simultaneously rather than
one frequency at a time.

The Michelson interferometer works by splitting the beam from the
sample into two (Fig. 16.4) and introducing a varying path difference p into
one of them. When the two components recombine, there is a phase
difference between them, and they interfere either constructively or
destructively depending on the extra path that one has taken. The detected
signal oscillates as the two components alternately come into and out of
phase as p is changed (Fig. 16.5), and if the radiation has wavenumber ¥,
the detected signal varies with p as

I(p) = I(¥) cos 2m¥p

Hence, the interferometer converts the presence of a particular component
in the signal into a variation in intensity of the radiation reaching the
detector. An actual signal consists of radiation spanning a large number of
wavenumbers, and the total intensity at the detector is the sum of all their
oscillating intensities:

I(p)=f 1(¥) cos 2xvp dv
0

Example 16.1: Calculating a Fourier transform spectrum

AAAA

Draw the total signal that would be expected for a signal consisting of three
wavenumbers, one of 1000cm ' of intensity /, another of wavenumber
1100 cm ' of intensity 2/, and a third of wavenumber 1150 cm ™' of intensity /.

Answer. The only contributions to the integral defining /(p) are at the three
specified wavenumbers, so the integral consists of the three terms

11
+2[ cos 2w X 00p+ il cos2m X 1150p
cm m

/\AA/\ \

I(p)=1cos2x X

1000p
m

[T

VVV\

(b)

Fig. 16.6 (a) The interferogram obtained under the circumstances described in Example 16.1 when three components are present in the radiation and
{b) the interferogram when five components are present.
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The plot of I(p)/1 against p in the range p = 0 to 0.1 cm is shown in Fig. 16.6a,
and shows the signal that would be detected.

Comment. It is very easy to program calculations like these for a computer,
and to explore how the signal changes as different components are included in
the spectrum.

Exercise. Include two further components in the spectrum, one at 950 cm ! of
intensity 2/ and another at 975 cm ! of intensity 0.751. (Fig. 16.6b]

The problem is to find /(#), the variation of intensity with wavenumber,
which is the spectrum we require. This step is a standard technique of
mathematics, and is the ‘Fourier transformation’ step from which this form
of spectroscopy takes its name. Specifically:

1(1’/)=f I(p) cos 2ztvp dp
0

Thus, as we illustrate schematically in Fig. 16.7, we take the signal I(p) for
each path difference, multiply the intensity at each value of p by the value
of cos 2x¥p, and add all the products together. When the result is plotted
against wavenumber, we get the absorption spectrum (Fig. 16.7b). In
practice, the Fourier analysis step is carried out in a computer built into the
spectrometer.

Detectors

The third component of a spectrometer is the detector, the device that
converts incident radiation into an electric current for the appropriate signal
processing or plotting. Radiation-sensitive semiconductor devices are in-
creasingly dominating this role in the spectrometer. However, in the optical
and ultraviolet region, photographic recording or a photomultiplier are
widely used. In the latter device, an incident photon ejects an electron from
a photosensitive surface, the electron is accelerated by a potential
difference, and ejects a shower of electrons where it strikes a screen. These

Multiply o
Add Interferogram Wavelength
J of interest
1000 1100 1200

!
W/ W/

(a) (b)

Fig. 16.7 (a) A schematic diagram illustrating the principle of the extraction of a Fourier transform of an interferogram. At each value of p the observed
spectrum is multiplied by the amplitude of the cosine function at the wavelength of interest. The sum of the products (the integration) is zero if the
harmonic is not present in the signal but is non-zero if it is present. (b) When the procedure is repeated for all wavelengths, the function obtained is the
absorption spectrum of the sample.
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electrons are accelerated, and each one releases a further shower on impact
with another screen. Thus the impact of the initial photon is converted into
a cascade of electrons, which is converted into a current in an external
circuit.

Although semiconductor detectors are increasingly being used in the
infrared, thermocouples are still widely used. A thermocouple detector
consists typically of a blackened gold foil to which are attached thermo-
electric alloys. A thermistor bolometer is essentially a resistance ther-
mometer, and is typically formed from a mixture of oxides deposited on
quartz. In each case the radiation is chopped by a shutter that rotates in the
beam so that an alternating signal is obtained from the detector (which is
easier to amplify than a steady signal). A microwave detector is typically a
crystal diode consisting of a tungsten tip in contact with a semiconductor,
such as germanium, silicon, or gallium arsenide.

The sample

The highest resolution is obtained when the sample is gaseous and of such
low pressure that collisions between the molecules are infrequent. Gaseous
samples are essential for rotational (microwave) spectroscopy, for only then
can molecules rotate freely. To achieve sufficient absorption, the path
lengths of gaseous samples must be very long, of the order of metres; long
path lengths are achieved by multiple passage of the beam between two
parallel mirrors at each end of the sample cavity.

For infrared spectroscopy, the sample is typically a liquid held between
windows of sodium chloride (which is transparent down to 700 cm™') or
potassium bromide (down to 400 cm™'). Other ways of preparing the sample
include grinding into a paste with ‘Nujol’, a hydrocarbon oil, or pressing it
into a solid disk, perhaps with powdered potassium bromide.

Raman spectroscopy

In Raman spectroscopy the energy levels of molecules are explored by
examining the frequencies present in the radiation scattered by molecules.
In a typical experiment, a monochromatic incident beam—typically in the
visible region of the spectrum—is passed through the sample and the
radiation scattered perpendicular to the beam is monitored. Some of the
incident photons collide with the molecules, give up some of their energy,
and emerge with a lower energy. These scattered photons constitute the
lower-frequency Stokes radiation from the sample. Other incident photons
may collect energy from the molecules (if they are already excited), and
emerge as higher-frequency anti-Stokes radiation. The shifts in frequency
of the scattered radiation from the incident radiation are quite small, and
the latter must be very monochromatic if the shifts are to be observed.
Moreover, the intensity of scattered radiation is low, and so very intense
incident beams are needed. Lasers are ideal in both respects, and have
entirely displaced the mercury arcs used originally. Detection is usually with
a photomultiplier.

16.2 The intensities of spectral lines

A glance at the spectra (whether emission, absorption, or Raman)
illustrated in this chapter and the next shows that their lines occur with a
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variety of intensities. We shall also see that some lines that might be
expected to occur do not appear at all. To account for these features, we
must see how the intensities of spectral lines depend on the numbers of
molecules in various states and how strongly individual transitions are able
to interact with the electromagnetic field and generate or absorb photons.

The Einstein transition probabilities

Einstein considered the question of the rates of transitions between two
levels in the presence of an electromagnetic field, and wrote the transition
rate’ w from the lower to the upper state as

w=Bp (3)

B is the Einstein coefficient of stimulated absorption and p is the energy
density of radiation at the frequency of the transition. If the molecule is
exposed to black-body radiation from a source of temperature T, p is given
by the Planck distribution (eqn 12 of Section 11.2 expressed in terms of

frequency?):
8nhv’ 1
= o AT 4)

The coefficient B depends only on the wavefunctions of the states involved
in the transition, and we describe it in more detail later. For the time being
we can treat B as an empirical parameter that characterizes the transition.
The total rate of absorption W, the number of molecules undergoing
excitation, is the transition rate of a single molecule multiplied by the
number of molecules N in the lower state:

W =Nw (5)

Einstein considered that the radiation was also able to induce the
molecule in the upper state to undergo a transition to the lower state, and
hence to generate a photon of frequency v. Thus, he wrote the rate of this
stimulated emission as

w'=B'p (6)
where B’ is the Einstein coefficient of stimulated emission. However, he

? Specifically, w is the rate of change of probability of the molecule being found in the upper
state:

w=9F
T dr
* The energy density is expressed in terms of frequency by writing
dU=p(v)dv
in place of
dU = p(A) dA

The relation between the p used here, which is p(v), and p(A) in eqn 12 of Section 12.2 is then
obtained using
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Fig. 16.8 The processes that account for
absorption and emission of radiation and the
attainment of thermal equilibrium. The excited
state can return to the lower state
spontaneously as well as by a process
stimulated by radiation already present at the
transition frequency.
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realized that this was not the only means by which the excited state could
generate radiation and return to the lower state. If it were, the total rate of
return would be N'w’, and at thermal equilibrium, when the rate of
absorption is equal to the rate of emission, we would be able to write

NBp=N'B'p
which rearranges to
N' B
N B

However, it is known from very general grounds (which will be derived in
Chapter 19), that the populations of the two states are given by the
Boltzmann distribution:

N' —hvikT

—=e " hv=E'—E

N© v

The ratio of populations should therefore be temperature-dependent, but
the ratio of the Einstein coefficients is independent of the temperature.

To resolve this inconsistency, Einstein proposed that the upper state was
able to discard energy by spontaneous emission at a rate that is
independent of the intensity of radiation already present (Fig. 16.8). He
therefore wrote the total rate of transition to a lower state as

w=A+B'p N

A is the Einstein coefficient of spontaneous emission. The overall rate of
emission is
W'=N'(A+ B'p) (8)

At thermal equilibrium, the rates of emission and absorption are equal, and

SO
NBp=N'(A+ B'p)

Since the radiation intensity no longer cancels, and is temperature depend-
ent, the ratio of populations is no longer inconsistent with the Boltzmann
distribution. More specifically, we can arrange the last expression into

_ NA A1
P"NB-N'B' BN _B
N B
_A_ 1
—BhvfkT B'
€ B

We have used the Boltzmann expression in the last line. This result is
encouraging, since it has the same form as the Planck distribution (eqn 4),
which is known to describe the radiation density at thermal equilibrium.
Indeed, when we compare the two expressions for p, we can conclude that

B'=B (%9a)

A=—73—XB (9b)
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That is, the coefficients of stimulated absorption and emission are equal,
and the relative importance of spontaneous emission grows as the cube of
the frequency of the transition. The strong growth of the relative impor-
tance of spontaneous emission with increasing frequency is a very important
conclusion, as we shall see when we consider the operation of lasers in the
next chapter. The equality of B and B’ implies that if two states happen to
have equal populations, then the rate of stimulated emission is exactly equal
to the rate of stimulated absorption, and there is then no net absorption.

The population of states

At low frequencies, such as those involved in rotational and vibrational
transitions considered in this chapter, spontaneous emission can be largely
ignored and the intensities of the transition discussed in terms of the
coefficients of stimulated emission and absorption. Then the net rate of
absorption is given by

Woe=NBp —N'B'p=(N — N')Bp

and is proportional to the population difference of the two states involved in
the transition. If the sample is at thermal equilibrium at a temperature T we
may use the Boltzmann distribution to write the population difference as

N’
N-=N'= ( _.._)
N'=N(1 N

= N(l —e —vafk’l)

Therefore, the intensity of net absorption is proportional to the population
N of the lower state as well as to the difference in population of the upper
and lower states.

