

Good Practices

Keeping your LC (and chrmotography) working well

©2007 Waters Corporation

Solvent Preparation Waters THE SCIENCE OF WHAT'S POSSIBLE

- Mobile phase difficulties are estimated to account for 70% or more of all liquid chromatographic problems
- Use only clean, HPLC grade solvents
- All buffers should be added, pH adjustments completed, then the solvents should be filtered using a 0.45 micron filter
- Use water only from a high quality water purification system, or HPLC grade water
- Do not "top off" bottles, replace bottles when empty
- Pure water tends to grow bacteria which will clog the system and foul the degasser
 - If the system is idle, replace pure water with water that has 10% organic solvent added to inhibit bacterial growth

- Regardless of the grade of solvent purchased, bottled reagents contain some particulate matter and dissolved gasses
- Most solvent manufacturers sparge their solvents with nitrogen just prior to bottling
- A freshly opened bottle of solvent is often supersaturated with nitrogen
 - Freshly opened solvents **must** be degassed before use
- Vacuum filtration of all solvents through a .45 micron filter will remove particulates, and degas the solvent

What contributes to loss of N?

- Column
 - Void
 - Plugging
- Extra-Column (Non Column) Band spreading
 - Injection Volume
 - Injector (seal problem)
 - Detector Volume
 - Connecting Tubing
 - -Injector to Column
 - -Column to Detector
 - End-fittings and Frits

Reducing Contamination/Ghost. Peaks/Carryover THE SCIENCE OF

- Test pH using an aliquot and then dispose
 - pH probe can contaminate the bottle of mobile phase
- Change your needle wash filter
 - Especially needed if the needle wash has run dry
 - Remember to pre-moisten
- Ensure your needle wash is compatible/good for your sample
 - E.g. salts need some water, maybe acid
- Put a wash step in your gradient
 - Remember the inside of the needle is washed by the gradient
 - Cleans out the column also
- Acid-clean/passivate the HPLC system
 - H₃PO₄, Nitric
- Use certified/pre-cleaned vials

- Online Library
 - Technical notes
 - Methods and application-specific solutions
- Call/email Waters Home Office
 - Nature of symptom
 - Instrument SN

www.waters.com/techassist

Method parameters

1.800.252.HPLC

- Flow rate, solvents/mobile phases, detector wavelength, type of column
- Operating Pressure
- Sample type, matrix
- Service Engineer/Plan
 - Plan cost is 85% cost of parts

What is a Compression Check?

- Automated routine to check for leaks in
 - Sample loop
 - Syringe
 - Needle Seal Pack
 - Valves
- Also detects bubbles in the sample withdrawal path
 - Bubbles will cause problems with system accuracy and precision

©2007 Waters Corporation

What happens during a Compression Check?

- Sample Loop is isolated from the mobile phase flow
- Sample Loop is vented to atmosphere
- A closed system is created that includes the Sample Loop, Valves, Syringe, and Needle Seal Pack
- The closed system is pressurized to a set pressure by the syringe
 - The volume of solvent required to pressurize the closed system is recorded
- A leak down test is run for a specified time, and the loss of pressure is recorded

How do I Interpret the Results? Waters

- **Compressible Volume** the volume of solvent required to pressurize the sample loop to a pre set pressure
 - Typically less than 5 ul using a degassed solvent
 - If the value exceeds 5 ul, possible causes are
 - Mobile phase not degassed
 - o Bubble in the syringe
 - Leak in the syringe, sample loop, valves, or needle seal pack
 - Repeating the compression check often reduces the compressible volume

How do I Interpret the Results?

- Delta Decay Pressure-change in sample loop pressure after completing the leak down test
 - Typically less than 30% of the compression check pressure
 - If the value is high, the problem is usually a worn syringe
 - If the value is positive, then there is a leak in one of the valves or in the needle seal pack that is allowing high pressure mobile phase to leak into the sample loop
- **Final Pressure**-sample loop pressure after completing the compression check

©2007 Waters Corporation

Recommended System Startup Checklist

- 1. See that power is turned on for the Alliance and detector.
- 2. Turn on degasser, column and sample temps.
- 3. Check to see there are sufficient solvents for test.
- 4. Run a wet prime for each solvent you will use. Prime the seal wash and needle wash.
- 5. Turn on flow with the needed composition.

Allow the delta psi to stabilize.

- 6. Purge the injector.
- 7. Program Empower for method, and prepare samples.
- ~ Allow approximately 30 min for equilibration.