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ABSTRACT 

Evidence concerning the involvement of metabolic rate, prooxidants and 
antioxidants in processes of aging and development of animals is examined. 
Life span of poikilotherms and homeotherms is apparently dependent on a 
genetically-determined metabolic potential (i.e., total amount of energy 
expended during life per unit night) and the rate of metabolic expenditure. 
Metabolic potential may vary in different species and under different 
enviror~ental conditions. The relationship between metabolic potential, 
metabolic rate and duration of life is most demonstrable in organisms with a 
variable basal metabolic rate, such as poikilotherms and mammalian 
hibernators. Experimental regimes which reduce metabolic rate prolong life 
span and tend to retard the rate of age-related physiological and 
biochemica/ changes and vice versa. Effects of metabolic rate on aging may 
be mediated by oxygen free radicals. Antioxidant defenses tend to decline 

117 



118 R.S. Sohal and R.G. Allen 

during aging, whereas, free radical induced damage see~s to increase with 
age. Intracellular environment becomes progressively less reducing during 
the course of development and aging. We have postulated that such a shift 
in redox potential may play a role in the modulation of gene activity during 
development and aging. 
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I ~ I O N  

The life cycle of all n~tlticellular organisms can be divided into two 

rather incongruous phases. The initial phase, starting with the union of 

gametes, involves processes of cellular differentiation and growth, leading 

to the achievement of sexual maturity and reproductive activity. In the 

next phase, organisms undergo a progressive and irreversible decline in 

physiological efficiency, whereby, their vulnerability to death increases 

logarithmically with the passage of time. Death occurs when the ability of 

the organima to maintain homeostasis is exceeded by the severity of the 

destabilizing challenges of the enviror~ent. 

Cellular differentiation involves a sequential repression and 

derepression of specific genes, which leads to a phenotypic transition of 

the cell. Aging has been viewed as either a continuation or a deterioration 

of the differentiated state. In the former view, aging results from a 

genetically progr~.,u~ed repression of specific genes or a derepression of 

"geronto" genes, whose products induce cellular deterioration. 1 Although 

this is an appealing concept, to date, no specific product of such aging 

genes has been detected. Alternatively, epigenetic theories view aging to 

result from the inadequacy of protective and reparative mechanisms. In the 

latter view, the functional decline of differentiated cells in the 

postreproductive phase of life is due to the accumulation of unrepaired 

damage, which leads to a gradual loss of genic control. 2 Cutler 3,4 has 

postulated that aging is due to a generalized deterioration of gene 

regulatory functions - a phenomenon he termed "dysdifferentiation". 

The nature of the factors that induce cellular differentiation and 

that are responsible for the functional decline of differentiated cells 

during the aging process is presently not well understood. Nevertheless, 

there is considerable evidence to suggest that oxidative metabolism plays an 

important role in processes of development and aging. Whereas, the 

influence of metabolic rate (rate of oxygen utilization) on the aging 

process has been recognized since the beginning of this century, the 
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possible involvement of oxygen metabolites in developmental processes has 

only recently been suspected. A well coordinated series of changes occur 

during cellular differentiation and aging that seem to involve oxygen free 

radicals and cellular antioxidant defenses. In this review, we examine the 

evidence implicating the role of oxidative metabolism in processes of aging 

and development. A unified hypothesis which proposes that oxygen free 

radical mediated events are involved in aging and differentiation is 

presented. 

Although aging occurs after the completion of the process of 

development, the relationship between oxidative metabolism and aging shall 

he examined first because the bulk of the available information deals with 

this phenomenon. The choice of this sequence may indeed be helpful in 

providing a rationale for the critical evaluation of the studies implicating 

oxidative processes in development. 

I. THE RATE (~ LIVING THEORY 

The concept that basal metabolic rate of organisms is a determinant of 

longevity was first introduced by Rubner in 1908. 5 He noted that the total 

amount of energy metabolised per gram body weight, from maturity to death, 

in five different ma~ralian species (horse, cow, dog, cat and guinea pig) 

was relatively similar, ranging from 170-226 kcal, whereas, the life spans 

of these animals exhibited up to five-fold differences. Rubner postulated 

that living matter expends a discrete amotmt of biological energy during 

life and the duration of life ~as determined by the time spent to transform 

this energy. 

The first experimental evidence supporting Rubner's postulate was 

provided by Loeb and Northrop, 6 who studied the effects of ambient 

temperature on development and life span of Dr~ophila ~ .  

Durations of larval, pupal and adult stages were found to be inversely 

proportional to ambient temperature. For example, total duration of life 

from egg to death was 177 days at 10 ° and only 21 days at 30°C. Life span 

of the adult fly was 120 days at 100 and 14 days at 30°C. Between 15 ° to 

25°C, where development was normal, the temperature coefficient for the 

duration of developmental stages (i.e. larval and pupal) was identical to 

that for the life span of the adult stage. This led the authors to define 

aging in chemical terms. They postulated that duration of life is 

determined by the production of an unknown substance leading to the aging 

effect or by the destruction of substances which prevent aging. 
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On the basis of further studies on the effects of ambient tEsperature 

on development and life span of D. mElanoqaster and cantaloupe seedlings as 

~ell as survivorship curves of starved populations of wild and mutant D. 

melanoqaster, Pearl and coworkers 7-9 introduced the expression "rate of 

living" and proposed the theory named after it. As originally stated, this 

theory postulated that duration of life is a function of two variables: 7'8 

i. The inherent vitality of the individual, which is genetically 

determined, as was proposed by I~ibner. 5 

2. The average rate of metabolism or rate of energy expenditure 

during life, or as stated by Pearl, 8 "in general the duration of life varies 

inversely as the rate of energy expenditure during life." 