Example 16.2: Estimating relative transition intensities

Estimate the relative intensities at 25°C of absorptions originating in the
ground state and the first excited state when the energy levels involved are
separated by (a) 10000 cm ', (b) 1000 cm ', and (c) 1 cm ",

Answer. At 25°C, kT/hc =207 cm ', so the population differences between
adjacent states is determined by the factor

(a) 1—e *=1.000
1—e "4 T={ (b) 1 —e *5=0.99
(c) 1—e °™*=0.0048

We draw two conclusions. The first is that the population of the upper state is
negligible in (a) and (b), the only significant absorption is from the lower state.
The second is that in these two cases, the stimulated emission from the upper
state is also negligible, and we need consider only stimulated absorption when
assessing the intensity of a transition. However, for (c) we can draw neither
conclusion. Since in this case adjacent states are almost equally populated,
transitions can originate with significant intensity from many states, and
stimulated emission from upper states makes a significant contribution to the
net absorption intensity.

Exercise. Repeat the analysis for a temperature of 1500 K.
[(a) As before, upper-state populations significant for (b) and (c)]
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It follows from the last equation that the relative intensities of two lines
corresponding to transitions originating from two different states should be
proportional to the relative populations of the two initial states. Since the
first electronically excited state of a molecule is usually of the order of
10 cm ! above the ground state, it is not populated at room temperature
(see Example 16.2). Therefore, an electronic absorption spectrum is
normally due entirely to transitions originating from the ground electronic
state. Vibrational energy levels are separated by around 10 to 10°cm ™',
and so the principal transitions are also normally those from the ground
vibrational state, and stimulated emission makes a negligible contribution to
the net absorption. In contrast, rotational energy levels are separated by
only 1to 10°cm ', and many states are occupied even at room temperature;
consequently, rotational transitions occur from a wide range of initial states,
not only the lowest, and stimulated emission from the occupied higher states
is important.

Molecules are often prepared in short-lived excited states as a result of
chemical reaction, electric discharge, or photolysis. In these cases the
populations may be quite different from those at thermal equilibrium, and
the spectra—if they can be taken quickly enough—then arise from
transitions from all the populated levels.

Selection rules and transition moments

We met the concept of a ‘selection rule’ in Section 13.3 as a rule that
determines whether a transition is forbidden or allowed. Selection rules also
apply to molecular spectra, and the form they take depends on the type of
transition. The underlying classical idea is that, for the molecule to be able
to interact with the electromagnetic field and absorb or create a photon of
frequency v, it must possess, at least transiently, a dipole oscillating at that
frequency. For emission and absorption spectra (we treat Raman spectra
later) this transient dipole is expressed quantum mechanically in terms of
the transition dipole moment, and for a transition between states with
wavefunctions ; and ¥ is defined as

M= —¢€ f Yiry,dt (10a)

where r is the location of the electron. The coefficient of stimulated
absorption (and emission), and therefore the intensity of the transition, is
proportional to the square of the transition dipole moment, and a detailed
analysis gives

|ual®

B=-""
6ot (10b)

and so only if the transition moment is non-zero does the transition
contribute to the spectrum. We see that, to identify the selection rules, we
must establish the conditions for which pg#0.

A gross selection rule specifies the general features a molecule must have
if it is to have a spectrum of a given kind. For rotational transitions, the
transition moment is zero unless the molecule has a permanent electric
dipole. That is, the molecule must be polar. The classical basis of this rule is



that a polar molecule appears to possess a fluctuating dipole when rotating
(Fig. 16.9) but a nonpolar molecule does not. The permanent dipole can be
regarded as a handle with which the molecule stirs the electromagnetic field
into oscillation (and vice versa for absorption).

The transition moment is zero in a vibrational transition unless the
electric dipole moment of the molecule changes during the vibration. The
classical basis of this rule is that the molecule can shake the electromagnetic
field into oscillation if its dipole changes as it vibrates (Fig. 16.10). The
molecule need not have a permanent dipole: the rule requires only a change
in dipole moment, possibly from zero. Some vibrations do not affect the
molecule’s dipole moment (e.g. the stretching motion of a homonuclear
diatomic molecule), and so they neither absorb nor generate radiation: such
vibrations are said to be inactive in the infrared.

Example 16.3: Using the gross selection rules
State which of the following molecules have (a) rotational absorption spectra,
(b) vibrational absorption spectra: N., CO,, OCS, H,0, CH,—=CH,, CsHs.
Answer. (a) Molecules that give rise to rotational spectra have a permanent
dipole moment; therefore, select the polar molecules. Only OCS and H,O are
polar, and so only these two give rise to a rotational absorption spectrum. (b)
Molecules that give rise to vibrational spectra have dipole moments that
change during the course of a vibration. Therefore, judge whether a distortion
of the molecule can change its dipole moment (including changing it from
zero). All the molecules except N, possess at least one vibrational mode that
results in a change of a dipole moment, and so all except N, can show a
vibrational absorption spectrum.
Comment. Not all the modes of complex molecules are vibrationally active.
For example, the symmetric stretch of CO,, in which the O—C—O bonds
stretch and contract symmetrically is inactive because it leaves the dipole
moment unchanged (at zero),
Exercise. Repeat the question for H,, NO, N,O, CH,.

[(a) NO, N,O; (b) NO, N,O, CH,]

A more detailed study of the transition moment leads to the specific
selection rules that express the allowed transitions in terms of the changes
in quantum numbers (as in the rule A/ = +1 for atoms). Specific selection
rules can often be interpreted in terms of the changes of angular momentum
when a photon (with its intrinsic spin angular momentum s = 1) enters or
leaves a molecule, and we shall discuss them once we have set up the
quantum numbers needed to describe rotation and vibration.

16.3 Linewidths

Spectral lines are not infinitely narrow, and in condensed media may spread
over several thousand cm™!,

Doppler broadening

One important broadening process in gaseous samples is the Doppler effect,
in which radiation is shifted in frequency when the source is moving towards
or away from the observer. When a source emitting radiation of frequency v

Linewidths | 16.3

D

Fig. 16.9 To a stationary observer, a rotating
polar molecule looks like an oscillating dipole
which can stir the electromagnetic field into
oscillation. This picture is the classical origin
of the gross selection rule for rotational
transitions.

1 l Dipole

D
1

Fig. 16.10 The oscillation of a molecule, even
it it is nonpolar, may result in an oscillating
dipole that can interact with the
electromagnetic field.
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recedes with a speed v, the observer detects radiation of frequency
v =- Y
1+v/c

where c is the speed of the radiation (the speed of light for electromagnetic
radiation, the speed of sound for sound waves). A source approaching the
observer appears to be emitting radiation of frequency

vi= Y
1-v/c
Molecules reach high speeds in all directions in a gas, and a static
—20 0.0 20 observer detects the corresponding Doppler shifted range of frequencies.
x o (A= Ag) Ay Some molecules approach the observer, some move away; some move
Fig. 16.11 The shape of a Doppler-broadened quickly, others slowly. The detected spectral ‘line’ is the absorption or
Zl;:“;ai’“';: ::2‘:‘:‘:1"": m;“:’z'ngis;:;'::::’:f emission profile arising from all the resulting Doppler shifts. The profile
eds . . . .
the ';xpe,;mem_ Notit':Je that the .i,,f broadens reflects the Maxwell distribution of molecular speeds parallel to the line of
as the temperature s increased. The width at sight (see Section 24.2), which is a bell-shaped Gaussian curve (of the form

half height, 1, is given by eqn 11. e *’). The Doppler line shape is therefore also a Gaussian curve (Fig.

16.11), and calculation shows that when the temperature is T and the mass
of the molecule is m, the width of the line at half-height is

12
6v=%Yx (%ln 2) (11a)

In terms of the wavelength,

2A <2kT )”2 (11b)

A=—x|{—In2
c m

Example 16.4: Using the linewidth to measure a temperature

The sun emits a spectral line at 677.4 nm which has been identified as arising
from a transition in highly ionized *Fe. Its width at half-height is 5.3 pm.
What is the temperature of the sun’s surface?

Answer. Equation 11b rearranges to

2

_( mc® \(OA\? _ = n o [OA
T_(Sklnz)().) =1.949 X 102K x M/(g mol )x(T)

where M is the molar mass of the emitter. Since M =57gmol ', and
6A/A=7.82%10"° we find T =6.8 X 10°K.

Comment. Temperatures may also be judged using Wien’s Law (eqn 8 of
Section 11.2) and looking for the maximum in the intensity of output of the
sun {or star) regarded as a black body. Fitting the entire Planck distribution
(eqn 4) to the observed intensity profile is another approach.

Exercise. What is the Doppler linewidth of the spectrum of an interstellar
NH; molecule close to 240 GHz at 10 K? {50 Hz]

Doppler broadening increases with temperature because the molecules
acquire a wider range of speeds. Therefore, to obtain spectra of maximum
sharpness, it is best to work with cold samples.
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Lamb-dip spectroscopy

A novel approach to the elimination of Doppler broadening has become
available with the advent of lasers and their extremely high monochromati-
city and of radiofrequency techniques with precise frequency control. The
precise location of absorption frequencies in this way is called Lamb-dip
spectroscopy, which is named after its discoverer.

When an intense, monochromatic beam with a frequency slightly higher
than that of the absorption maximum passes through a gaseous sample, only
the molecules that happen to be moving away from the source at some
precise speed absorb radiation. If the beam is then reflected back through
the sample (Fig. 16.12), more radiation is absorbed, but this time by the
molecules that happen to be moving at the same precise speed but away
from the mirror. The detector therefore observes a double dose of
absorption. However, when the incident radiation is at the absorption peak,
only those molecules moving perpendicular to the line of the beam (and
therefore having no Doppler shift) absorb on the reflected path. Because
some of those molecules were excited on the first passage, fewer are
available to absorb the light on its second passage, and so a less intense
absorption is observed. This appears as a dip, the Lamb dip, in the
absorption curve, and its position gives a very precise location of the
transition frequency.

Lifetime broadening

It is found that spectral lines are still not infinitely sharp even when Doppler
broadening has been largely eliminated, either by working at low tempera-
tures or by Lamb-dip spectroscopy.

When the Schrédinger equation is solved for a system that is changing
with time, it is found that it is impossible to specify the energy levels
exactly. If on average a system survives in a state for a time 7, the lifetime
of the state, its energy levels are blurred to an extent of order SOE, where

h
8E ~~ (12a)

Equation 12a is reminiscent of the Heisenberg uncertainty principle (eqn 33
of Section 11.6), and although the connection is tenuous, lifetime broaden-
ing is often called ‘uncertainty broadening’. Expressing the energy spread in
wavenumbers through 8E = hcdv and using the values of the fundamental
constants gives the practical form of the relation as

5.3cm™!
6v~+;; (12b)

No excited state has an infinite lifetime; therefore, all states are subject to
some lifetime broadening, and the shorter the lifetimes of the states
involved in a transition, the broader the spectral lines.

Three processes are principally responsible for the finite lifetimes of
excited states. The dominant one is collisional deactivation, which arises
from collisions between molecules or with the walls of the container. If the
collisional lifetime is 1., the resulting collisional linewidth is OF ., = h/1,,.

Linewidths | 16.3

Absorbance

Lamb dip

Fig. 16.12 A Lamb dip. The origin is
explained in the text: Lamb-dip spectroscopy
enables the positions of the centres of
absorption lines to be pinpointed very
precisely even if there is Doppler broadening.
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Table 16.1. Moments of inertiat

1. Diatomics
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4. Spherical rotors

ma ma
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2
=3muR R ma
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mg
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I=4m,R?

t In each case m is the total mass of the molecule.



The collisional lifetime can be lengthened, and the broadening minimized,
by working at low pressures.

