Substituted Methanes

Part XXXIV. Raman and Infrared Spectral Data and Calculated Thermodynamic Properties for CH₂Cl₂ ,CHDCl₂ , and CD₂Cl₂*†

BROTHER FRANCIS E. PALMA, EDWARD A. PIOTROWSKI, S. SUNDARAM, AND FORREST F. CLEVELAND

Spectroscopy Laboratory,[‡] Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616

Raman displacements, semiquantitative relative intensities, and approximate depolarization ratios were obtained for liquid CH_2Cl_2 , $CHDCl_2$, and CD_2Cl_2 ; and wave numbers and estimated relative intensities for the infrared bands from 400 to 4000 cycles/cm were obtained for both the liquid and the gas. Vibrational assignments for the deuteriated compounds were made by comparison with the results for CH_2Cl_2 , and by application of the complete isotopic substitution rules of Brodersen and Langseth. The results confirm the infrared work of Shimanouchi and Suzuki for these compounds, except for the σ_2 fundamental of CD_2Cl_2 which was assigned to the 1052 cycles/cm Raman line. Thermodynamic properties (heat content function, free energy function, entropy, and heat capacity) were calculated for twelve temperatures from 100 to 1000°K to a rigid-rotor, harmonic-oscillator approximation.

INTRODUCTION

Vibrational spectral data for CH_2Cl_2 in the Raman (1-11) and infrared (12-15) have been reported and the assignment of the fundamentals made by Plyler and Benedict (14) has been confirmed by Welsh *et al.* (11) from a study of the band contours in the Raman spectrum of the vapor. Since pure samples of $CHDCl_2$ and CD_2Cl_2 have become available, the present investigation was undertaken in order to obtain spectral data for all these three molecules.

During the course of the present work, Shimanouchi and Suzuki (16) reported wave numbers for the infrared, made assignments for the fundamentals of these molecules, and calculated modified Urey-Bradley, and general quadratic valence

* A preliminary report was presented at the Mid-America Spectroscopy Symposium of the Society for Applied Spectroscopy in Chicago on May 1, 1962. For previous papers in this series, see J. Mol. Spectry. **13**, 67 (1964).

[†] Based on an investigation carried out by one of the authors (F. E. P.) in partial fulfillment of the requirements for the Master of Science degree.

‡ Publication No. 176.

119

force, potential energy constants. The present Raman work confirmed their results, except for the assignment of the σ_2 fundamental for CD_2Cl_2 .

EXPERIMENTAL PROCEDURES

The deuteriated compounds were obtained from the Merck, Sharp, and Dohme Company, Montreal, Canada. The Raman displacements were recorded on Eastman 103a-J photographic plates by the use of a Hilger E-612, two-prism spectrograph having a reciprocal linear dispersion of 100 cm⁻¹/mm at 4358 Å.

							2	<u>c</u>			
	Δσι			I	De	polari	zation	ratio)	$\Delta \sigma_{\mathbf{g}}$	Ii
PR	PV	N	AD	PR	CR	T	W	PRb	PS	WCTL	
289 703 742 899 988 1156 1226 1226 1225	5 284 701 737 5 896 3 988 ^d 5 1153 5 1260 3 1419 5 1419	10 10 7 4 2 6 ··2 9	1.2 1.9 2.0 2.5 8.0 3.5 5.0 2.9 h 2	75 1000 10 vw vw 2 vw vw 6	···· ··· ··· ···	0.25 0.07 0.84 (D) 0.87 0.83	0.43 0.09 0.79 0.89 	0.11 P 0.70 0.75	P P D D Pe	281.5 712.9 748 893 1153 1430.1	69 ^c 137 38 7 22
2001 2306 2365 2986 3053	5 1470 5 5 2986 3 3048	3 11 7	4.3 1.4 4.3	vw vw vw 181 7	 0.2 6/7	0.05 0.9	0.27 D	 Р 0.66	• • • P D	2854 2995.7 3040	 5 108 98