The main implication of this theory was that if metabolic potentials 

of a group of organisms belonging to the same species were identical, life 

spans would depend on the rate of metabolism. Studies on poikilotherms 

(cold-blooded animals) and hibernating maama]~ have in general supported the 

concept that metabolic rate and longevity of organisms, belonging to the 

same species, are inversely correlated. I0'II More specifically, a decrease 

in metabolic rate of poikilotherms has a life-lengthening effect. This 

relationship is strikingly evident in the differential expression of the 

trait "longevity" in poikilotherms and homeotherms. The characteristic 

species-specific life span (e.g., 2 years for mouse and 100 years for man) 

is a feature of homeotherms (warm-blooded animals) only, which have a stable 

metabolic rate. In contrast, life spans of poikilothermic species are 

highly variable under different environmental conditions, which influence 

metabolic rate. For example, under wild conditions houseflies live about 3 

weeks in the summer, but in the winter they retreat to dark areas, reduce 

their muscular activity and remain alive for 6 months or longer. 12 

Similarly, stm~,~r ~rker honey bees have a life span of about 35 days while 

winter bees live up to 8 months. 13 The effect of metabolic rate on life 

span of social insects, where queens live for 10-15 years, was described by 

Wheeler 14 as follows: 

"All the subsocial and social insects live in small cavities of the 
soil or wood, in hives or, in the more exceptional cases of social 
%asps and certain tropical ants, in the cavities of carton nests. The 
environment is, therefore, one which restricts or inhibits muscular 
movement and is dark, poor in oxygen, and of rather low and uniform 
temperature. All of these conditions would necessarily favor a 
lowered rate of metabolism and activity and an accumulation of fat in 
the insect body. The queens, or mothers of insect societies certainly 
impress one as having acquired their physiological and some of their 
morphological peculiarities as responses to just such an environment, 
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for they are very sluggish and tend to lose the powers of flight 
(Meliponinae) or even the wings (ants and termites) and to acquire an 
accentuated anabolism as shown in the accumulation of fat and of yolk- 
laden eggs. Certainly the life-span of the three castes of ants and 
social bees would seem to be roughly proportional to their respective 
expenditures of energy." 

A, Te~t~ng the Rate of Living Theory 

Studies testing the validity of the rate of living theory have 

attempted to verify: i) the existence of a fixed metabolic potential or 

Rubner's constant, and 2) if life spans are inversely correlated with 

metabolic rate. 

Most of the experimental studies dealing with the relationship between 

metabolic rate and life span have been performed in poikilotherms, 

especially insects, using ambient temperature as a means to vary metabolic 

rate. 

(i) Ambient temperature ~2d life span. In poikilotherms, ambient 

temperature not only affects the basal metabolic rate, but, more 

significantly, has a profound effect on the level of physical activity of 

organisms. In general, within the viable range, poikilotherms are more 

active physically at warmer temperatures. For example, using a radar- 

Doppler device, to measure physical movement of houseflies at different 

ambient temperatures, it was found that elevation in the ambient temperature 

from 17 ° to 26°C induced a 15-fold increase in walking activity and a 10- 

fold increase in flying activity of the flies. 15 In insects, flying exerts 

extremely high metabolic demands, e.g., rate of oxygen consumption in 

houseflies and blowflies increases 60 to 100-fold during flying as compared 

to resting or walking state. 16'17 

A striking confirmation of both postulates of the rate of living 

theory was provided by MacArthur and Baillie 18 in the crustacean DaDhnia 

maqna. They compared the life span and heart rate of male and female 

DaDhnia at different environmental t(mperatures, ranging from 8 ° to 28°C. 

The heart rate of males w~s about 20% faster than that of females. 

Elevation of tenperature from 8 ° to 28°C increased heart rate of males 412% 

and shortened life span by 77%. Length of life multiplied by heart rate was 

a constant (around 15,400,000 heart beats per life span), regardless of 

temperature or gender. The authors inferred that organisms possess a fixed 

sum of genetically-determined vitality and the length of life is condensed 

or lengthened inversely with metabolic rate. They concluded that "it is not 

time but tempo of life that best measures the rate of aging of an organisal." 
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Similarly, Smith-Sonneborn and Reed 19 found that life span of paramecium 

cultures grown at 24 ° or 27°C were significantly different; however, the 

number of divisions cbserved in the two groups was identical. 

Several investigators, employing temperature to vary metabolic rate, 

have confirmed the general validity of the rate of living theory. For 

example, Miquel et al.20 found that life spans of D. melanoqaster were 

inversely related to ambient temperature and the average amount of oxygen 

consumed by flies during life was relatively constant. Byzcva 21 reported 

that total life-time oxygen consumed by the beetle Tenebrio molitor 

(mealworm) at 20 O, 25 °, and 30°C was constant, whereas, life span decreased 

2.5 times bet%~en 20 ° and 30°C. Effects of different ambient temperatures 

on metabolic rate and life span of adult milkweed bugs and houseflies were 

examined in this laboratory. In milkweed bugs, average longevity was 70% 

and 200% longer at 18 ° than at 25 ° and 30°C, respectively; whereas, 

metabolic potential was statistically similar at all 3 temperatures. 22 A 

similar relationship between ambient temperature, metabolic rate and life 

span was observed in the houseflies. At 20°C, the average life span of 

flies was 44% and 190% longer than at 25 and 30°C, respectively. However, 

unlike milkweed bugs, metabolic potential tended to be higher at lower 

temperatures (Fig. i). Analyses of mortality of milkweed bugs and 

houseflies, using GGmpertz plots, indicated that the slopes of C<m~ertz 

plots were steeper and the intercepts were higher at warmer 

temperatures. II'22 Sacher 23 has inferred that slopes of C~mpertz plots, 

obtained by plotting the logarithms of age-specific death rates (calculated 

as the ratio of the ntm~er of organisms dying during a given interval to the 

number alive at the beginning of that interval) versus age, depict aging 

rates, and the intercepts represent vulnerability to death from age- 

independent causes. Thus, in milkweed bugs and houseflies, elevation in 

ambient temperature increases both the aging rate and the vulnerability to 

age-independent mortality. Increase in longevity at low temperatures has 

also been noted in a variety of diverse organisms including annual fish, 24 

butterflies 25 and nematodes, 26 lending credence to the rate of living 

theory. 