The rate of spontaneous emission cannot be changed. Hence it is a
natural limit to the lifetime of an excited state, and the resulting lifetime
broadening is the natural linewidth of the transition. The natural linewidth
is an intrinsic property of the transition, and cannot be changed by
modifying the conditions.

Natural linewidths depend strongly on the transition frequency (they
increase with A and therefore as v*), and so low-frequency transitions (such
as the microwave transitions of rotational spectroscopy) have very small
natural linewidths, and collisional and Doppler line-broadening processes
are dominant. The natural lifetimes of electronic transitions are very much
shorter than for vibrational and rotational transitions, and so the natural
linewidths of electronic transitions are much greater than those of vibra-
tional and rotational transitions. For example, a typical electronic excited
state natural lifetime is about 10 *s (10* ps), corresponding to a natural
width of about 5% 10 *cm ' (15 MHz). A typical rotational natural lifetime
is about 10%s, corresponding to a natural linewidth of only 5x 10 'S cm ™'
(104 Hz).

Pure rotational spectra

The general strategy that we shall adopt for discussing molecular spectra
and the information they contain is to find expressions for the energy levels
of molecules and then to calculate the transition frequencies by applying the
selection rules. We then predict the appearance of the spectrum by taking
into account the populations of the states. In this section we illustrate the
strategy by considering the rotational energy levels and selection rules for
molecules.

The key molecular parameter we shall need is the moment of inertia / of
the molecule about various axes. The moment of inertia is defined as the
mass of each atom multiplied by the square of its distance from the
rotational axis (Fig. 16.13):

1=Emixi2
i

The moment of inertia depends on the masses of the atoms present and the
molecular geometry, so we can suspect (and later shall see explicitly) that
rotational spectroscopy will give information about bond lengths and bond
angles. The explicit expressions for the moments of inertia of some
symmetrical molecules are given in Table 16.1. The convention is to label
the moments of inertia I, I, and I, with Ic=I; = 1,.

Example 16.5: Calculating the moment of inertia of a molecule

Calculate the moment of inertia of an H,O molecule around its two-fold axis
(the bisector of the HOH angle.

Answer. The moment of inertia is the sum of the masses multiplied by the
squares of their distances from the axis of rotation:

1= mx?=mux*+ 0+ myx?

= Zm"xz

Linewidths | 16.3

, .
I=mpxp+my xi,

"y

XD

my
Fig. 16.13 The definition of the moment of
inertia, the sum of each mass muitiplied by the
square of its perpendicular distance from the
axis of rotation. Neither B nor C contributes to
the moment about the axis shown.

473



16.4 | Rotational and vibrational spectra

474

If the bond angle of the molecule is denoted 2¢» and the bond length is R,
trigonometry gives

x=Rsin ¢
and therefore
l = 2m"R2 Sinz ¢

For H,O, with bond angle 104.5° and bond length 95.7 pm, we obtain

I=2%1.67x10 kg X (9.57 x 10 "' m)” x sin> 52.3°
=1.91x 10 " kg m*
Comment. The mass of the O atom makes no contribution to the moment of
inertia for this mode of rotation as it is immobile while the H atoms rotate
around it.
Exercise. Calculate the moment of inertia of a CHCl; molecule around its

threefold axis. The C—CIl bond length is 177 pm and the HCCI angle is 142°.
2.1 x 10 *kgm?)

We shall suppose initially that molecules are rigid rotors that do not
distort under the stress of rotation. Spherical rotors are molecules with all
three moments of inertia equal (such as CH,); symmetric rotors have two
equal moments of inertia (such as NHj;). Linear rotors have one moment of
inertia (the one about the axis) equal to zero (such as CO, and HCI). In
group theoretical language, a spherical rotor is a molecule belonging to a
cubic point group and a symmetric rotor is one with at least a threefold axis
of symmetry. All diatomic molecules are linear rotors. The energy levels of
asymmetric rotors, which have three different moments of inertia (e.g.
H,0) are complicated and we shall not consider them.

16.4 The rotational energy levels

The rotational energy levels of a molecule may be obtained by solving the
Schrodinger equation. Fortunately there is a much less onerous short-cut
which depends on noting the classical expression for the energy of a rotating
body, expressing it in terms of the angular momentum, and then importing
the quantum mechanical properties of angular momentum into the
equations.

The energy of a body rotating about some axis x is

E=1il0?

where o, is the angular velocity (in rads™') about the axis and I, is the
moment of inertia about the axis. A body free to rotate about three axes has

an energy
E=ilwi+ilo)+ilw;

Since the classical angular momentum about x is
J, =1,
with similar expressions for the other directions, it follows that

L e

T T, (13)



This is the key equation. We described the quantum-mechanical properties
of angular momentum in Section 12.7 (see Box 12.1), and we can now make
use of them in conjunction with this equation to obtain the rotational energy
levels.

Spherical rotors
When all three moments of inertia are equal to some value /, as in CH, and
SFs, the classical expression for the energy is

2

1 J
E=_(Ji+J:+13)=:
21( sty T 21

where J is the magnitude of the angular momentum. We can immediately
find the quantum expression by making the replacement

J—>JJ+1)R* with J=0,1,2,...
Therefore, the energy of a spherical rotor is confined to the values

’2
E,=J(J+1)2Ll with J=0,1,2,...

The energy is normally expressed in terms of the rotational constant B of
the molecule, where

h2

hcB =—

21
The rotational constant as defined by this equation has the dimensions of a
wavenumber* and is normally expressed in cm~'. The energy of a rotational
state is normally reported as the rotational term F(J), its value expressed as
a wavenumber, by division by hc:

FU)=BIJ+1) B=-—— (14)

The separation of adjacent terms is
F(J+1)-F(J)=2BJ

Since the separation decreases as I increases, we see that large molecules
have closely spaced rotational energy levels. We can estimate the magnitude
of the separation by considering CCl,: from the bond lengths and masses of
the atoms we find / =4.85 X 10 *° kg m?, and hence B =5.24cm™".

Symmetric rotors

In symmetric rotors I, = I, # I, (as in CH;Cl, NH,, and C,H,) and z is the
figure axis (the principal axis) of the molecule. We shall write 1, = I, and
I.=1,=1,. If I, >1, the rotor is oblate (like a pancake, such as CgsHg); if

* The definition of B as a wavenumber is convenient when we come to vibration-rotation
spectra. However, for pure rotational spectroscopy it is more common to define B as a
frequency and to report it in MHz or GHz. The appropriate definition is then

= f
4al
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(a)

(b)

K=0

Fig. 16.14 The significance of the quantum
number K. (a) When |K| is close to its
maximum value, J, most of the molecular
rotation is around the figure axis. (b) When

K =0 the molecule has no angular momentum
about its figure axis: it is undergoing end-
over-end rotation.
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I, <1, it is prolate (like a cigar, such as PCls). The classical expression for
the energy becomes

Pl P
=L Ty s

E
20, 2,

We can rewrite this in terms of J>=JZ+J%+J2 by adding and subtracting
VR
2+ 24022 2
polat il 1o I
21, a1, 2,

J? 1 1
)
21, \21, 21,
Now we generate the quantum expression by replacing J* by J(J + 1)#?,
where J is the angular momentum quantum number. We also know from

the quantum theory of angular momentum (Box 12.1) that the component
of angular momentum about any axis is restricted to the values

J.=Kh K=0,=%1,...,4J

(K is the quantum number used to signify a component on the figure axis; M
is reserved for a component on a laboratory axis.) Consequently we also
replace JZ by K*#%. The rotational terms are therefore

F(J, K)=BJ(J +1)+ (A - B)K? (15a)
TS PRt e W e A L e
fi h
= 4l - drcl | (Lb)

Equation 15a matches what we should expect for the dependence of the
energy levels on the two moments of inertia of the molecule. When K =0,
there is no component of angular momentum about the figure axis (Fig.
16.14) and the energy levels depend only on I,. When K = +J, almost all
the angular momentum arises from rotation around the figure axis, and the
energy levels are determined largely by /,. The sign of K does not affect the
energy because opposite values of K correspond to opposite senses of
rotation, and the energy does not depend on the sense of rotation.

Example 16.6: Calculating the rotational energy levels of a molecule

The "“NH, molecule is a symmetric rotor with bond length 101.2 pm and HNH
bond angle 106.7°. Calculate its rotational terms.

Answer. We need to calculate the rotational constants A and B using the
expressions for moments of inertia given in Table 16.1. Substitution of
my =1.0078 u, mg =14.0031u, R =101.2 pm, and 6 = 106.7° into the second
of the symmetric rotor expressions in Table 16.1 gives

[,=4.4128x 10 “kgm*® I, =2.8059 %X 10 “ kgm?
Hence, A =6.3d44cm ' and B =9.977 cm . It follows from eqn 15a that
F{, K)/em '=9.977J(J + 1) - 3.633K?



Comment. For J =1, the energy needed for the molecule to rotate mainly
about its figure axis (K =J) is equivalent to 16.32cm ', but end-over-end
rotation (K = 0) corresponds to 19.95cm ",

Exercise. The CHY’Cl molecule has a C—Cl bond length of 178 pm, a C—H
bond length of 111 pm, and an HCH angle of 110.5°. Calculate its rotational
energy levels. [FU, K)/em '=0.444)(J + 1) + 4.58K?]

Linear rotors

For a linear rotor (such as CO,, HCl, and C,H,) in which the atoms are
regarded as mass points, the rotation occurs only about an axis perpendicu-
lar to the line of atoms and there is zero angular momentum around the
line. Therefore we can use eqn 15a with K =0. The rotational terms are
therefore

FU)=BIJ+1) J=0,1,2,... (16)

Degeneracies and the Stark effect

The symmetric rotor has an energy that depends on J and K, and each level
except those with K=0 is doubly degenerate (the K, —K degeneracy).
However, we must not forget that an angular momentum has a component
on a laboratory axis. This component is quantized, and its permitted values
are M;h with M, =0, £1,..., +J for 2J +1 values in all. The quantum
number M, does not appear in the expression for the energy, but it is still
necessary for a complete specification of the state of the rotor. Therefore, a
symmetric rotor level is 2(2J + 1)-fold degenerate for K #0 and 2J +1)-
fold degenerate if K =0:

g0, K)=2QJ+1) g(J,0)=2J+1

where g denotes the degeneracy. A linear rotor has K fixed at 0, but the
angular momentum may still have 2J + 1 components on the laboratory
axis; hence,

g)=27+1

A spherical rotor is the limit of a symmetric rotor with A vanishingly
different from B: K may still take any one of 2J + 1 values, but the energy is
independent of which value it takes. Therefore, as well as having a
(2J +1)-fold degeneracy arising from the orientation in space, it also
has a (2J + 1)-fold degeneracy arising from the orientation with respect to
an axis selected in the molecule. The overall degeneracy of a symmetric
rotor with quantum number J is therefore

gU)=(J +1)

This degeneracy increases very rapidly: when J = 10, for instance, there are
441 states of the same energy.