TABLE I RAMAN SPECTRAL DATA FOR CH₂Cl₂^a

 $a_{\Delta\sigma_{1}}$ and $\Delta\sigma_{\sigma}$ = Raman displacements in cycles/cm for the liquid and gas, respectively; I = semiquantitative relative intensity obtained from microphotometer measurements (vw = very weak); PR = present results; PV = probable value from the data of references 1-10; N = number of times the line has been observed in independent investigations; AD = average deviation from the mean; CR = Cabannes and Rousset ($\frac{1}{2}$); T = Trumpy (5); W = Wagner ($\underline{7}$); PS = polarization state (P = polarized, D = depolarized); WCTL = Welsh <u>et al.</u> (<u>11</u>); and parentheses enclose values in regard to which there is some uncertainty.

^bApproximate values.

^CReduced integrated intensities I₁ are given. A few Raman bands for the gas were reported by Nielsen and Ward ($\underline{8}$) at 281, 712, and 3002; and by Rao ($\underline{10}$) at 276, 708, and 2988 c/cm.

dPresent value taken as most probable. Wagner reports 972 c/cm which is much lower than the average observed infrared value of 987 c/cm.

^eThe presence of overtones and combinations of C-Cl stretching vibrations may account for the high depolarization ratio measured for this line.

<u>,</u>	σ ₁			Ie	σσ	<u></u>	Ie
PR	PV	N	AD	PR	SS	PR	PR
452	448	2	4.0	vvw	•••••		••
530	• • •	•	• • •	w	• • • • •	•••	••
706	707	5	26	m	707.5	706	101
100	101)	2.0	112	727.5	725	**
					749.6	750 ^b	
71.0	200	1	ד ר		755.6		
740	(39	Ð	1•1	VS	758.8		vs
					763.5	764	
896	896	5	2.0	s	897.7	897	vw
986	987	3	2.3	vw	• • • • •	• • •	••
1018		•		vvw			••
1154	1156	կ	1.8	W		••••	••
					1260.6	1259	
1265	1265	4	1.0	VS	1268.1	1266	٧s
					1275.1	1275	
1276		•	• • •	w		••••	••
101	2100	~			1462	1463	
1424	1426	6	2.2	S	1473?	1472	W
1442		•	•••	W		••••	••
1550	1553	3	5.7	w			••
1602	1612	3	7.0	vvw			••
2054	2055	3	2.0	VVW		••••	••
2126	2132	3	3.7	vvw			••
2152	2154	2	1.5	vvw			••
2305	2308	3	4.7	w			••
2409	2411	3	2.3	VW	•••••		••
2520	2523	3	2.3	VVW	• • • • • •	* • • •	••
2691	2684	3	8.0	VW			••
2826	2836	3	8.3	vvw	• • • • • •		• •
2083	2986	5	2.0	m	2991	2986	w
2905	2,00		L.V		3007	3005	**
3056	3049	5	2.6	s			••
3688	3693	4	5.5	VVW			••
3941	3940	4	5.5	٧w			••

TABLE II INFRARED SPECTRAL DATA FOR CH₂Cl₂^a

 a_{σ_1} and σ_g = wave numbers in c/cm for the liquid and gas, respectively; I_e = estimated relative intensity (w = weak, m = medium, s = strong, v = very); PV = probable value from the data of references 12-16; SS = Shimanouchi and Suzuki (<u>16</u>); and other symbols have the same meaning as in Table I. A few bands reported by Kaye (<u>18</u>) between 2800 and 4000 c/cm were included in obtaining the average values.

bBreitman and Steacie (<u>15</u>) reported vapor bands at 747, 762 and 1262, 1277 c/cm.