In an effort to provide a precise, mathemaUcal relationship between 

tegperature and chemical aging, Shaw and Berca~ 7 reformulated the rate of 

living theory, based on the assumption that longevity depended on the 

exhaustion of a hypothetical longevity substance, as originally hypothesized 

by Loeb and Northrop. 6 Shaw and Bercaw postulated that if Drosophila are 

kept at a low temperature for a certain length of time and then transferred 
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Fig i. Effect of ambient temperature on average life span, metabolic rate 
(O n consumption/mg/ml/hr) and metabolic potential (total O^ consumed during 
average life span) of male houseflies. Metabolic potentia~ was measured on 
the basis of measurements of 09 consumption at several different 
ages. Metabolic rate ~as me~ured ~ flies kept in groups of i00 in one 
cubic foot (0.027 cubic meter) cages. 

tO a higher temperature, their expectation of life (~) is given by: 

L 2 
L 3 = L 2 + x(l - --~i ) 

where ~ and ~ are life spans at lower and higher temperatures, 

respectively. Using this equation, Clarke and Maynard Smith 28 and Maynard 

Smith 29 analysed the mortality of adult Drosophila, transferred from a 

lo%~r to a higher temperature, and vice versa, at different ages. They 

interpreted their results to suggest that only the latter portion or about 

1/3 of life span, the "dying phase," was actually inversely related to 

temperature, whereas, the earlier 2/3 of the life span, the "aging phase," 

was independent of ambient temperature and also, implicitly, of metabolic 

rate. This interpretation was called the "threshold theory". 
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Subsequent studies by Lamb 30 in D. subobscura and Hollingsworth 31 in 

D__~. melanQg~ster did not confirm the predictions of the threshold theory. 
27 However, based on the equation derived by Shaw and Bercaw, some of their 

results were not in c(mplete agreement with the predictions of the rate of 

living theory. The sources of the conflict between the threshold and rate 

of living theories have been discussed in detail previously I0'II'32-34 and 

will thus be mentioned here only briefly. Apparently, in studies eaploying 

ancient temperature to nDdify metabolic rates, two questionable assumptions 

have been made: 

i. It %~s widely believed that ambient temperature is strictly 

proportional to metabolic rate of insects at various temperatures and ages, 

and after transfer from one temperature to another. There is a large body 

of literature indicating the existence of teaperature-compensative abilities 

in insects and other poikilotherms. 35'36 For example, at 20°C, oxygen 

consumption of cockroaches was higher in those previously kept at 10°C as 

compared to those previously maintained at 26°C, 37 indicating that previous 

thermal history of insects influences their subsequent metabolic rate. 

Similarly, in the last trimester of life, oxygen consumption by milkweed 

bugs kept at 25°C was higher than those kept at 30°C. 22 Hence, the 

assumption that metabolic rate of poikilotherms can be invariably equated 

with ambient t~perature is erroneous. 

2. The assumption, made by Shaw and Berca~ 7 as well as others, that 

constancy of metabolic potential of organisms at different temperatures is a 

valid test for the veracity of the rate of living theory is untenable for 

the following reasons. Many important i__nn vivo biological functions such as 

membrane permeability, rates of enzyme synthesis and degradation, 

proportions of isozymes, and balance between metabolic pathways are 

temperature-dependent. 35 Furthermore, depending on species-specific 

preference, overall physiological efficiency of organism~ varies at 

different temperatures. It is therefore unreasonable to expect that 

metabolic potential of organisms will remain unchanged at different ambient 

temperatures. Cbviously, metabolic potential would be lowered by suboptimal 

conditions. For example, the total amount of oxygen consumption, until 

average life span, was found to be 12-15% greater in houseflies maintained 

at 18°C than at 25°C. 38 Since it cannot be reasonably established that 

any two experimentally varied conditions are equally optimal for the 

expression of the metabolic potential, it would seem that metabolic 

potential of an organis~ remains a hypothetical amount of biological energy 
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expended under a specific experimental condition. This amount would differ 

under various environmental conditions. 

To susm~rize, studies dealing with the effects of temperature on life 

span of poikilotherms have invariably confirmed the inverse relationship 

betwt~n life span and ambient temperature. However, metabolic potential at 

different temperatures may or may not be quantitatively similar. This fact, 

however, should not detract from the main implication of the rate of living 

theory, namely that metabolic rate and life span are inversely correlated. 

(ii) Physical activity_ and life _span. To further explore the 

relationship between metabolic rate and life span, and to avoid 

complications due to secondary effects of varied ambient temperatures, we 

altered the metabolic rate of houseflies by manipulations of flying 

activity. Since flying increases the metabolic rate of houseflies 60 to 

100-fold, 17 variations in flying activity provide a highly effective means 

to alter the rate of oxygen consumption. Levels of physical activity of 

houseflies were altered by a variety of methods, including variations in the 

size of h~sing containers, population density and sex ratios, as well as 

surgical removal of wings. 32'39'40 In general, it w~s found that 

experimental regimes which decreased the level of physical activity tended 

to increase the life span of flies, and vice versa. Average and maximum 

life spans of male flies kept under conditions of low physical activity in 

bottles (250 ml), where flying is not permitted, ere about 2.5 times longer 

than those kept under conditions of high physical activity, in one cubic 

foot cages, where flying is possible 39 (Fig. 2). Life spans of flies were 

also prolonged by surgical removal of wings. 4D Similarly, an increase in 

the proportion of females in the population increased male life span due to 

a reduction in their physical activity, in pursuit of sexually receptive 

females . 39,40 

To investigate whether individual differences in life spans of cohorts 

are related to differences in the levels of spontaneous physical activity, 

walking and flying activity of flies was monitored by radar-Doppler. Flies 

which were more active in walking and flying tended to die earlier. 40 

Reoently, Lints et al. 41 reported the results of a study which they 

interpreted to indicate that spontaneous physical activity in D. 

~lanogaster is not correlated with life span. However, these authors 

measured only the walking tendency of flies confined in a petri dish for 

about 6 minutes on a single day in a fly's life. This and other flaws in 
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their experimental design, pointed out elsewhere, 42 do not permit validation 

of their claim. 

To study the relationship between metabolic rate and life span, Trout 

and Kaplan 43 employed "shaker m mutants of D. r~el~nOgaste;. These mutants 

suffer from a neurological impairment. They are highly active physically 

and have shorter life spans than the wild controls. Metabolic rate and life 

spans of "shakers" were found to be inversely correlated, but the metabolic 

potential of all groups was similar, around 6 ml o~ygen/mg wet weight. The 

authors inferred that metabolic rate, i.e., basal plus induced, is the major 

variable determining longevity in Drosophila. 

Life spans of worker honey bees are reportedly modulated by physical 

activity related to foraging activity. Life span of bees is prolonged in 

proportion to the period spent in relative inactivity in the hive. 44 

Even in the non-flying insects, physical activity has been shown to affect 

life span. For example, Kern 45 reported that adult male silkmoths, which do 

not fly or eat as adults, become very active physically, by frequent shaking 

of the body, in response to stimulation by the female pheromones. Removal 

of the antennae, which act as che~Dreceptors, reduces the level of physical 

activity and causes a significant prolongation in their life span. 