The M,-degeneracy is removed when an electric field is applied to a polar
molecule (e.g. HCl or NH,) because now the energy of the molecule
depends on its orientation in space. The splitting of states by an electric field
is called the Stark effect. For a linear rotor in an electric field & the energy

The rotational energy levels | 16.4
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is given by

2¢02 2

uE{J(J + 1) - 3M3)

E;pm,=hcBJ(J + 1)+ ——— 17

s, =heBIU )+ o0+ 1)@ - 1)@ +3) a7

Note that the energy depends on the square of the permanent electric dipole

moment u, and so the measurement of the Stark effect is a way of
measuring this property.

Centrifugal distortion

The atoms of rotating molecules are subject to centrifugal forces that tend
to distort the molecular geometry and change the moments of inertia. For a
diatomic molecule, the centrifugal distortion stretches the bond, and
therefore increases the moment of inertia; as a result, the energy levels are
less far apart than the rigid-rotor expressions predict. The effect is usually
taken into account by subtracting a term from the energy and writing

F(J)=BJ(J + 1) — DJ*(J + 1) (18a)

D, is the centrifugal distortion constant: it is large when the bond is easily
stretched. The centrifugal distortion constant of a diatomic molecule is
related to the vibrational wavenumber of the bond ¥ (which, as we shall see
later, is a measure of its stiffness):

(18b)

Hence the observation of the convergence of the rotational levels as J
increases can be interpreted in terms of the rigidity (specifically, the force
constant) of the bond.

16.5 Rotational transitions

Typical values of B for small molecules are in the region of 1 to 10cm™
(e.g. 0.356 cm™" for NF; and 10.59 cm™' for HCl), and so the transitions lie
in the microwave region of the spectrum. The transitions are detected by
monitoring the net absorption of microwave radiation generated either by a
klystron or, in modern instruments, by a ‘backward wave oscillator’, which
is tunable over a wide range of frequencies. For technical reasons related to
the detection system, it is desirable to modulate the energy levels (that is,
vary them in an oscillatory manner) so that the absorption intensity, and
therefore the detected signal, oscillates: it is easier to amplify an alternating
signal than a steady one. The oscillation is achieved by Stark modulation,
in which an alternating electric field (of strength of the order of 10* Vcm™
and frequency between 50 and 100kHz) is applied to the sample to
modulate the energies of the rotational states.

If a constant electric field is applied to the sample, the levels shift to an
extent determined by the magnitude of the molecular dipole moment (eqn
17), and so the modification in the spectrum brought about by a known field
can be used to measure the dipole moment. Since microwave frequencies
can be measured with very high precision, rotational spectroscopy is one of
the most precise spectroscopic techniques.

1
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Rotational selection rules

We have already seen (Section 16.2) that the gross selection rule for the
observation of a pure rotational spectrum is that it must have a permanent
electric dipole moment. Consequently, homonuclear diatomic molecules
and symmetrical (D.,) linear molecules such as CO, are rotationally
inactive. Spherical rotors cannot have electric dipole moments unless they
become distorted by rotation, and so they are also inactive except in special
cases. An example of a spherical rotor that does become sufficiently
distorted for it to acquire a dipole moment is SiH,, which has a dipole
moment of about 8.3 uD by virtue of its rotation (for comparison, HCI has
a dipole moment of 1.1 D). The pure rotational spectrum of SiH, has been
detected by using long path lengths (10 m) through high pressure (4 atm)
samples.

The specific selection rules are found by evaluating the transition dipole
moment between the states. For a linear molecule, the transition moment
vanishes unless the following conditions are fulfilled:

AJ=+1 AM, =0, £1

The change in J matches what we already know about the role of the
conservation of angular momentum when a photon is emitted or absorbed.
When these conditions are fulfilled, the total J + 1 « J transition intensity
(the intensity summed over all the values of M, that contribute to the line) is

proportional to W2 +1)
27 +1

where p is the permanent electric dipole moment of the molecule.

The only extension needed for the discussion of symmetric rotors is a
selection rule for K. If a symmetric rotor has a dipole it must lie parallel to
the figure axis, as in NF;. Such a molecule cannot be accelerated into
different states of rotation around the figure axis by the absorption of
radiation, so AK =0.

When these selection rules are applied to the expressions for the energy
levels, it follows that the wavenumbers of the allowed J + 1 « J absorptions
are

s s = — dulforJ»1

v=2B(J +1) J=0,1,2,... (19)

Example 16.7: Predicting the appearance of a rotational spectrum

Predict the form of the rotational spectrum of NH,.

Answer. We calculated the energy levels in Example 16.6. The NH, molecule
is a polar symmetric rotor, and so the selection rules AJ = +1 and AK=0
apply. For absorption, AJ = +1 and we can use eqn 19. Intrinsic intensities are
proportional to {u,.,,|* (we take populations into account later). Since
B=9.977cm™', we can draw up the following table for the J+1—J

transitions.
J= 0 1 2 3
viem™' 19.95 39.91 59.86 79.82
TR IS 1 0.67 0.60 0.57

The line spacing is 19.95cm .
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Fig. 16.15 The rotational energy levels of a
linear rotor, the transitions allowed by the
selection rule AJ = +1, and a typical pure
rotational absorption spectrum. The intensities
reflect the populations of the initial level in
each case and the strengths of the transition
dipole moments.

480

Comment. The intensities are the intrinsic intensities of the lines; that is, they

do not take into account the different populations of the initial rotational

levels. A complication that we have ignored is the modification of the numbers

of possible rotational states by the Pauli principle, which allows only some of

the states to be occupied.

Exercise. Repeat the problem for CH3’Cl (see Example 16.6 for details).
[Lines of separation 0.888 cm ']

The appearance of rotational spectra

The form of the spectrum predicted by eqn 19 is shown in Fig. 16.15. The
most significant feature is that it consists of a series of lines with
wavenumbers 2B, 4B, 6B, . .. and separation 2B. The intensities increase
with increasing J and pass through a maximum before tailing off as J
becomes large. It should be recalled from Section 16.2 that the observed
absorption is the net outcome of the stimulated absorption less the

20
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stimulated emission, and that the intensity of each transition depends on the
value of J. Hence the value of J corresponding to the most intense line is
not quite the same as the value of J for the most highly populated level.

The measurement of the line spacing gives B, and hence the moment of
inertia perpendicular to the figure axis. Since the masses of the atoms are
known, it is a simple matter to deduce the bond length of a diatomic
molecule. However, in the case of a polyatomic molecule such as OCS or
NH;, the analysis gives only a single quantity /, and we cannot deduce both
bond lengths (in OCS) or the bond length and bond angle (in NH;). This
difficulty can be overcome by using isotopically substituted molecules, such
as ABC and A’BC; then, by assuming that R(A—B) = R(A'—B), both
A—B and B—C bond lengths can be extracted from the two moments of
inertia. A famous example of this procedure is the study of OCS, and the
actual calculation is worked through in Problem 16.9.

16.6 Rotational Raman spectra

The gross selection rule for rotational Raman transitions is that the
molecule must be anisotropically polarizable. We shall begin by explaining
what this means.

The distortion of a molecule in an electric field is determined by its
polarizability a (we deal with polarizabilities in detail in Chapter 22). More
precisely, if the strength of the field is &, the molecule acquires a dipole
moment

u=a¥ (20)

in addition to any dipole moment it may have in the absence of the field.
We see that the greater the polarizability, the greater the dipole induced by
a given field. A Xe atom, for example, has a greater polarizability than a He
atom because its outer electrons are less tightly under the control of the
more distant central nucleus and are more easily displaced by an externally
applied field.

An atom is isotropically polarizable. That is, the same distortion is
induced whatever the direction of the applied field. The polarizability of a
spherical rotor is also isotropic. However, nonspherical rotors have polariz-
abilities that do depend on the direction of the field and hence are
anisotropically polarizable (Fig. 16.16). The electron distribution in H,, for
example, is more distorted when the field is applied parallel to the bond
than when it is applied perpendicular to it, and we write o, > o, .

All linear molecules and diatomics (whether homonuclear or hetero-
nuclear) have anisotropic polarizabilities and so are rotationally Raman
active. This is one reason for the importance of rotational Raman
spectroscopy: it enables us to examine many of the molecules that are
inaccessible to pure rotational microwave spectroscopy. CH, and SF,,
however, being spherical rotors, are rotationally Raman inactive as well as
rotationally inactive.

The specific rotational Raman selection rules are

AJ = {0, +2 linear rotor
0,1, £2 AK=0 symmetric rotor

The AJ =0 transitions do not lead to a shift of the scattered photon’s

Rotational Raman spectra | 16.6

Undistorted molecule

mmned molecule
U E

Fig. 16.16 The electric polarizability of a
molecule is a measure of its ability to distort in
response to an applied field. For most
molecules the polarizability is anisotropic.
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Polarizability: a, a, a,

Fig. 16.17 The distortion induced in a
molecule by an applied electric field returns to
its initial value after a rotation of only 180° (i.e.
twice a revolution). This is the origin of the
AJ = 2 selection rule in rotational Raman
spectroscopy.
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frequency in pure rotational Raman spectroscopy, and contribute to the
unshifted Rayleigh scattered light.’

We can predict the form of the Raman spectrum of a linear rotor (Fig.
16.18) by applying the selection rule AJ =12 to the rotational energy
levels. When the molecule makes a transition with AJ = +2, the scattered
radiation leaves it in a higher rotational state, and so the wavenumber of the
incident radiation, initially ¥;, is decreased. These transitions account for
the Stokes lines in the spectrum:

V(J +2 < J)=9—{F(J +2) - FU)}

=7,—2B(2J +3) (21a)

The Stokes lines appear to low frequency of the incident light and at
displacements 6B, 10B, 14B, ... from ¥ for J=0,1,2,... When the
molecule makes a transition with AJ = -2, the scattered photon emerges
with increased energy. These transitions account for the anti-Stokes lines of
the spectrum:

W(J = J=2) =%+ {F(J) - F(J —2)}

=,+2B(2J - 1) (21b)

The anti-Stokes lines occur at displacements of 6B, 10B, 14B, ... (for
J=2,3,...;J=2is the lowest state that can contribute under the selection
rule AJ = —2) to high frequency of the incident radiation. The separation of
the lines in both the Stokes and the anti-Stokes regions is 4B, and so from
its measurement I, can be determined and then used to find the bond
lengths exactly as in the case of microwave spectroscopy.

5The classical origin of the 2 in the selection rule is as follows. In an electric field €, a
molecule acquires a dipole moment of magnitude o€, where « is the polarizability. If the
electric field is that of a light wave of frequency w;, the induced dipole moment is time
dependent and has the form

pu=a¥€=a¥cos wt

If the molecule is rotating, its polarizability in the direction of the field is also time dependent
(if it is anisotropic), and we can write

a = ay+ Awx cos 20g!

the 2 appearing because the polarizability returns to its initial value twice each revolution (Fig.
16.17). Substituting this expression into the expression for the induced dipole moment gives

p = (ap+ Aa cos 2wg!) X (&, cos w,t)
= &y cos w;t + & A cos 2wyt cos w;t
= ay%, cos w;t + 1% Aa{cos (w; + 2wg)l + cos (w, — 2wg!)}

This shows that the induced dipole has a component oscillating at the incident light frequency
(so that it radiates Rayleigh radiation), and that it also has two components at w, + 2wy which
give rise to the shifted Raman lines. Note that these lines appear only if Ao #0, hence the
need for anisotropy in the polarizability.