TABLE III

ASSIGNMENTS	FOR	THE	RAMAN	AND	INFRARED	BANDS	OF	CH ₂ Cl ₂ ^a

Δσl	I	PS	σι	Ie	σc	Assignment	Туре
285	75	Р		•••	<u>285^b</u>	σι,	a1
• • •	• • •	•	448	vvw	453	σ 9 - σ] ₄	B ₂
•••	• • •	•	530	W	525	σ8 - σ9	Al
701	1000	Ρ	707	m	<u>704</u>	σ3	al
737	10	D	739	vs	<u>738</u>	σ9	^b 2
896	vw	•	896	s	<u>896</u>	σ7	bl
988	vw	•	987	vw	989	σ3 + σμ	Al
••••	• • •	•	1018	vvw	1023	σ4 + σ9	^B 2
1153	2	D	1156	w	1155	σ ₅	a
1220	vw	•	••••	•••	1229	σ3 + σ8 - σ9	A ₁
1260	vw	•	1265	vs	1263	σ	b2
••••	• • •	•	1276	w	1274	σ ₃ + 2σ ₄	A
1419	6	Ρ	1426	s	1422	σρ	al
••••	• • •	•	1442	w	1442	σ3 + σ9	B ₂
1470	vw	•	••••	•••	1476	20g	A
• • • •	• • •	•	1553	w	1548	σ ι + σ8	B ₂
••••	• • •	•	1612	vvw	1600	σ ₃ + σ ₇	B ₁
2001	vw	•	••••	• • •	2001	$\sigma_8 + \sigma_9$	A ₁
••••		•	2055	vvw	2051	$\sigma_5 + \sigma_7$	B ₂
	• • •	•	2132	vvw	2126	$\sigma_2 + \sigma_3$	A
• • • •		•	2154	vvw	2160	$\sigma_2 + \sigma_9$	B ₂
2306	vw	•	2308	w	2310	205	A ₁
2365	vv	•	••••	•••	2344	σ6 - σ3	^B 1
• • • •	• • •	•	2411	vw	2418	σ5 + σ8	Bl
• • • •	• • •	•	2523	vvw	2526	208	Al
• • • •	•••	•	2684	vw	2685	^σ 2 + ^σ 8	^B 2
• • • •	•••	•	2836	vvw.	2844	²⁰ 2	A _l
2986	181	Р	2986	m	<u>2986</u>	σι	al
3048	7	D	3049	s	<u>3048</u>	۵ 6	bl
• • • •	•••	•	3693	vvw	3690	σ ₁ + σ ₃	Al
••••	•••	•	3940	vw	3944	°6 + °7	Al

^aThese are the present most probable values of the Raman and infrared wave numbers in c/cm.

^bThe underlined values are the observed wave numbers of the fundamentals for the liquid state; the other values are the wave numbers (σ_c) calculated for the overtones and combinations from these observed fundamentals. The other symbols have the same meaning as in the previous tables. The optical densities of the Raman lines were measured with a Leeds and Northrup recording microphotometer and from these the semiquantitative relative intensities and depolarization ratios were determined by methods previously described (17). The infrared records were obtained with a Perkin–Elmer, model 21, double-beam recording spectrophotometer. KBr optics were used from 400 to 1000, NaCl from 1000 to 2000, and CaF₂ from 2000 to 4000 cycles [cm. The cells used for the liquid had a thickness of 100 μ m. For wave-number measurements in regions of strong absorption, a drop of the liquid was pressed between two KBr plates to form a thin film. A 10-cm cell with KBr windows was used for the spectra of gaseous specimens.

SPECTRAL DATA AND ASSIGNMENTS

 $\rm CH_2\rm Cl_2$

A summary of the present and previous data and assignments for CH_2Cl_2 is given in Tables I–III. The assignment is essentially the same as that of Plyler and Benedict (14), although a few additional combination bands have been observed and assigned.