(i~i) ~.etabo!ic rate and life span in ~ .  Because the basal 

metabolic rate of m~,~is cannot be varied experimentally for prolonged 

periods, mammalian studies have mainly dealt with the effects of exercise on 

longevity, and with correlations between species life spans and basal 

metabolic rates. 

Contrary to Rubner's assumption, Cutler 3 has reported three separate 

categories of metabolic potential in mammals. Non-primate ~ s  expend 

about 200-, non-human primates about 400-, and humans about 800-kcal/g body 

weight/life span. Within each of these categories, the basal metabolic rate 

is apparently inversely related to species-specific life span, which 

supports the rate of living theory. 

Results of studies on the effects of physical activity on the aging 

process of ma~m%~Is are rather ambiguous. Several studies have shown that 

voluntary exercise prolongs the life span of laboratory rodents; 46 however 

there is no report, to our knowledge, documenting the effects of various 

levels of mild to strenuous chronic exercise on longevity. The age of the 

organisms appears to modulate the effects of physical activity. Forced 

exercise is beneficial to young organisms, but deleterious to older ones. 47 

A serious limitation in the experimental design of existing mammalian 

studies, dealing with physical activity and life span, is that c(mparisons 
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Fig 2. Survivorship curves of houseflies kept under conditions of high 
activity (HA ;100 flies/l cubic-foot cage; 4 males: 1 female) and low 
physical activity (LA ;one fly/250 ml glass bottle). (Adapted frc~ 39). 

of experimental animals are made with sedentary controls. Such studies only 

demonstrate that lack of n~scular activity under the highly confined 

laboratory conditions is detrimental to animals. It should be borne in mind 

that under natural conditions rodent species are highly active physically. 

It is also well known that certain minimal levels of physical exercise are 

essential for the prevention of tissue atrophy in mammals. It is entirely 

possible that physical activity beyond this critical level is deleterious. 

Decrease in the ambient temperature of mammals results in an increase 

in the rate of oxygen consumption. Animals maintained at low temperatures 

have been found to have significantly shorter life spans than controls 

maintained at roam t~sperature. 48-50 

Mam~lian hibernators can be considered to constitute a physiological 

link between poikilotherms and homeotherms in their ability to maintain a 

stable basal metabolic rate. Lyman et al. 51 examined the relationship 

between hibernation and longevity in Turkish hamsters that hibernated for 0 

to 33% of their lives. Metabolic rate was lower in hibernators kept at 5°C 

than in controls maintained at 22°C. In general, life spans of hibernators 

were longer than non-hibernators. Furthermore, anima/s that hibernated 
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longer also lived longer. Maximum life span was greater in hibernating than 

in non-hibernating animals. 

In summary, there appears to be strong evidence that in simpler model 

systems, such as poikilotherms, longevity is inversely related to the level 

of physical activity. Temperature effects on life span in poikilotherms are 

largely mediated by changes in physical activity. The relationship between 

tenperature, n~tabolic rate and longevity is more complex in mammals due to 

homeothermy and the physiological necessity for physical activity to prevent 

atrophy. Nevertheless, basal metabolic rate of mammals is inversely 

correlated with species-specific life span, within phylogenetic groups 

having similar metabolic potentials. 3 

~I, ~FECTS OF METABOLIC RATE ON AGE-RELATED 

It is reasonable to expect that factors purporting to affect the rate 

of aging would retard or accelerate the biochemical and physiological 

changes accompanying the aging process. Some of the most ubiquitous age- 

related changes, in widely divergent species, are the acct~nulations of 

lipofuscin and thiobarituric acid (TBA)-reactants, and inGreased exhalation 

of alkanes. 52 As described below, the rate of these age-related changes is 

influenced by metabolic rate of the organisms. 

a ,  Lip~fusc$~ 

Most c e l l  types  e x h i b i t  an a g e - r e l a t e d  i nc rea se  in  the  amount of 

c h a r a c t e r i s t i c  c y t o p l a ~ i c  s t r u c t u r e s ,  o f t en  r e f e r r e d  t o  as " l i p o f u s c i n " .  

L ipofusc in  g ranu les  a r e  membrane-beund l y s o s a n a l  s t r u c t u r e s  which con ta in  

lipoidal moieties, exhibit yellow to brown coloration, emit yellow to 

greenish autofluorescence under UV and accumulate with age. 53 A closely 

related structure, termed "ceroid", has similar characteristics but is 

formed under pathological conditions traceable to a specific biochemical 

impairment. 54 Lipofuscin has been the subject of several recent reviews 53- 
57 as well as a recent compendium. 58 In the current thinking, lipofuscin is 

believed to be formed by the involvement of two distinct processes, which 

are: i) autophagocytosis, and 2) peroxidation of lipids, followed by 

copolymerization of lipids and proteins. 57 Some of the fluorescent material 

in lipofuscin granules is extractable in organic solvents 59 and exhibits 

blue emittance. 60 Although there is some disagreement concerning the 

chemical nature of fluorophores, it is generally believed that oxygen- 

derived free radicals play a major role in the formation of fluorescent 

material. 60'61 According to a widely accepted scheme developed by Tappel 
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and coworkers (for references, see 60,61), the blue-emitting fluorescent 

material in lipofuscin granules arises by the peroxidation of 

polyunsaturated fatty acids. Lipid peroxides break down into a variety of 

products including malondialdehyde and alkanes, e.g., ethane and pentane. 

Malondialdehyde reacts with auine-containing molecules, such as proteins, 

nucleic acids and certain phospholipids, to form Schiff-base cc~pcunds with 

the structure: RN=CH-CH=CH=NHR. Tappel's inference that blue-emitting, 

lipofuscin fluorophores are formed as an end-product of free radical-induced 

lipid peroxidation, has provided a conceptual link between oxygen 

consumption, free radicals, lipofuscin and aging. A highly attractive 

feature of Tappel's hypothesis is that the chloroform-soluble fluoresoent 

material (SFM) provides a marker for studying the involvement of free 

radicals and oxidative damage in the aging process. However, blue-~mitting 

fluorophores also exist in the extra-lipofuscin cumpartments within the 

cell; therefore, the concentration of soluble fluorescent material and 

volume of lipofuscin granules may not be proportionately related. 62 For the 

sake of clarity, the term "lipofuscin" will be applied here to the in situ. 

morphologically-detectable, autofluorescent granules, and the term "soluble 

fluorescent material "(SFM) will refer to the substances present in tissue 

extracts. 