20
J
15
10
¥
4 .
5 1 & 1Y
-
Stokes lines anti- Stokes
lines
‘
[*]
E
| i m

—150 —100 —50 0 50 100 150
(V=7y)/cm!

Example 16.8: Predicting the form of a Raman spectrum

Predict the form of the rotational Raman spectrum of “N,, for which
B =1.99cm ' when it is irradiated with monochromatic 336.732 nm laser light.
Comment. The molecule is rotationally Raman active because end-over-end
rotation modulates its polarizability as viewed by a stationary observer. The
Stokes and anti-Stokes lines are given by the expressions above. Since
A; =336.732 nm corresponds to ¥ =29697.2cm ', eqns 21a and 21b give the
following line positions:

J= 0 1 2 3
Stokes:
¥/cm ! 29685.3 29677.3 29 669.3 29 661.4
A/nm 336.868 336.958 337.048 337.139
Anti-Stokes:
v/cm™! 29709.1 29717.1
A/nm 336.597 336.507

Rotational Raman spectra | 16.6

Fig. 16.18 The rotational energy levels of a
linear rotor and the transitions allowed by the
AJ = £2 Raman selection rules. The form of a
typical rotational Raman spectrum is also
shown.
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l’ Parabola
!
!

Molecular potential energy

R R

Fig. 16.19 The molecular potential energy
curve can be approximated by a parabola near
the bottom of the well. The parabolic potential
leads to harmonic oscillations. At high
excitation energies the parabolic
approximation is poor (the true potential is
less confining), and is totally wrong near the
dissociation limit.

Comment. There will be a strong central line at 336.732 nm accompanied on
either side by lines of increasing and then decreasing intensity (as a result of
transition moment and population effects). The spread of the entire spectrum
is very small (about 300cm ' at room temperature), and so the incident light
must be highly monochromatic.

Exercise. Repeat the calculation for the rotational Raman spectrum of NH;
(B=9.977cm "),

The vibrations of diatomic molecules

In this section, we adopt the same strategy of finding expressions for the
energy levels, establishing the selection rules, and then discussing the form
of the spectrum. We shall also see how the simultaneous excitation of
rotation modifies the appearance of the spectrum.

16.7 Molecular vibrations.

We shall base our discussion on Fig. 16.19, which shows a typical potential
energy curve (Section 14.1) of a diatomic molecule.

The harmonic approximation

In regions close to R, (at the minimum of the curve) the potential energy
can be approximated by a parabola, and we can write

V= %k(R - Rc)2

where k is the force constant of the bond. The steeper the walls of the
potential, the greater the force constant. This is another way of saying the
stiffer the bond, the higher the force constant. The Schrédinger equation for
the motion of the two atoms of masses m, and m, with this potential energy
is
7 d*y
———+Vy=E
where u is the reduced mass:

1 1 1

u m; mp

This equation is derived in the same way as in the Further information
section of Chapter 14, where the separation of variables procedure was used
to separate the relative motion of the atoms from the motion of the
molecule as a whole.

The Schrédinger equation we have obtained is that for a particle of mass
p undergoing harmonic motion. Therefore, we can use the results of Section
12.4 directly, and immediately write down the permitted vibrational energy
levels:

k 172
E,=(v +3)hw w=(;) TE AR s

The vibrational terms of a molecule, the energies of its vibrational states



expressed in wavenumbers, are denoted by G, and so
Gw)=(w+d)y =2 2)
2nc

The vibrational wavefunctions are the same as in Section 12.5.

It is important to note that the vibrational terms depend on the reduced
mass of the molecule, not its total mass, which is physically reasonable. If
atom 1 were as heavy as a brick wall, we would find u =m,, the mass of the
lighter atom, and the vibration would be that of a light atom relative to that
of a stationary wall (this is approximately the case in HI, for example,
where the I atom barely moves and u = my,,). In the case of a homonuclear
diatomic molecule, for which m, = m,, the reduced mass is half the total
mass: u =im.

Anharmonicity

The vibrational terms in eqn 22 are only approximate because they are
based on the parabolic approximation to the actual potential energy curve.
At high vibrational excitations the swing of the atoms (more precisely, the
spread of the vibrational wavefunction) allows the molecule to explore
regions of the curve where the parabolic approximation is poor. The motion
then becomes anharmonic since the force is no longer proportional to the
displacement. In particular, because the actual curve is less confining than a
parabola (Fig. 16.19) we can anticipate that the energy levels become less
widely spaced at high excitations.

One approach to the calculation of the energy levels over a wider range is
to use a function that resembles the true potential energy more closely. The
Morse potential energy is

V = D {1 - e~(R-R)2 (23a)

where D, is the depth of the potential minimum and

a= ( 21‘; )mw (23b)

Equation 23a is plotted in Fig. 16.20. Near the well minimum it resembles a
parabola (as can be checked by expanding the exponential as far as the first
term), but unlike a parabola it allows for dissociation at high energies. The
Schrodinger equation can be solved for this potential and the permitted
energy levels are

2

g a‘h
Gu)=(w+Hv—- (v +H)* 7 x. = i (24)

X, is called the anharmonicity constant. The number of vibrational levels of
a Morse oscillator is finite, and v=1,2,..., Umax> @s shown in Fig. 16.20.
The second term in eqn 24 subtracts from the first, and gives rise to the
convergence of the levels at high quantum numbers.

Although the Morse oscillator is quite useful theoretically, in practice the

Molecular vibrations | 16.7
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Umax

Fig. 16.20 The Morse potential energy curve Q
reproduces the general shape of a molecular =~
potential energy. The corresponding

Schrodinger equation can be solved, and the

values of the energies obtained. The number

of bound levels is finite.

0.0 L

more general expression
G)=W+H)7 -+ + (W +2)Yyv+...

where x, and y, are empirical constants, is used to fit the experimental data
and to find the dissociation energy of the molecule.

16.8 The vibrational spectra of diatomic molecules

We have seen that the gross selection rule for vibrational transitions is that
the electric dipole moment of the molecule must change in the course of a
vibration. Homonuclear diatomic molecules are therefore inactive, because
their dipole moments remain zero however long the bond, but hetero-
nuclear diatomic molecules are infrared active.

The spectra of heteronuclear diatomic molecules

The specific selection rule is obtained from an analysis of the expression for
the transition moment (and the properties of integrals over Hermite
polynomials, Table 12.1), and is

Av=+=1

It follows that the difference between terms of the allowed transitions,
which is denoted AG,, ., for the transition v +1 « v, is

AGy 4 1n=Gv+1)-Gv)=+ (25a)
in the harmonic approximation, and
AG,1p=7 =2+ 1x.v+... (25b)

if anharmonicity is taken into account. The latter equation shows that the
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lines converge as v increases. In the harmonic approximation all lines lie at
the same wavenumber ¥.

HCI has a force constant of 516 Nm ™', a reasonably typical value. The
reduced mass of 'H**Cl is 1.63 x 10°%" kg (note that this is very close to the
mass of the hydrogen atom, 1.67 x 10"?" kg, and so the Cl atom is like a
brick wall). These values imply

®w=563x10"s"! v=8.95% 10" Hz
¥=2990cm™' A=335um

The radiation lies in the infrared region of the spectrum, and so vibrational
spectroscopy is an infrared technique.

At room temperature kT/hc =200 cm ™', and the Boltzmann distribution
implies that almost all the molecules will be in their vibrational ground
states initially. Hence, the dominant spectral transition will be 1 « 0. As a
result, the spectrum is expected to consist of a single absorption line. If the
sample molecules are formed in a vibrationally excited state, such as when
vibrationally ‘hot’ HF is formed in the reaction H, + F, — 2HF*, the
transitions 5 — 4, 4 — 3, etc. may also appear (in emission). In the
harmonic approximation, all these lines lie at the same frequency, and the
spectrum is a single line. However, the presence of anharmonicity causes
the transition to lie at slightly different frequencies, and so several lines are
observed.

Anharmonicity also accounts for the appearance of additional weak
absorption lines corresponding to the transitions 2 «— 0, 3 « 0, . . . , even
though these second, third, ... harmonics are forbidden by the selection
rule Av==+1. The reason is that the selection rule is derived using
harmonic oscillator wavefunctions, and these are only approximately valid
when anharmonicity is present. Therefore, the selection rule is also only an
approximation. For an anharmonic oscillator, all values of Av are allowed,
but Av>1 is allowed only weakly if the anharmonicity is slight. The second
harmonic, for example, gives rise to an absorption at

Gw+2)-G()=2v-2Qu +3)x. v +. ..

The Birge-Sponer extrapolation

When several vibrational transitions are detectable, a graphical technique
called Birge~Sponer extrapolation may be used to determine the dissocia-
tion energy D, of the bond. The basis of this method is that the sum of
successive energy separations AG,,,, from the zero-point level to the
dissociation limit is the dissociation energy:

Dy=AG,, + AGip...= Z AG, 41 (26)

just as the height of the ladder is the sum of the separation of its rungs. The
construction in Fig. 16.21 shows that the area under the plot of AG,,
against v is equal to the sum, and therefore to D,. The successive terms
decrease linearly when only the x, anharmonicity constant is taken into
account and the inaccessible part of the spectrum can be estimated by linear
extrapolation. Most actual plots differ from the linear plot as shown in the
illustration, so the value of D, obtained in this way is usually an overestimate
of the true value. The depth of the potential well, D,, differs from D, by the

P(o+1lev)

LQ Area #(1«0)
/Eh/mea H2e1)
=,

Linear

xtrapolation

True curve

0+4
133

v+

Fig. 16.21 The area under a plot of energy

difference against vibrational quantum

number is equal to the dissociation energy of

the molecule. The assumption that the

differences approach zero linearly is the basis

of the Birge-Sponer extrapolation.
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Fig. 16.22 The Birge—Sponor plot used in
Example 16.9. The area is obtained simply by
counting the squares beneath the line.

Fig. 16.23 A high-resolution vibration—
rotation spectrum of HCI. The lines appear in
pairs because H®Cl and H¥CI both contribute
(their abundance ratio is 3: 1). There is no Q
branch, because AJ = 0 is forbidden for this
molecule.
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zero-point energy:

D.=D,+ %(1 . %xc)‘_’

Example 16.9: Using a Birge—Sponer extrapolation

The observed vibrational energy level separations of H3 lie at the following
values for 1 < 0, 2 « 1, ... respectively (in cm '): 2191, 2064, 1941, 1821,
1705, 1591, 1479, 1368, 1257, 1145, 1033, 918, 800, 677, 548, 411. Determine
the dissociation energy of the molecule.