FIG. 1. Infrared spectrum of CH₂Cl₂

									<u> </u>	
Δσ ₁ PR	I	ρ ^b PR	σg	PR		1	Ie PP	σc	Assignment	Туре
							11			
282	494	0.09	•••	•••	• • •	• • •	••	282	σμ	aı
429	vw		•••		• • •	428	vw	429	σο - σ <u>μ</u>	Bo
533	٧w		• • •	•••	•••	•••	••	564	201	Aı
(_	679	677		<- n			-	-
677	1000	P	695	695	679	678	m	<u>678</u>	σ3	\mathbf{a}_1
716	10	0.66	721.7 726.8 729.1 735.4	719 734	704	712	vs	<u>711</u>	σو	ъ2
•••	•••	• • • •	•••••	• • •	•••	• • •	••	<u>712</u> °	σ7	ъ
826	vw	0.83	••••	•••		827	٧w	826	σ	a
•••		••••	952.8 957.4 960.7 967.4	952 962 968	955	957	٧s	955	σ8	b2
992	vw	••••	998.4 1004.3 1009.9 1017.2	998 1004 1010 1014	995	994	5	993 ^d	σų + σg	B ₂
1052	6	0.23	• • • • • •	••••	••••	• • • •	••	1052	σ2	al
••••	•••	••••	• • • • • • •		••••	1137	w	1140	20g - 04	Al
••••	• • •	••••	•••••		• • • •	1173	٧W	1167	σ2 + σ5 - σg	^B 1
	•••	• • • •	•••••	1408		1390	m	1389	a3 + a9	B ₂
1419 ^e	VW				• • • •		••	1422	2øg (A1
	• • •					1537	vw	1538	$\sigma_5 + \sigma_7$	^B 2
	• • •	• • • •	• • • • • • •			1634	vw	1626	σ ₆ - σ ₃	B
1655	vw						••	1652	205 205	A1
	•••		• • • • • • •			1695	w	1730	σ <u>ρ</u> + σ ₂	A1
	• • •					1755	m	1763	$\sigma_2 + \sigma_q$	B ₂
1896	vv						••	1910	20g	A1
			• • • • • •	• • • •		2005	vw	2007	σ ₂ + σ8	Bo
2095	vw					2094	vw	2104	202	A
2198	199	0.07	2198.7	2199 2214	2198	2199	m	2198	σı	al
2304	4	0.80			2304	2305	m	2304	٥٢	Ել
						2876	vw	2876	σ1 + σ2	A1
						2910	٧W	2909	$\sigma_1 + \sigma_0$	B ₂
	•••	• • • •				3011	vw	3016	σς + ση	A
						3117	w	3130	$\sigma_5 + \sigma_6$	Bo
				3354		3333	v	3356	$\sigma_2 + \sigma_2$	B
									2 0	- T

TABLE IV RAMAN AND INFRARED SPECTRAL DATA AND ASSIGNMENTS FOR CD₂Cl₂^a

^aThe symbols have the same meanings as in the previous tables. $^{b}Approximate$ values.

^cCalculated from the complete isotope rule.

^dShimanouchi and Suzuki (<u>16</u>) assigned this band as the fundamental σ_2 . ^eThis band might at first thought be ascribed to a trace of CH₂Cl₂ remaining in the specimen. However, even in the pure CH₂Cl₂, this was a weak band and as only a trace it would probably be unobservable. Besides, the overtone $2\sigma_0$ was observed in CH₂Cl₂ and therefore would also be expected in CD₂Cl₂. The assignment of the apparently depolarized Raman line $\sigma_2 = 1419$ cycles/cm to the a_1 vibrational species (symmetric CH₂ deformation) has been discussed by Welsh *et al.* (11). They found that the band contour for the gas had the strong *Q*-branch characteristic of an a_1 vibration, but with a comparatively high intensity in the rotational wings, indicating that the depolarization ratio is large.

The infrared spectrum is shown in Fig. 1. The absorption band near 1400 cycles/cm has a peculiar shape both for the liquid and the gas. The combination $\sigma_3 + \sigma_9 = 1442$ cycles/cm (B_2) appears as a shoulder, and it is possible that the overtones $2\sigma_3 = 1414$ (A_1) , and $2\sigma_9 = 1478$ cycles/cm (A_1) contribute to the absorption. Welsh *et al.* (11) observed this line at 1430 cycles/cm in the Raman spectrum of the gas. This is a shift of 11 cycles/cm from the wave number for the liquid, as might be expected. In the infrared spectrum of the gas there is an absorption near 1467 cycles/cm, a shift of more than 40 cycles/cm from the infrared value of σ_2 in the liquid. This is a much larger shift than might be expected. Perhaps in the gas as well as in the liquid, the absorption in this region is due principally to the combinations and overtones of the C—CI stretching vibrations, and not to the CH₂ deformation vibration.