The relationship between oxygen free radicals and formation of 

lipofuscin was convincingly demonstrated by Thaw et al.63 in cultured glial 

cells. The amount of lipofuscin was shown to increase in the presence of 

FeC~/asoorbate in the medium as ~ii as elevated ambient oxygen 

concentration, and to decrease in the presence of antioxidants in the 

medium. A variety of other studies (for references, see 56,64) have also 

indicated a relationship between ceroid accumulation and antioxidant 

deficiency. 

There is considerable evidence indicating that the rate of lipcfuscin 

accumulation is dependent on metabolic rate and the rate of aging. For 

example, rate of lipofuscin accun~llation in the hearts of dogs is 

approximately 5.5 times faster than in humans, which roughly corresponds to 

the difference in their life spans. 65 Friede 66 compared the distribution of 

oxidative enzymes, such as succinate dehydrogenase and DPN-diaphorase, with 

the relative amount of lipofuscin in 66 different loci in the aged human 

brain. Nerve cells exhibiting relatively high oxidative enzyme activity 

contained more lipofuscin than nerve cells characterized by relatively low 

activity of oxidative enzymes. A fortuitous insight into the relationship 

between functional activity, oxidative enzyme activity, and the amount of 
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lipofuscin was provided by studies on two persons who had lost an eye. 

Neurons of the lateral geniculate body, receiving term/nals from the blind 

eye, showed a parked decrease in DPN-diaphorase activity and in the amount 

of lip¢~uscin as ccmpared to the neurons connected to the seeing eye. 

According to the author, the presence of "wear and tear" pigment appeared to 

be related to the functional "wear and tear" of a given region as reflected 

by the intensity of oxidative enzymes. Dolman and Macleo~ 4 have cited 

several other examples of a relationship between functional activity of 

cells and their lipofuscin levels. Postural muscles of humans have lesser 

amounts of lipofuscin than muscles involved in movement. 67 Paralyzed 

muscles of stroke victims have relatively little lipofuscin. 67 

The relationship between metabolic rate and lipofuscin accumulation 

was experimentally demonstrated in this laboratory. Average as well as 

maxim~n life spans of adult houseflies were prolonged approximately 2.5 

times by elimination of flying activity. The rate of lipofuscin deposition, 

measured in three different tissues by quantitative electron microscopy, was 

faster in the short-lived, high activity flies as compared to the long- 

lived, low activity flies. 68'69 However, the maximum level of lipofuscin 

reached in the two groups was nearly equal. Increase in ambient temperature 

and in oxygen tension a/so increases the rate of lipofuscin formation in 
7O various tissues of D. melaDQgaster. 

Further experimental evidence indicating the relationship between 

lipofuscin deposition a~d metabolic rate was provided by Papafrangos and 

L!anan 71 in Turkish hamsters. As also mentioned above, Lyman et al. 51 had 

reported earlier that Turkish hamsters that spent part of their lives in the 

depressed metabolic state of hibernation had 23% longer average life spans 

than non-hibernators. A comparison of lipofuscin content in the brain and 

the heart of hamsters indicated that animals which hibernated 11-23% of 

their lives had a slower rate of lipofuscin accumulation than those which 

hibernated only 0-7% of their lives. It ~ms also found that the differences 

between the hibernators and the non-hibernators became more marked with age, 

especially in the heart. Although the rate of lipofuscin deposition %~s not 

foLmd to be directly proportional to alterations in life spans, the total 

volume of lipofuscin reached at the end of life ~s similar in the two 

groups. Thus, studies in both poikilotherms and hibernating mammals show 

that lipofuscin deposition corresponds to alterations in metabolic rate and 

life span. However, this relationship should not be interpreted to imply 

that lipQfuscin is causally related to aging. Rather, lipofuscin should be 

considered a manifestation of cellular senescence. 
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~, Soluble Fluorescent Material 

The concentration of fluorescent material (SFM) in chloroform-methanol 

extracts of tissues exhibiting Schiff base-like fluorescent characteristics 

has been shown to increase with age in a variety of organisms. 57 

Environmental conditions such as ambient temperature and physical activity, 

which enhance metabolic rate, tend to increase the rate of SFM accLm~lation. 

In milkweed bugs 2 and fruitflies, 55'72 the rates of SFM accumulation have 

been found to be faster at higher than at lower ambient temperatures. The 

maximum levels were reached earlier in insects kept at higher temperatures. 

A c(mparison of houseflies, kept under conditions of high and low levels of 

physical activity, indicated that SFM accumulation ~as faster in the former 

than in the latter group, but the maximal level reached was similar in the 

two groups. 73 Individual flies which exhibited a greater tendency for 

spontaneous flight activity (measured by radar-Doppler) tended to have a 

shorter life span and contained more SFM than the relatively inactive, lazy 

flies. 74 Basson et al.75 have also reported that the rate of SFM 

accL~ulation is faster in rats undergoing treadmill physical training than 

in sedentary controls. 

C. Thiobarbituric Acid-Reactants 

One of the consequences of free radical interactions with cellular 

structures can be the peroxidation of polyunsaturated lipids, which is 

detectable by the evolution of alkanes such as ethane and n-pentane, from 

the animal and by the production of TBA-reactive material.61'75 However, 

Gutteridge 77 has reported that in addition to lipid peroxidation, TBA- 

reactants or malondialdehyde-like substances can arise from free radical 

damage to other organic molecules, such as amino acids, DNA and 

carbohydrates. In milkweed bugs 22 and houseflies, 78 the concentration of 

TBA-reactants increased with age at significantly faster rates in organisms 

kept at relatively higher ambient temperatures. These results can be 

interpreted to suggest that increased metabolic rate heightens the in vitro 

susceptability of tissues to peroxidative changes, and may reflect in vivQ 

damage. 