Answer. We need to plot the separations against v, extrapolate linearly to the
point cutting the v axis, and then measure the area under the curve. The
points are plotted in Fig. 16.22; the full line is the Birge-Sponer linear
extrapolation. The area under the curve (count the squares) is 214. Each
square corresponds to 100 cm ™' (refer to the scale of the vertical axis); hence
the dissociation energy is 21 400 cm ' (corresponding to 256 kJ mol ).
Exercise. The vibrational levels of HgH converge rapidly, and successive
separations are 1203.7, 965.6, 632.4, and 172 cm . Estimate the dissociation
energy. [40kJ mol ']

16.9 Vibration—rotation spectra

At high resolution, each line of the vibrational spectrum of a gas-phase
heteronuclear diatomic molecule is found to consist of a large number of
closely spaced components (Fig. 16.23). For this reason, molecular spectra
are often called band spectra. The separation between the components is of
the order of 1cm™!, which suggests that the structure is due to rotational
transitions accompanying the vibrational transition. A rotational change
should be expected because classically we can think of the transition as
leading to a sudden increase or decrease in the instantaneous bond length.
Just as ice-skaters rotate more rapidly when they bring their arms in, and
more slowly when they throw them out, so the molecular rotation is either
accelerated or retarded. A detailed analysis of the quantum mechanics of
the process shows that the rotational quantum number J changes by *1
during a vibrational transition. If the molecule possesses angular momentum
about its axis, as in the case of the electronic orbital angular momentum of
the 2IT molecule NO, the selection rules also allow AJ =0.

The appearance of the vibration—rotation spectrum of a diatomic mole-

"H+Cl
tHCI

ULA MMM

3800 ' 3000
P-Branch (Q) R-Branch

Absorption

v/em
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cule can be discussed in terms of the combined vibration-rotation terms S:
S(v,J)=G) + F(J)
If we ignore anharmonicity and centrifugal distortion,
S, N)=(w+Hv+BIJ +1)

In a more detailed treatment B is allowed to depend on the vibrational state
because as v increases the molecule swells slightly and the moment of
inertia changes. However, these features lengthen the algebra without
introducing anything new, and so we shall continue with the simple
expression.

When the vibrational transition v + 1 « v occurs, J changes by +1 and in
some cases by 0 (when AJ =0 is allowed). The absorptions then fall into
groups called the P, Q, and R branches of the spectrum. The P branch
consists of all transitions with AJ = —1:

Ve(J) =¥ —2BJ (27a)

This branch (Figs. 16.23 and 16.24), consists of lines at ¥ —2B, ¥ — 4B, . . .
with an intensity distribution reflecting both the populations of the
rotational levels and the J — 1 « J transition moment.

The Q branch consists of all lines with AJ =0, and its wavenumbers are
all

Vo) =7 (27b)

for all values of J. This branch, when it is allowed, forms a single line at the
vibrational transition wavenumber. In practice, since the rotational con-
stants of the two vibrational levels are slightly different, the Q branch
appears as a cluster of closely spaced lines. In Fig. 16.23 there is a gap at the
expected location of the Q branch because it is forbidden in HCI.

The R branch consists of lines with AJ = +1:

Vr(J)=7+2B(J +1) (27¢)

This branch consists of lines displaced from ¥ to high wavenumber by
2B, 4B, . .. (Fig. 16.24).

The separation between the lines in the P and R branches of a vibrational
transition gives the value of B, and so the bond length can be deduced
without needing to record a pure rotation microwave spectrum (although
the latter is more accurate).

16.10 Vibrational Raman spectra of diatomic molecules

The gross selection rule for vibrational Raman transitions is that the
polarizability should change as the molecule vibrates. Both homonuclear
and heteronuclear diatomic molecules swell and contract during a vibration,
and the control of the nuclei over the electrons, and hence the molecular
polarizability, changes too. Both types of diatomic molecule are therefore
vibrationally Raman active.

The specific selection rule is Av = +1. The lines to high frequency of the
incident light, the anti-Stokes lines, are those for which Av = —1. They are

~
-]
vy
-t
”m
~
° Upper
B vibrational
state
~
wy
< Lower
S vibrational
T Frequenc
\' 9 Y state
N ] T
IR
P branch f R branch
Position of
Q branch

Fig. 16.24 The formation of P, Q, and R
branches in a vibration-rotation spectrum.
The intensities reflect the populations of the
initial rotational levels.
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Fig. 16.25 The formation of 0, Q, and S
branches in a vibration-rotation Raman
spectrum of a linear rotor. Note that the
frequency scale runs in the opposite direction
to that in Fig. 16.24, because the higher-energy
transitions (on the right) extract more energy
from the incident beam and leave it at lower
frequency.

Table 16.2. Properties of diatomic
molecules.

v/em™ B/em™' k/(Nm™')

H, 4400 60.86 575
TH¥%CI 2991 10.59 516
H'¥ 2308 6.61 314
3¢y, 560 0.244 323

Fig. 16.26 The specification of the centre of
mass of a molecule uses up three degrees of
freedom. (a) The orientation of a linear
molecule requires the specification of two
angles. (b) The orientation of a non-linear
molecule requires the specification of three
angles.
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usually weak because very few molecules are in an excited vibrational state
initially. The lines to low frequency, the Stokes lines, correspond to
Av = +1. Superimposed on these is a branch structure arising from the
simultaneous rotational transitions that accompany the vibrational excita-
tion (Fig. 16.25). The selection rules are AJ =0, £2 (as in pure rotational
Raman spectroscopy), and give rise to the O branch (AJ=-2), the Q
branch (AJ =0), and the S branch (AJ = +2).

The information available from vibrational Raman spectra adds to that
from infrared spectroscopy because homonuclear diatomics can also be
studied. The spectra can be interpreted in terms of the force constants,
dissociation energies, and bond lengths, and some of the information
obtained is included in Table 16.2.

The vibrations of polyatomic molecules

In a diatomic molecule there is only one mode of vibration, the bond
stretch. In a polyatomic molecule there are several modes because bonds
may stretch and angles may bend.

16.11 Normal modes

We begin by calculating the total number of vibrational modes of a
polyatomic molecule consisting of N atoms. We then see that we can choose
combinations of atomic motion that gives the simplest description of the
vibrations of the molecule.

The number of vibrational modes

The total number of coordinates needed to specify the locations of all N
atoms is 3N. Each atom may change its location by varying one of its
coordinates, and so the total number of displacements available is 3N. We
can group these displacements together in a physically sensible way. For
example, three coordinates are needed to specify the location of the centre
of mass of the molecule, and so three of the displacements correspond to
the translational motion of the molecule as a whole. The remaining 3N — 3
are non-translational ‘internal’ modes of the molecule.

Two angles are needed to specify the orientation of a linear molecule in
space: in effect, we need to give only the latitude and longitude of the
direction in which the molecular axis is pointing (Fig. 16.26a). However,




three angles are needed for a non-linear molecule because we also need to
specify the orientation of the molecule around the direction defined by the
latitude and longitude (Fig. 16.26b). Therefore 2 (linear) or 3 (non-linear)
of the 3N —3 internal displacements are rotational. This leaves 3N — 5
(linear) or 3N — 6 (non-linear) displacements of the atoms relative to each
other: these are the vibrational modes. It follows that the number of modes
of vibration N, is

3N —5 for linear molecules

Now = {3N — 6 for non-linear molecules

(28)

For example, H,O is a 3-atom non-linear molecule, and has three modes of
vibration (and three modes of rotation); CO, is a 3-atom linear molecule,
and has four modes of vibration (and only two modes of rotation). Even a
middle-sized molecule such as naphthalene (C,,H;) has 48 distinct modes of
vibration.

Combinations of displacements

The next step is to find the best description of the modes. One choice for
the four modes of CO,, for example, might be the ones in Fig. 16.27a. This
illustration shows the stretching of one bond (the mode v,), the stretching
of the other (vg), and the two perpendicular bending modes (v,). The
description, while permissible, has a disadvantage: when one C—O vibra-
tion is excited, the motion of the C atom sets the other C—O in motion,
and so energy flows backwards and forwards between v, and vy.

The description of the vibrational motion is much simpler if linear
combinations of v, and vy are taken. For example, one combination is v, in
Fig. 16.27b: this is the symmetric stretch, and in it the C atom is buffeted
simultaneously from each side, and the motion continues indefinitely.
Another mode is v;, the antisymmetric stretch, in which the two O atoms
always move out of phase (in opposite directions). Both modes are
independent in the sense that if one is excited, then it does not excite the
other. They are two of the normal modes of the molecule, its independent,
collective vibrational displacements. The two other normal modes are the
bending modes v,. In general, a normal mode is an independent,
synchronous motion of atoms or groups of atoms that may be excited
without leading to the excitation of any other normal mode.

The four normal modes of CO,, and the N,;, normal modes of
polyatomics in general, are the key to the description of molecular
vibrations. Each normal mode behaves like an independent harmonic
oscillator (if anharmonicities are neglected), and so each has a series of
terms

Go(v) = (v + 1) ¥o

(@) (b) (¢)

FO—OHO | FO-O-O 5
o+020n | oo O F -

(2349 em ! v5(667 cm ')
" em-) and out of plane

Normal modes | 16.11

Fig. 16.27 Alternative descriptions of the

vibrations of CO,. (a} The stretching modes are
not independent, and if one C-0 is excited the
other begins to vibrate. (b) The symmetric and
antisymmetric stretches are independent, and

one can be excited without affecting the other:

they are normal modes. {c) The two

perpendicular bending motions are normal

modes.
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Fig. 16.28 The normal modes of H,0. The
mode v, is predominantly bending, and occurs
at lower wavenumber than the other two.

=04
G, Cu. 8, /

Fig. 16.29 The atomic displacements of CH,
and the symmetry elements used to calculate
the characters. Since all operations of the
same class have the same character, there is
no need to consider more than one element of
each class.
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Vo is the wavenumber of mode Q and depends on the force constant kg for
the mode and on the reduced mass ug of the mode, with

k 12
1’/0=-E) and wo=<—o)
2nc Uo

The reduced mass of the mode is a measure of the mass that is swung
about by the vibration. For example, in the symmetric stretch of CO, the C
atom is stationary, and the reduced mass depends on the masses of only the
O atoms. In the antisymmetric stretch and in the bends, all three atoms
move, and so all contribute to the reduced mass. The three normal modes
of H,O are shown in Fig. 16.28: note that the predominantly bending mode
(v,) has a lower frequency than the others, which are predominantly
stretching modes. One point that must be appreciated is that only in special
cases (such as the CO, molecule) are the normal modes purely stretches or
purely bends. In general a normal mode is a composite motion of
simultaneous stretching and bending of bonds.

The symmetry species of normal modes

One of the most powerful ways of dealing with normal modes, especially of
complex molecules, is to classify them according to their symmetries.

The procedure begins by deciding on the symmetry species of the
irreducible representations spanned by all the 3N displacements of the
atoms, using the characters of the molecular point group. We find these
characters (as explained in Example 15.4) by counting 1 if the displacement
is unchanged under a symmetry operation, —1 if it changes sign, and 0 if it
is changed into some other displacement. Next, we subtract the symmetry
species of the translations. These span the same symmetry species as x, y,
and z, so they can be obtained from the right-hand columns of the character
table. Finally, we subtract the symmetry species of the rotations, which are
also given in the character table.

Example 16.10: /dentifying the symmetry species of a normal mode
Establish the symmetry species of the normal mode vibrations of CH,.

Answer. There are 3 X5=15 modes of motion, of which 3 X5—-6=9 are
vibrations. Refer to Fig. 16.29. Under E, no displacement coordinates are
changed, and so the character is 15. Under C,, no displacements are left
unchanged, and so the character is 0. Under a C, rotation the z-displacement
of the central atom is left unchanged, while its x- and y-components both
change sign. Therefore x(C,)=1-1-1+0+0+...=-1. Under S,, the
z-displacement of the central atom is reversed, and so x(S,;) = —1. Under o,,
the z-displacement of C, H;, and H, are left unchanged, three of the H
displacements are left unchanged and three are reversed; hence x(o,) =
3+3—3=3. The characters are therefore 15 0 —1 —1 3, corresponding to
A, +E+T, +3T,. The translations span T,; the rotations span T,. Hence the
vibrations span A, + E + 2T,.