FIG. 2. Infrared spectrum of CD₂Cl₂

Δσ ₁ PR	I PR	₽ ^b PR	σ _g SS	PR	o SS	l PR	Ie PR	σc	Assignment	Туре
283	136	P					•••	283	٥G	a'
			•••			433	VW	440	σ ₀ - σ ₆	A"
477	vw		•••				••	495	σ), – σ ₆	A'
						600	w	602	αġ = αζ	A"
650	VW		•••				••	653	σ ₇ - 206	A"
682	1000	P	684 701	684 700	684	681	m	<u>683</u>	σ5	a'
725	20	0.67	737.1 739.3 745.0	743	725	719	۷Ś	<u>723</u>	۵۵	£"
779	16	0.02	787	790	778	778	m	<u>778</u>	σlμ	a,t
886	vw	0.73	881.6 889.8 896.6	880 888 895	885	885	٧S	<u>885</u>	۵8	a"
• • • •	•••	• • • •	* • • • • •		• • • •	1168	W	1168	o6 + o8	A"
1221	VW	0.69	1215.6 1222.9 1230.0	1216 1222 1230	1218	1218	٧s	<u>1219</u>	٥Ţ	aff
1253	vw	••••	•••••	••••	• • • •	••••	••	1259	07 + 09 - 0	5 A'
1276	1	0.50	1294	1277 1287	1283	1275	8	<u>1278</u>	۵3	at
••••	•••	••••	• • • • • •			1361	vw	1366	205	A'
••••	•••	••••	• • • • • •			1404	m	1406	$\sigma_5 + \sigma_9$	A"
1443	VW	••••	• • • • • •	••••	••••	••••	••	1446	209	A†
	•••	••••	•••••	••••	••••	1505	vw	1501 1502	σ4 + σ9 σ6 + σ7	А" А"
• • • •	•••	••••	•••••	••••	• • • •	1608	vw	1608	σ <u>8</u> + σ9	A *
••••	•••	••••	•••••	••••	••••	1668	vv	1663	σι + σ8	A"
• • • •	•••	••••	•••••	• • • •	••••	1713	ww	1714	σų + σγ - σ	6 A"
	•••	••••	•••••	••••	••••	1766	vw	1770	208	Α'
n • • •	•••	••••	•••••	••••	••••	1965	vw	1961 1964	$\sigma_3 + \sigma_5$	A' A'
	•••	• • • •		• • • •		1997	vv	1997	$\sigma_{1} + \sigma_{7}$	A"
	•••	••••			••••	2047	vw	2056	σ3 + σ4	A'
2246	59	Р	2243.2	2243	2248	2246	m	2247	σ	a'
			2259.5	2200		2104		01:28	~ 0~-	
	• • •	••••		••••	••••	2420	W	2430	201	A.11
****	•••	••••	• • • • • •	••••	••••	2474 0510	v w	2471	°3 + °7	A 1
3010	••• 66	••••	3015 . 9	3015	3010	-2742 -3021	vW	2750	°2τ°6 σ-	A'
2019	00	-	3031.7	3035	2019	2170	3	2120	~1 7 1 7	4H
	• • •		• • • • • •	• • • •	• • • •	2110	WW	27255	°2 ⁺ °8	A

TABLE V RAMAN AND INFRARED SPECTRAL DATA AND ASSIGNMENTS FOR CHDCl2⁸

³The symbols have the same meanings as in the previous tables.

^bApproximate values.

The 1156 cycles/cm line, assigned as the torsional vibration $\sigma_5(a_2)$, is allowed only in the Raman spectrum, but also appears weakly in the infrared. The selection rules may break down for liquids due to molecular interactions, and we find that there are similar coincidences for CH₂D₂ (19), CH₂Br₂ (20), CH₂F₂, and CH₂I₂ (14); and for CD₂Cl₂.

CD_2Cl_2

The Raman and infrared data and assignments for CD_2Cl_2 are summarized in Table IV, and the infrared spectrum is shown in Fig. 2. The assignment of the fundamentals was made after consideration of the Raman and infrared intensities, the depolarization ratios, and a comparison with the results for CH_2Cl_2 .