D, Alkane Produc~qn 

Alkane exhalation has been proposed as a sensitive indicator of in 

vivo lipid peroxidation. 79'80 Ethane and n-pentane, which are scission 

products of .-3 and -6 polyunsaturated fatty acids, respectively, have been 

the most c~,~only used indicators. An increase in alkane production has 
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been reported in rats with age 81 and in response to vitamin E-deficiency. 61 

Dillard et al.82 have reported an increase in the level of pentane 

exhalation in humans during physical exertion. Studies in the housefly have 

indicated that in vivo _n-pentane production increases 1.7-fold during the 

average life span of the fly. 83 The amount of n-pentane, generated by the 

flies in V~VO, was 2.7 times greater at 28°C than at 20°C, which clearly 

demonstrated that an increase in metabolic rate causes an increase in the in 

vivo rate of lipid peroxidation. Furthermore, homogenates of houseflies, 

aged at a higher temperature, exhibited a greater susceptibility to undergo 

lipid peroxidation, as indicated by n-pentane production, in response to 

tert-butyl hydroperoxide-induced oxidative stress than those aged at a low~r 

ambient temperature. Age-associated increases in the in vi~o evolution of 

~-pentane and in response to tert-butyl hydroperoxide in vi£ro are 

indicative of the increased vulnerability of flies to free radical-induced 

damage as a function of age. 

III. METABOLIC RATE AhD FREE RADICAL GEhERATION 

Although the existence of a relationship be~ metabolic rate and 

life span has been known for a long time, and, as also pointed out above, 

originally forn~d the basis of the "rate of living" theory, the possible 

mechanism underlying this relationship remained obscure until recently. A 

link between oxygen utilization and generation of oxygen-centered free 

radicals was first proposed by Gerschnan et al.84 Later, Harman 85 suggested 

that free radical-induced damage may be the cause of gradual physiological 

attrition underlying the aging process. 

There is some evidence to indicate that enhanced metabolic rate 

increases the intracellular concentration of free radicals, which in turn 

increases the magnitude of lipid peroxidative and other damage to cellular 

organelles. Davies et al. 86 have reported a 2- to 3-fold increase in free 

radical (R') concentration in homogenates of muscle and liver of rats 

following submaximal exercise until exhaustion. A similar R" signal (g = 

2.004) was detected in humogenates from vitamin E-deficient animals. 

Mitochondrial respiratory control values were lower in exercise-exhausted 

and vitanin-E deficient rats than in controls. State 4 (idling) respiration 

%as increased in exercised and vitamin E-deficient rats, while state 3 (~P- 

stimulated) respiration appeared to be unaffected, suggesting leakage of 

protons from mitochondria. Concentrations of conjugated dienes and TBA- 

reactants were greatly increased in both vitamin E-deficient and exercised 

animals, indicating enhanced lipid peroxidation. Similarly, the exhalation 
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of _n-pentane is significantly higher at 28°C than at 20°C suggesting that 

free radical production is greater under conditions of higher metabolic 

rate. 83 

IV. TESTING THE FR~E RADICAL THEORY 

Although the hypothesis, that free radicals generated during cellular 

metabolism are the main cause of cellular damage occurring during aging, was 

advanced about three decades ago, and considerable knowledge about free 

radical reactions has since accl~u]ated, experimental studies testing this 

hypothesis have been rather desultory. The main approach for the 

investigation of free radical involvement in the aging process has been to 

study the effects of exogenous antioxidants on life span of organisms. 

Harman 87'88 has cited the life-lengthening effects of antioxidant intake to 

constitute experimental support for his hypothesis; however, results of a 

variety of studies have not clearly supported this claim. For example, 2- 

mercaptoethylamine hydrochloride and butylated hydroxytoluene were reported 

by Harman 87 to increase the average life span of mice; however, in a 

reinvestigation Kohn 89 reported that when survival of control mice ~as 

optimal, the same antioxidants had no life-lengthening effect. Antioxidants 

were found to lengthen the average life span of mice only when the life 

spans of controls were below the optimal level. Furthermore, antioxidant 

administration does not prolong the maximum life span, which is widely 

believed to be the main indicator of the rate of aging of organisms. 

Parenthetically, it may be added that the failure of antioxidants to extend 

life Sl~an is not surprising even if free radicals were indeed the causal 

agents in aging. It is not feasible to achieve sufficient intracellular 

concentrations of antioxidants to counteract a significant proportion of 

hydroxyl radicals generated in cells. However, more importantly, cells seem 

to exert a homeostatic control over their antioxidamt levels and, as 

discussed below, administration of exogenous antioxidants causes a 

compensatory depression of endogenous antioxidant defenses. 3'90 

The free radical theory of aging has been frequently criticized, 

justifiably, for lack of direct supportive evidence. Nevertheless, one can 

also pose the question: Is it possible to provide unambiguous direct 

evidence linking free radicals with the aging process, even if they were 

actually involved with the aging process? In our opinion, it may be 

practically impossible to do so because of the requirements of direct proof 

in science. It is presently unrealistic to establish a cause and effect 

relationship between oxygen free radicals, present in extremely low 
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concentrations in cells, and the aging process, which occurs very gradually 

and has poorly defined markers, while excluding all other changes occurring 

during aging. 

A rational and productive investigative approach may be to test the 

predictions of the free radical theory of aging. Within this scope, three 

lines of inquiry have been followed: i. Age-related changes occurring in 

organisms suggesting free radical involvement. 2. Relationship between 

life expectancy and antioxidant defenses or degree of free radical-induced 

damage. 3. Experimental effects of prooxidants and antioxidants on aging. 

Evidence concerning these aspects is discussed below. 

A. Aae-related Chanqes and Antioxida~t Defenses 

As described above, there is much evidence to suggest that free 

radical reactions play a causal role in the formation of lipofuscin, TBA- 

reactive substances and alkanes. In manuals 81 as well as insects, 83 alkane 

production increases with age. In addition, in the housefly, in vivo 

concentrations of inorganic peroxides and GSSG increase with age, II which 

suggests that tissues of older organisms are relatively more vulnerable to 

free radical-induced damage. This may be the result of a decline in 

antioxidant defenses and/or an increase in the rate of free radical 

generation. It should be noted here that various components of the 

antioxidant defense system often possess overlapping functions and may 

undergo compensatory changes to maintain a stable balance. 90 

A comprehensive analysis of age-related changes in antioxidant 

defenses of the housefly indicated that SOD activity decreased during the 

last one third of life; catalase activity steadily declined with age and was 
91 approximately half the level in the old flies as ccmpared to the young. 