Comment. We shall soon see that symmetry analysis gives a quick way of
deciding which modes are active.

Exercise. Establish the symmetry species of the normal modes of H,O.
[2A, + B))
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16.12 The vibrational spectra of polyatomic molecules

The gross selection rule for infrared activity is that the motion correspond-
ing to a normal mode should be accompanied by a change of dipole
moment. Deciding whether this is so can sometimes be done by inspection.
For example, the symmetric stretch of CO, leaves the dipole moment
unchanged (at zero), and so this mode is infrared inactive. The anti-
symmetric stretch, however, changes the dipole moment because the
molecule becomes unsymmetrical as it vibrates, and so this mode is infrared
active. Since in this case the dipole moment change is parallel to the figure
axis, the transitions arising from this mode are classified as parallel bands in
the spectrum. Both bending modes are infrared active: they are accom-
panied by a changing dipole perpendicular to the figure axis, and so
transitions involving them lead to a perpendicular band in the spectrum.

Symmetry and normal mode activity

It is best to use group theory to judge the activities of more complex modes
of vibration. This is easily done by checking the character table of the
molecular point group for the symmetry species of the irreducible repre-
sentations spanned by x, y, and z, for these are also the symmetry species of
the components of the electric dipole moment. Then the rule to apply is as
follows:

If the symmetry species of a normal mode is the same as any of the
symmetry species of x, y, or z, the mode is infrared active.

Example 16.11: I/dentifying infrared active modes
Which modes of CH, are infrared active?
Answer. Refer to the 7, character table to establish the symmetry species of
X, y, and z; it is T,. We found in Example 16.10 that the symmetry species of
the normal modes are A, + E + 2T,. Therefore, only the T, modes are infrared
active.
Comment. The distortions accompanying the T, modes lead to a changing
dipole moment. The A, mode, which is inactive, is the symmetrical ‘breathing’
mode of the molecule.
Exercise. Which of the normal modes of H,O are infrared active?

[All three]

The appearance of the spectrum

The active modes are subject to the specific selection rule Avy = %1, and so
the wavenumber of the fundamental transition (the first harmonic) of each
active mode is ¥o. From the analysis of the spectrum, a picture may be
constructed of the stiffness of various parts of the molecule: that is, we can
establish its force field, the set of force constants corresponding to all the
displacements of the atoms.

Superimposed on this simple scheme are the complications arising from
anharmonicities and the effects of molecular rotation. Very often the sample
is a liquid or a solid, and the molecules are unable to rotate freely. In a
liquid, for example, a molecule may be able to rotate through only a few
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Table 16.3. Typical vibrational wave-
numbers, ¥/cm !

C—H stretch
C—H bend

C—C stretch
C=C stretch

2850-2960
1340-1465

700-1250
1620-1680

Fig. 16.30 The infrared absorption spectrum
of an amino acid and a partial assignment.
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degrees before it is struck by another, and so it changes its rotational state
frequently. This random changing of orientation is called tumbling.

Since the lifetimes of rotational states in liquids are very short, the
rotational energies are ill-defined. Collisions occur at a rate of about
10'*s™!, and even allowing for only a 10 per cent success rate in knocking
the molecule into another rotational state, a lifetime broadening (eqn 12) of
more than lcm™' can easily result. The rotational structure of the
vibrational spectrum is blurred by this effect, and so the infrared spectrum
of molecules in condensed phases usually consist of broad lines spanning the
entire range of the resolved gas-phase spectrum, and showing no branch
structure.

One very important application of infrared spectroscopy to condensed
phase samples, and for which the blurring of the rotational structure by
random collisions is a welcome simplification, is to chemical analysis. The
vibrational spectra of different groups in a molecule give rise to absorptions
at characteristic frequencies. Their intensities are also approximately
transferable between molecules. Consequently, the molecules in a sample
can often be identified by examining its infrared spectrum and accounting
for all the bands by referring to a table of characteristic frequencies and
intensities (Table 16.3 and Fig. 16.30).
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16.13 Vibrational Raman spectra of polyatomic
molecules

The normal modes of vibration of molecules are Raman active if they are
accompanied by a changing polarizability. It is quite difficult to judge by
inspection when this is so. The symmetric stretch of CO,, for example,
alternately swells and contracts the molecule: this motion changes its
polarizability, and so the mode is Raman active. The other modes of CO,
leave the polarizability unchanged, and so they are Raman inactive.

Symmetry aspects of Raman transitions J

Group theory provides an explicit recipe for judging the Raman activity of a
normal mode. In this case, the symmetry species of the quadratic forms
(x?, xy, etc) listed in the character table are noted (they transform in the
same way as the polarizability), and then we use the following rule:

If the symmetry species of a normal mode is the same as the symmetry
species of a quadratic form, the mode is Raman active.
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Example 16.12: I/dentifying Raman-active normal modes
Which of the vibrations of CH, are Raman active?

Answer. Refer to the T, character table. We found in Example 16.10 that the
symmetry species of the normal modes are A, + E + 2T.. Since the quadratic
forms span E + T, the E and T, normal modes are Raman active.

Answer. Notice that the A, breathing mode is neither infrared nor Raman
active.

Exercise. Which of the vibrational modes of H,O are Raman active?
[All three]

The exclusion rule also helps us to decide which modes are active:

If the molecule has a centre of symmetry, no modes can be both infrared
and Raman active.

(A mode may be inactive in both.) Since we can often judge intuitively
when a mode changes the molecular dipole moment, we can use this rule to
identify modes that are not Raman active. The rule applies to CO, but to
neither H,O nor CH, because they have no centre of symmetry.

Depolarization

The assignment of Raman lines to particular vibrational modes is aided by
noting the state of polarization of the scattered light. The depolarization
ratio p of a line is the ratio of the intensities of the scattered light with a
polarization parallel and perpendicular to the plane of polarization of the
incident radiation (Fig. 16.31):

—_— IJ“
P Iy
If the emergent light is not polarized, both intensities are the same and
p =1; if the light retains its initial polarization, /, =0 and so p=0. We
classify a line as depolarized if it has p close to 1 and as polarized if it has p
close to zero. A general rule is that totally symmetrical vibrations give rise
to polarized Raman lines in which the incident polarization is largely
preserved. Vibrations that are not totally symmetrical give rise to de-
polarized lines since the incident radiation can give rise to radiation in the
perpendicular direction too. This means that if we observe the Raman
spectrum with a polarizing filter (a ‘half-wave plate’) first parallel and then
perpendicular to the polarization of the incident beam, the intensity of the
polarized lines will appear significantly reduced and hence these lines can be
ascribed to symmetrical vibrations.

Applications

One application of vibrational Raman spectroscopy is to the determination
of the structures of symmetrical molecules such as XeF, and SF. Another
application makes use of the fact that the intensity characteristics of Raman
transitions, which depend on molecular polarizabilities, are more readily
transferred from molecule to molecule than the intensities of infrared
spectra, which depend on dipole moments and are more sensitive to the

Incident
polarization

Scattered
direction

Fig. 16.31 The definition of the planes used
for the specification of the depolarization ratio
p in Raman scattering.
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Fig. 16.32 The vibrational Raman spectrum of
lysozyme in water and the superposition of the
Raman spectra of the constituent amino acids.
(From Raman spectroscopy, D. A. Long.
Copyright 1977, McGraw-Hill Inc. Used with
the permission of the McGraw-Hill Book
Company.)
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other groups present in a molecule and to the solvent. Hence, Raman
spectra are useful in the identification of organic and inorganic species in
solution. An example of the technique is shown in Fig. 16.32, which shows
the vibrational Raman spectrum of an aqueous solution of lysozyme and,
for comparison, a superposition of the Raman spectra of the constituent
amino acids. The differences are indications of the effects of conformation,
environment, and specific interactions (such as S-S linking) in the enzyme
molecule.
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Exercises

16.1 Calculate the reduced masses of (a) ‘H*Cl, (b) H¥Cl,
and 'HPCl and identify the atom that makes the greater
contribution.

16.2 The bond length of Br*Br is 228 pm; calculate the
moment of inertia of the molecule.

16.3 The rotational constant of '*I**Cl is 0.1142cm™'.
Calculate the bond length of the molecule.

16.4 The wavenumber of the incident radiation in a Raman
spectrometer is 20487 cm~'. What is the wavenumber of the
scattered Stokes radiation for the J=2 « 0 transition of
MNMN?

16.5 Infrared absorption by 'H*'Br gives rise to an R branch
from v =0. What is the wavenumber of the line originating
from the rotational state with J = 2?

16.6 Calculate the percentage difference in the fundamental
vibration wavenumber of *Na*Cl and ®Na*’Cl on the as-
sumption that their force constants are the same.

16.7 The wavenumber of the fundamental vibrational transi-
tion of *Cl, is 564.9 cm™'. Calculate the force constant of the
bond.

16.8 For 'I**Cl, v=384.3cm ' and x.#=1.5cm™". Calcu-
late the wavenumber of the pure fundamental (Av=1)
vibrational transition with the highest wavenumber and that
of the next highest.

169 The bond dissociation energy of '“I’°Cl is 2.153¢V.

Use the information in Exercise 16.8 to calculate the depth of
the molecular potential energy curve of this molecule.

16.10 The molecule CH,Cl, belongs to the point group C,,.
The displacements of the atoms span 5A, + 2A, + 4B, + 4B,.
What are the symmetries of the normal modes of vibration?

16.11 Which of the following molecules may show a pure
rotational microwave absorption spectrum: (a) H,, (b) HCI,
(c) CH,, (d) CH;Cl, (e) CH,Cl,, (f) H;O, (g) H,O,, (h) NH;?
16.12 Which of the following molecules may show infrared
absorption spectra: (a) H,, (b) HCI, (c) CO,, (d) H,O, (e)
CH,CH,, (f) CH,, (g) CH,Cl, (h) N,?

16.13 Which of the following molecules may show a pure
rotational Raman spectrum: (a) H,, (b) HCl, (c) CH,, (d)
CH,Cl, (e) CH,Cl,, (f) CH,CHs, (g) SF¢?

16.14 What is the Doppler-shifted wavelength of a red
(660 nm) traffic light approached at 50 m.p.h.? At what speed
would it appear green (520 nm)?

16.15 A spectral line of ®“Ti** in a distant star was found to
be shifted from 654.2 nm to 706.5 nm and to be broadened to
61.8pm. What is the speed of recession and the surface
temperature of the star?

16.16 Estimate the lifetime of a state that gives rise to a line
of width (a) 0.1cm™', (b) 1em ', (c) 100 MHz.

16.17 A molecule in a liquid undergoes about 1x 10"
collisions in each second. Suppose that (a) every collision is
effective in deactivating the molecule vibrationally and (b)
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that one collision in 100 is effective. Calculate the width (in
cm ') of vibrational transitions in the molecule.

16.18 Calculate the relative numbers of Cl, molecules (v =
559.7cm ') in the ground and first excited vibrational states
at (a) 298 K, (b) 500 K.