The polarized Raman line at 1052 cycles/cm, which has nearly the same intensity as the 1419 cycles/cm line of CH_2Cl_2 , was assigned as $\sigma_2(a_1)$, the CD_2 symmetric deformation vibration. Shimanouchi and Suzuki (16) assigned this vibration to the strong infrared band at 995 cycles/cm. However, this infrared band can be assigned as the B_2 combination $\sigma_4 + \sigma_9 = 993$ cycles/cm. In Fig. 2, a small amount of infrared absorption can be observed near 1050 cycles/cm.

FIG. 3. Infrared spectrum of CHDCl₂

but for the cell thickness used here, there is no measurable peak. The fact that the corresponding vibration in CH_2Cl_2 is observed as a fairly strong band in the infrared can be partly explained by attributing much of the absorption to C—Cl stretching combinations and overtones, as we have stated above.

The 827 cycles/cm band assigned as $\sigma_5(a_2)$, forbidden in the infrared for the gaseous state, was observed as a weak band for the liquid, as was the a_2 fundamental of CH_2Cl_2 . One of the b_1 fundamentals, expected to appear near 700 cycles/cm, was not observed because of the strong C—Cl stretching bands in this region. The infrared bands at 885 and 1218 cycles/cm are due to traces of $CHDCl_2$ in the sample.

$CHDCl_2$

The assignments for the fundamentals were easily made for CHDCl₂ with the help of the complete isotopic substitution rules of Brodersen and Langseth (21). The observed Raman displacements for CH₂Cl₂ and CD₂Cl₂ were used for these calculations. For the one b_1 fundamental for CD_2Cl_2 which was not observed, a tentative value of 704 cycles/cm was first used; this was the average of the calculated values of Decius (22) and Shimanouchi (23). After the observed wave numbers for CHDCl₂ had been assigned, the observed fundamentals for CHDCl₂ and CH_2Cl_2 were used with the Brodersen-Langseth rule to calculate a better

			WAV	E NUMBERS	FOR T	HE F	UNDAMENTALS	a				
v	σı	H2Cl2	D	C 1	D ₂ Cl ₂	D	ν	σı	CHDC	:12 D	Øci	
	2086	2006							2001			
$v_1(a_1)$ $v_2(a_1)$	2900 1422	2990 1430	8	1052	1060 ^b	••	$v_1(a^{\prime})$ $v_2(a^{\prime})$	3020 2247	3024 2251	4 4	3030 2252	
$v_3(a_1)$	704	713	9	678	687	9	v3(a')	1278	1282	4	1277	
ν ₄ (a ₁)	285	282	-3	282	279 ^b	••	v4(a†)	778	789	11	773	
ν ₅ (a ₂)	1155	1153	-2	826	824Ъ	••	ν ₅ (a')	683	692	9	681	
v ₆ (b ₁)	3048	3040	-8	2304	2296 ^b	••	v6(a')	283	280 °	-3	284	
v7(b1)	896	897	1	712 ^d	713 ^b	••	v7(a")	1219	1222	3	1220	
v8(b2)	1263	1267	4	955	961	6	v8(a")	885	889	4	884	
vg(b2)	738	757	19	711	728	17	vg(a")	723	738	15	725	

TABLE VT

 a_{ν} = frequency; D = $\sigma_g - \sigma_1$; σ_{c1} = wave number calculated by the complete isotope rule from the observed $\Delta \sigma_1$ values of CH₂Cl₂ and CD₂Cl₂; other symbols have the same meanings as in the previous tables.

^bEstimated value obtained by adding to σ_1 the value of D for the corresponding fundamental of CH2C12.

 $c_{Estimated}$ by comparison of the observed CCl_2 deformation wave numbers for all three molecules in the liquid state, and interpolation between the corresponding gas values for CH2Cl2 and CD2Cl2.

^dCalculated from the complete isotope rule.