Glutathione (GSH) level sharply declined in older flies, whereas, the 

concentration of chloroform-soluble antioxidants (vitanin E) greatly 

decreased during the first part of life and remained relatively constant 

thereafter. In tQto, results of these studies indicated that enzymatic and 

non-enzMmatic defenses against free radicals and hydroperoxides in the adult 

housefly tend to deteriorate with age (Fig. 3), whereas, levels of the 

products of free radical reactions such as ~02, GSSG, TBA-reactants, n- 

pentane production and lipofuscin increase with age (Fig. 4). 

Attempts to determine if age-related decline in antioxidant defenses 

is a widespread phenomenon have produced varied results. Kellogg and 

Fridovich 92 measured total SOD activity in Sprague-Dawley rats at various 

ages. A slight age-dependent decrease was detected in the liver, but not in 
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the brain. Conversely, Massie et al.93 reported a 36% decline in total SOD 

activity in the brain of C57BL/6J mioe between 50 and 900 days of age. In 

the brain of male albino Wistar rats, Vanella et al. 94 found that cytosolic 

SOD activity declined during the first 30 months of age, however, 

mitochondrial SOD activity increased at a proportional rate so that the 

total SOD activity remained relatively stable. Catalase activity has been 

reported to decrease in aging Drosophila 95'96 and the housefly. 91 GSH 

content of various tissues of the mouse undergoes significant decrease in 

the latter half of life. 97'98 Activities of glutathione peroxidase, 

glutathione reductase and glutathione S-transferase a/so decline in old 

mioe. 98,99 

To summarize, results of the studies cited above suggest that overall 

antioxidant defenses tend to decline with age. However, with few 

exceptions, 91 no attempts have been made to obtain a comprehensive profile 

of antioxidant protection of cells with age. It is imperative to obtain 

such comprehensive information because of the compensatory interdependence 

among various components of the antioxidant system. It is possible that 

same antioxidant defenses may remain at fairly high levels throughout life 

to compensate for the age-related loss of other defenses. 

The question whether or not the rate of free radical generation 

increases with age in the rat was investigated by the group of Nohl and 

Hegner. I00-I02 A comparison of 3- and 23-month old rats indicated that 

generation of the superoxide radica/ and ~O2, in both intact mitochondria 

and mitochondrial fragments from the heart, was higher in older rats. The 

concentration of dienes, aldehydes and ketones w~s also higher in old rats. 

The ratio of unsaturated to saturated fatty acids in the inner mitochondrial 

membrane decreased with age. Using glutamate, malate, 3-hydroxybutyrate and 

succinate as substrates, it was found that respiratory activity, respiratory 

control values and P:O ratios of mitochondria ~re lower in old rats. The 

authors inferred that free radical generation in mitochondria increases with 

age and can contribute, via lipid peroxidation, to changes in lipid- 

dependent enzyme systems. 

135 

B. Antioxidants and Life Expeetancv 

Cutler 3 has made con~rative studies of life span potential (LSP; age 

of oldest survivor), life span energy potential (I~; metabolic potential) 

and antioxidant capacity in various mammalian species. While these species 

exhibited up to 30-fold differences in the I~qP, only 3 distinct classes of 
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Fig 3. Age-related changes in antioxidant defenses in the male housefly. 91 
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Fig 4. Age-associated changes in the concentration of various products of 
free radical reactions in male housefly. TBA-reactants, GSSG (oxidized 
glutathione), SFM (chloroform-soluble fluoresoent material presumably 
derived frQm lipofuscin), and inorganic peroxides (primarily H~O 9) were 
measured in wholes~, homogenates of flies, n-Pentane pr~ion w~s 
measured in vivo. (Reproduced from Ii). 
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LEP were evident. It was hypothesized that rate of oxygen utilization was 

related to aging, and animals with higher LEP values were more resistant to 

the deleterious effects of oxygen utilization due to the presence of higher 

concentrations of antioxidants in relation to their metabolic rate. 

Antioxidants such as SOD, 103 uric acid, 104 carotenoids and tocol~herol were 

found to be positively correlated with LEP while ascorbate, glutathione, 

glutathione peroxidase and S-transferases were negatively correlated with 
3 LEP. Brain hc~ogenates of organisms with a high LEP were found to be more 

resistant to autoxidation (determined with TBA) than humogenates of 

organisms with a low LEP. 3 Serum levels of TBA-reactants were inversely 

correlated with LEP. 3 Results of these studies suggested that certain 

antioxidant defenses are correlated with LSP and LEP values in mammals. 

Recently, we examined the relationship between antioxidant defenses 

and life expectancy in the housefly (unpublished). All flies lose flight 

ability prior to death, hence, on the basis of presence or absence of flight 

activity, flies destined to die earlier can be separated from their longer 

lived cohorts of the same age. Flies with a shorter life expectancy 

contained significantly lower levels of SOD activity, catalase activity and 

glutathione, and higher concentrations of inorganic peroxides and TBA- 

reactants as compared to flies with longer life expectancy. 

Studies by Munkres I05 on conidial longevity of NeurosDora crassa 

indicate that longevity of various mutants is positively correlated with 

antioxidant enzymes SOD, catalase, and peroxidases. 

C. Effects of Oxidative Stress and Antioxidants on Aoino 

Most of the evidence concerning the cellular effects of oxidative 

stress has been derived from in vitrQ studies. Such studies have yielded a 

~alth of theoretical information; however, the effects of chronic exposure 

to oxidative stress, which would be relevant to aging studies, are difficult 

to study due to: i) narrow limits of tolerance by living organisms, and 2) 

homeostatic c(mpensatory controls. 