16.19 The pure rotational spectrum of 'H'™I consists of a
series of lines separated by 13.10cm '. Calculate the bond
length of the molecule.

16.20 The hydrogen halides have the following fundamental
vibrational wavenumbers:

HF H*™CI H"Br H'"|
v/em™' 41433 2988.9 2649.7 2309.5

Calculate the force constants of the hydrogen- halogen bonds.

16.21 From the data in Exercise 16.20, predict the fun-
damental vibrational wavenumbers of the deuterium halides.

16.22 The first five vibrational energy levels of HCI are at
1481.86, 4367.50, 7149.04, 9826.48, and 12399.8 cm '. Calcu-
late the dissociation energy of the molecule in cm ' and eV.

16.23 The vibrational Raman spectrum of **Cl, shows a
series of Stokes lines separated by 0.9752cm ! and a similar
series of anti-Stokes lines. Calculate the bond length of the
molecule.

16.24 Which of the three vibrations of an AB, molecule are
infrared or Raman active when it is (a) non-linear, (b) linear?

16.25 Consider the vibrational mode that corresponds to the
uniform expansion of the benzene ring. Is it (a) Raman,
(b) infrared active?

Problems

Numerical problems

16.1 Calculate the Doppler width (as a fraction of the
transition wavelength) for any kind of transition in (a) HCI,
(b) ICI at 25°C. What would be the widths of the rotational
and vibrational transitions in these molecules (in MHz and
cm ' respectively), given B(ICl)=0.1142cm ', #(ICl)=
384cm ', and the information in Table 16.2.

16.2 The number of collisions that a molecule undergoes per
unit time in a gas of pressure p is

12
z= 40(E) x £
Jam

where o is the collision cross-section. Find an expression for
the collision-limited lifetime of an excited state assuming that
every collision is effective. Estimate the width of a rotational
transition in HCl (o = 0.30 nm®) at 25°C and 1.0 atm. To what
value must the pressure of the gas be reduced in order to
ensure that collision broadening is less important than Dop-
pler broadening?

16.3 The rotational constant of NH, is equivalent to
298 GHz. Compute the separation of the pure rotational
spectrum lines in GHz and cm ', and show that the value of
B is consistent with an N—H bond length of 101.4 pm and a
bond angle of 106°47’.

16.4 The vibrational energy levels of Nal lie at wavenum-
bers 142.81, 427.31, 710.31, and 991.81 cm'. Show that they
fit the expression (v + 1)¥% — (v + 3)*.¥ and deduce the force
constant, zero-point energy, and dissociation energy of the
molecule.

16.5 A space probe was designed to look for CO in the
atmosphere of Saturn, and it was decided to use a microwave
technique from an orbiting satellite. Given the bond length of
the molecule as 112.82 pm, at what frequencies will the first
four transitions of '*C'°O lie? What precision is needed in
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order to distinguish the 1-0 transition in the spectra of *C'*O
and “C'“O in order to determine the relative abundances of
the two carbon isotopes?

16.6 Rotational absorption lines from 'H**Cl gas were found
at the following wavenumbers (R. L. Hausler and R. A.
Oetjen, J. chem. Phys., 21, 1340 (1953)): 83.32, 104.13,
124.73, 145.37, 165.89, 186.23, 206.60, 226.86 cm . Calculate
the moment of inertia and the bond length of the molecule.
Predict the positions of the corresponding lines in 2H*Cl.

16.7 Is the bond length in HCI the same as that in DCI? The
data (in cm ') from the rotational structure of the infrared
spectrum of the two molecules are as follows (I. M. Mills, H.
W. Thompson, and R. L. Williams, Proc. R. Soc., A218, 29
(1953); J. Pickworth and H. W. Thompson, Proc. R. Soc.,
A218, 37 (1953)):

J 0 1 2 3
'HCI(R branch)  2906.25 2925.92 2944.99 2963.35
'H*CI(P branch) 2865.14 2843.63 2821.59
*HYCI(R branch)  2101.60 2111.94 2122.05 2131.91
*H*CI(P branch) 2080.26 2069.24 2058.02
J 4 5 6

'H”CI(R branch)  2981.05 2998.05 3014.50
'H”CI(P branch)  2799.00 2775.77 2752.01
*H*CI(R branch)  2141.53 2150.93 2160.06
*H¥CI(P branch)  2046.58 2034.95 2023.12

16.8 Thermodynamic considerations suggest that the copper
monohalides CuX should exist mainly as polymers in the gas
phase, and indeed it proved difficult to obtain the monomers
in sufficient abundance to detect spectroscopically. This
difficulty was overcome by flowing the halogen gas over
copper heated to 1100 K (E. L. Manson, F. C. de Lucia, and
W. Gordy, J. chem. Phys., 63, 2724 (1975)). For CuBr the



J=13-14, 14-15, and 15-16 transitions occurred at
84421.34, 90449.25, and 96 476.72 MHz respectively. Calcu-
late the rotational constant and bond length of CuBr.

16.9 The microwave spectrum of *O"CS (C. H. Townes,
A. N. Holden, and F. R. Merritt, Phys. Rev., 74, 1113
(1948)) gave absorption lines (in GHz) as follows:

J 1 2 3 4

S 2432592 36.48882 48.65164 60.81408
S 2373233 47.462 40

Use the expressions for moments of inertia in Table 16.1 and
assume that the bond lengths are unchanged by substitution,
calculate the CO and CS bond lengths in OCS.

16.10 The HCl molecule is quite well described by the
Morse potential with D,=533eV, #=2989.7cm ', and
x.#=52.05cm'. Assuming that the potential is unchanged
on deuteration, predict the dissociation energies (D,) of
(a) HCl, (b) DCI.

16.11 The Morse potential (eqn 23) is very useful as a
simple representation of the actual molecular potential
energy. When RbH was studied it was found that +=
936.8cm ' and x.¥=14.15cm . Plot the potential energy
curve from 50 pm to 800 pm around R, =236.7 pm. Then go
on to explore how the rotation of a molecule may weaken its
bond by allowing for the kinetic energy of rotation of a
molecule and plotting

__ k

" 4ncuR?

Plot these curves on the same diagram for J =40, 80, and
100, and observe how the dissociation energy is affected by

the rotation. (Taking B =3.020cm ' at the equilibrium bond
length will greatly simplify the calculation.)

V*=V +hcBJ(J +1) B

Theoretical problems

16.12 Show that the moment of inertia of a diatomic
molecule composed of atoms of masses m, and myg and bond
length R is equal to uR?, where p is the reduced mass of the
molecule.

16.13 Derive an expression for the value of J corresponding
to the most highly populated rotational energy level of a
diatomic rotor at a temperature T remembering that the
degeneracy of each level is 2J + 1. Evaluate the expression
for ICI (for which B=0.1142cm ') at 25°C. Repeat the
problem for the most highly populated level of a spherical
rotor, taking note of the fact that each level is (27 + 1)*fold
degenerate. Evaluate the expression for CH, (for which
B=5.24cm™") at 25°C.

16.14 Derive expressions for the P, Q, and R branches of a
diatomic rotor without making the assumption that the
rotational constants are the same in the lower and upper
vibrational states. Lines in the P branch of 'H*Cl were
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observed at 2865.1, 2843.6, and 2821.6cm ' for J =1, 2, and
3, and in the R branch at 2906.2, 2925.9, 2945.0, and
2963.3cm ' forJ =0, 1, 2, 3 (I. M. Mills, H. W. Thompson,
and R. L. Williams, Proc. R. Soc., A218, 29 (1953)).
Calculate the force constant of the bond and the bond lengths
of the upper and lower vibrational states.

16.15 The set of relations known as ‘Kraitchman’s equa-
tions’ relate the change in rotational constant (or moments of
inertia) to the positions at which isotopic substitution is made.
Show that when an isotope is substituted at a distance z along
the axis from the original centre of mass of a symmetric rotor,
then the change in rotational constant B is given by

AB/cm™
(B/cm ')(B'/em ')} (AM/g mol )

where B is the rotational constant before substitution, B’ that
after substitution, and

(z/pm)? = 1.685 90 x 10°

_M(M’' - M)
==

where M and M’ are the initial and final molar masses of the
molecule. The microwave spectra of various isotopic species
of CITeF; show rigid symmetric rotor behaviour (A. C.
Legon, J. chem. Soc. Faraday Trans., 11, 29 (1973)). Four of
the F atoms lie in a square, the Te atom lies just above the
plane of the square they form, the fifth F atom lies beneath
this plane and the Cl atom lies above it. Use Kraitchman’s
equation to deduce the Te-Cl bond length on the assumption
that all the Te-F bond lengths are identical. The relevant
data are that the 11-10 transition occurs at 30711.18 MHz in
*Cl'*TeFs;, at 30713.24MHz in **CI'”TeF,, and at
29990.54MHz in “'CI'*TeFs. Use M('**Te)=125.0331
gmol™' and M('*Te) = 124.0443 g mol ™.

16.16 The moments of inertia of the linear mercury(II)
halides are very large, and so the O and S branches of their
vibrational Raman spectra show little rotational structure.
Nevertheless, the peaks of both branches can be identified
and have been used to measure the rotational constants of the
molecules (R. J. H. Clark and D. M. Rippon, J. chem. Soc.
Faraday Trans., 11, 69, 1496 (1973)). Show, from a knowl-
edge of the value of J corresponding to the intensity maxi-
mum, that the separation of the peaks of the O and S
branches is given by the ‘Placzek—Teller relation’

3szT)"’-
hc

AM

59 =(

The following widths were obtained at the temperatures
stated:

HgCl, HgBr, Hgl,
6/°C 282 292 292
év/cm ! 23.8 15.2 114

Calculate the bond lengths in the three molecules.
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Check-list of key ideas

1. The Beer—Lambert law for the reduction in intensity of light
passing through an absorbing medium and the definition of the molar
absorption coefficient (eqn 1). '
2. The intensity of absorption in terms of the oscillator strength (eqn
3a) and its relation to the transition dipole moment (eqn 3b).

3. The use of the Franck—Condon principle to account for the
vibrational structure of electronic transitions and the concept of a
vertical transition (Section 17.2).

4. The Laporte selection rule and the vibronic character of d-d
transitions in complexes (Section 17.3).

5. Charge-transfer transitions and x*,7 and 7*,n transitions (Section

17.3).

6. The mechanisms of fluorescence and phosphorescence and the
characteristics of a fluorescence spectrum (Section 17.4).

7. The mechanisms of intersystem crossing (Section 17.4) and internal
conversion leading to predissociation (Section 17.5).

8. The principles of laser action, including population inversion,
pumping, and the difference between three-level and four-level lasers
(Section 17.6).

9. The characteristics of laser radiation and the formation of pulses
by Q-switching and mode locking (Section 17.6).

10. Examples of practical lasers, including solid-state lasers, gas
lasers, ion lasers, chemical lasers, excimer lasers, dye lasers, and
semiconductor lasers (Section 17.7).

11. The applications of lasers in chemistry, particularly to
multiphoton spectroscopy, laser Raman spectroscopy, and to preci-
sion state-selection and fast reactions (Section 17.8).

12. The techniques of ultraviolet photoelectron spectroscopy and
X-ray photoelectron spectroscopy (Section 17.9 to 17.11).
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