128

HEAT CONTE	UNT AND	FREE EN	ERGY FUN	CITONS,	ENTROPY	(, AND H	EAT CAPI	ACITY F	JR CH ₂ C1;	2, CHDCJ	L2, AND	CD2C12 ⁸
FI	H)	°਼ ਸ ।)/T	- (F	(°0 ^д - °)/T		So			с ^ъ	
	CH2C12	CHDC12	CD2C12	CH2C12	CHDC12	cp_2c1_2	CH ₂ C1 ₂	CHDC12	cD ₂ C1 ₂	CH ₂ C1 ₂	CHDC12	cD ₂ C1 ₂
100	8.09	8.09	8.10	45.65	47.29	46.05	53.74	55.39	54.15	8.54	8.56	8.57
200	8.69	8.75	8.80	51.42	53.08	51.85	60.11	61.83	60.66	10.13	10.40	10.68
273.16	9.27	9.43	9.58	54.22	55.91	54.71	63.49	65.33	64.29	11.64	12.18	12.76
298.16	9.50	9.68	9.88	55°04	56.74	55.56	64.53	66.43	65.44	12.18	12.79	13.45
300	9.51	9.70	06.6	55.10	56.80	55.62	64.61	66.51	65.52	12.22	12.84	13.50
100	10.45	10.77	11.11	57.96	59.74	58.64	68.41	70.51	69.75	14.27	15.04	15.88
500	11.39	11.81	12.25	60.39	62.26	61.24	71.79	74.06	73.49	15.97	16.79	17.67
600	12.27	12.76	13.27	62.55	64.50	63.57	74.82	77.25	76.84	17.33	18.16	19.04
700	13.08	13.61	14.18	64.50	66.53	65.68	77.58	80.14	79.86	18.44	19.26	20.11
800	13 . 80	14.37	14.97	66.30	68.40	67.63	80.10	82.77	82.60	19.35	20.15	20.98
006	14.47	15.06	15.68	61.96	70.13	69.43	82.43	85.19	85.12	20.12	20.89	21.68
1000	15.06	15.67	16.31	69.52	71.75	71.12	84.58	87.42	87.43	20.78	21.50	22.25
aThese v	alues a	re for	the idea	ul gaseo	us state	s at one	atmospi	here pr	essure,	and are	in cal	deg-1
mole.	T ≡ te	mperatu	rre in de	grees K	elvin, !	I = heat	conten	t, H	free ene	rgy, S :	= entrol	v, c _p

	HF.A'
Ę	
TABLE	Vau

SPECTRAL DATA FOR DICHLOROMETHANES

= heat capacity at one atmosphere pressure, the superscript (°) indicates that the values are for the ideal gaseous state, and E_0° = energy of one mole of the ideal gas at $0^\circ K$.

value for this line, namely, 712 cycles/cm. The probable values of the wave numbers for the fundamentals of $CHDCl_2$ are given in Table V, along with the observed Raman and infrared spectral data and assignments. The infrared spectrum is shown in Fig. 3. The shoulders at 955 and 1265 cycles/cm are attributed to CD_2Cl_2 and CH_2Cl_2 , respectively.

The probable values of the fundamentals for the liquid and gas and the liquid to gas shifts in the wave numbers for CH_2Cl_2 , CD_2Cl_2 , and $CHDCl_2$ are given in Table VI. Also given, in the last column, are the wave numbers calculated for the fundamentals of $CHDCl_2$ by use of the Brodersen–Langseth complete isotopic rule.

THERMODYNAMIC PROPERTIES

The heat content function $(H^0 - E_0^0)/T$, free energy function $-(F^0 - E_0^0)/T$, entropy S^0 , and heat capacity $C_p^{\ 0}$ at one atmosphere pressure were computed for all three molecules at twelve temperatures to the ideal gaseous state, rigid-rotor, harmonic-oscillator approximation. The wave numbers for the gaseous state, listed in Table VI, were used in these calculations. The symmetry number is 2 for CH₂Cl₂ and CD₂Cl₂, and 1 for CHDCl₂. The products of the principal moments of inertia, taken from Meyers and Gwinn (24), are 3.9645 × 10⁵ (amu Å²)³ for CH₂Cl₂, 5.5472 × 10⁵ for CD₂Cl₂, and 4.7456 × 10⁵ for CHDCl₂. The results are given in Table VII.

The thermodynamic properties for CH_2Cl_2 thus calculated differ slightly from those obtained from the wave numbers for the liquid by Gelles and Pitzer (25). The average deviation of their values from the present results is 0.03 cal deg⁻¹ mole⁻¹ for the heat content function, 0.05 for the free energy function, 0.08 for the entropy, and 0.07 for the heat capacity.

ACKNOWLEDGMENTS

This investigation was part of a research program which has been aided by grants from the National Science Foundation. The authors are grateful for this assistance. The authors would also like to thank Dr. Sidney I. Miller and Dr. Kazuo Nakamoto for the use of the Perkin-Elmer, model 21, infrared spectrophotometers in the Illinois Institute of Technology Chemistry Department, and Mr. Clarence Muelleman for the use of a computer program for calculating the thermodynamic properties.

RECEIVED: August 21, 1963

REFERENCES

- 1. P. PRINGSHEIM AND B. ROSEN, Z. Physik 50, 741 (1928).
- A. DADIEU AND K. W. F. KOHLRAUSCH, Sitzber. Akad. Wiss. Wien; Math. naturw. Kl. Abt. IIa, 138, 635 (1929).
- 3. S. BHAGAVANTAM AND S. VENKATESWARAN, Proc. Roy. Soc. A127, 360 (1930).
- 4. J. CABANNES AND A. ROUSSET, Ann. Phys. (Paris) 19, 229 (1933).
- 5. B. TRUMPY, Z. Physik 88, 226 (1934).
- 6. K. W. F. KOHLRAUSCH AND G. P. YPSILANTI, Z. physik. Chem. B29, 274 (1935).

- 7. J. WAGNER, Z. physik. Chem. B45, 69 (1939).
- 8. J. R. NIELSEN AND N. E. WARD, J. Chem. Phys. 10, 81 (1942).
- 9. N. C. MAJUMDAR, Indian J. Phys. 23, 465 (1949).
- 10. M. V. RAO, Indian J. Phys. 25, 61 (1951).
- 11. H. L. WELSH, M. F. CRAWFORD, T. R. THOMAS, AND G. R. LOVE, Can. J. Phys. 30, 577 (1952).
- 13. G. Emschwiller and J. LeComte, J. Phys. Radium 8, 130 (1937).
- 13. C. CORIN AND G. B. B. M. SUTHERLAND, Proc. Roy. Soc. A165, 43 (1938).
- 14. E. K. PLYLER AND W. S. BENEDICT, J. Res. Natl. Bur. Std. (U. S.) 47, 202 (1951).
- 15. L. BREITMAN AND E. W. R. STEACIE, Can. J. Chem. 31, 328 (1953).
- 16. T. Shimanouchi and I. Suzuki, J. Mol. Spectry. 8, 222 (1962).
- 17. F. F. CLEVELAND, J. Chem. Phys. 11, 227 (1943); 13, 101 (1945).
- 18. W. KAYE, Spectrochim. Acta 6, 257 (1954).
- 19. L. H. JONES AND R. S. MCDOWELL, J. Mol. Spectry. 3, 632 (1959).
- 20. E. K. PLYLER, W. H. SMITH, AND N. ACQUISTA, J. Res. Natl. Bur. Std. (U. S.) 44, 503 (1950).
- 21. S. BRODERSEN AND A. LANGSETH, Kgl. Danske Videnskab. Selskab, Mat.-Fys. Skrifter 1, No. 5 (1958); J. Mol. Spectry. 3, 114 (1959).
- 22. J. C. DECIUS, J. Chem. Phys. 16, 214 (1948).
- 23. T. SHIMANOUCHI, J. Chem. Phys. 17, 245 (1949).
- 24. R. J. MEYERS AND W. D. GWINN, J. Chem. Phys. 20, 1420 (1952).
- 25. E. GELLES AND K. S. PITZER, J. Am. Chem. Soc. 75, 5259 (1953).