A cumprehensive examination of the effects of experimentally-induced 

oxidative stress, employing a variety of approaches, was conducted in the 

housefly in this laboratory. Putative changes in the level of free radicals 

were induced by the administration of free radical generators or by the 

inhibition of endogenous free radical defenses. Diamide I06 (an -SH oxidant) 

and paraquat 107 (a herbicide believed to generate 02 ) were used to enhance 

the production of free radicals. Diethyldithiocarbamate (DDC)108 (an 
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inhibitor of SOD), 3-amino-l,2,4-triazole (3-AT) I09 (a specific inhibitor of 

catalase), and L-buthionine-SR-sulfoximine II0 (an inhibitor of glutathione 

synthesis) were employed to depress endogenous cellular antioxidant defenses 

against free radicals. Iron was administered to catalyze the interaction 

between 02 and ~O 2 and the decomposition of lipid peroxide. III In 

addition, antioxidants such as ascorbate, B-carotene and ~-tocopherol were 

administered to the flies in order to reduce the putative levels of free 

radical. 90 Endogenous levels of glutathione were increased by the 

administration of L-2-oxothiazolidine-4-carboxylate. II0 

Results of these studies are s~mrarized in Table i. In general, these 

studies indicated that oxidative stress induces a compensatory decrease in 

metabolic rate and an increase in GSH concentration, while exogenous 

antioxidants depress one or more components of the endogenous antioxidant 

defense system. Although diamide and 3-AT did not alter average life span, 

the metabolic potential of the flies, which is an indicator of total 

vitality, was decreased. DDC slightly increased life span but did not 

affect metabolic potential. However, DDC is also an effective antioxidant 

due to its metal-binding properties. Other treatments decreased life span 

and metabolic potential 

Administration of exogenous antioxidants did not increase the life 

span of flies. 91 Results of numerous other studies, which have employed 

antioxidant administration as a means to test the free radical theory of 

aging (reviewed by Balin, I12 and Cutler I13) , have also indicated that 

exogenous antioxidants are ineffective in prolongation of the max~ life 

span of organisms. Relatively high intake of ascorbate and ~-tocopherol ~s 

in fact toxic to the flies. Exogenous antioxidants had a compensatory 

effect on endogenous antioxidants. For example, administration of 

ascorbate, which has an overlapping function with glutsthione and SOD was 

found to depress cellular levels of both. ~-Tocol~herol and B-carotene 

tended to depress SOD activity. 91 

Administration of a relatively low concentration of the above 

prooxidants (except iron) or antioxidants to the housefly did not affect the 

rates of age-associated changes such as acc~nulation of SFM and TBA-reactive 

material. I14 Iron administration increased the level of SFM and lipofuscin. 

Exposure of flies to relatively high concentrations of prooxidants caused 

rapid mortality, which prevented the measurement of age-related parameters. 

Overall, results of these studies indicated that a complex balance exists 

between prooxidants and antioxidants within cells. This is consistent with 

the hypothesis that augmentation or depression of one antioxidant defense 
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causes a compensatory change in another related or overlapping antioxidant 

mechanism. 

V. FREE RADICAL~, DY~D;FFERENTIATION AhD AGING 

Although free radicals are present in cells under steady state 

conditions and can cause molecular damage, it is unlikely that aging is 

solely due to the accumulation of physical damage. A survey of age- 

associated changes clearly indicates that aging is not accompanied by a 

ubiquitous attrition of structural components of cells. Cutler 3'4 has 

suggested that aging may at least be partly due to free radical-induced 

changes in the differentiated state of cells, whereby, normally repressed 

genes become derepressed during the senescent phase. In his view, the 

optimal state of differentiation gradually degenerates into a state of 

"dysdifferentiation" as a result of gencmic damage by long-term exposure to 

free radicals. According to this line of reasoning, the relationship 

between differentiation and aging would be governed by factors which control 

repression and derepression of genes during developmental and post- 

developmental stages. 

Cellular differentiation ultimately results from the differential 

expression of genes; however, this process is modulated by cytosolic 

factors. Transplantation of cultured somatic cell nuclei into oocytes has 

been found to derepress embryonic genes and repress genes normally expressed 

in differentiated somatic cells. I15 In at least one case, transplantation 

of nuclei from dedifferentiated cells, i.e., nuclei from cancer cells, to 

oocytes results in the formation of normal tissues. I16 Such studies 

indicate the existence of cytosolic factors which reversibly influence gene 

expression. 

The hypothesis that aging is due to changes in gene expression does 

not necessarily mean that such changes are due to genomic damage; however, 

diminished control of gencmic expression would result in cellular 

inefficiency and may ultimately lead to death. 3'4'I17 Several lines of 

evidence tend to support Cutler's dysdifferentiation hypothesis. Non- 

histone proteins are believed to play an important role in the regulation of 

gene expression. I18'I19 It is well doc~nented that non-histone proteins are 

extremely sensitive to surrounding charges and ion balance, and that they 

undergo age-related alterations in overall charge. 120'122 The marine 

leukemia virus is normally not expressed in brain or liver tissue; however, 

a greater fraction of the viral gencme is expressed in the brain and liver 

of older animals than in young animals. 123'124 Furthermore, the n~er of 
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globin messenger Rk% molecules has been found to increase in the brain and 

liver with age. Since globin is not normally synthesized by the brain or 

liver, the observed increase may indicate that mechanisms controlling gene 

expression become less effective in older organisms. 123 It would also seen 

significant that many carcinogens are more effective in altering gene 

expression than in causing mutations. 125'126 Cross-linking of chromatin 

proteins may be one of the causes of the age-related decline in protein 

synthesis observed in a variety of organisms. 127'128 

On the basis of existing evidence, it is reasonable to assume that 

gene expression changes with age. Such changes may result fran alterations 

in controlling mechani~s rather than damage to the gencme. If 

dysdifferentiation plays a causal role in aging, a higher rate of metabolism 

should accelerate this process. The mechanism by which metabolic rate may 

bring about dysdifferentiation is presently obscure. In the context of 

existing knowledge, two different mechanisms can be suggested: i. Free 

radicals generated by metabolic processes may damage gene-regu]atory sites 

as suggested by Cutler 3'4 2. In our view, it is also possible that shifts in 

the balance between cellular oxidants and reductants may represent the 

cytosolic factors which affect the patterns of gene expression associated 

with processes of development and aging. Relative concentrations of 

oxidized forms of glutathione, NAD, and NADP in the rat skeletal muscle are 

higher, at the expense of reduced forms, in old rats then in young rats. 129 

We have observed a similar pattern in the whole body hsmogenates of the 

houseflies (unpublished). Such findings suggest that the intracellular 

environment of old cells is less reducing than in the young cells. 

VI. ~V~4ENT OF C~YGEN RADICALS IN DEVELOPMENT 

A variety of metabolic fields and gradients are known to affect 

developmantal processes in multicellular organisms. Many of the changes 

during ~mbryonic development appear to correspond, either directly or 

indirectly, to alterations in oxygen metabolism. 130 Chil~ 31 postulated 

that in regenerating organisms the regions of higher metabolic activity 

influenced the development of regions with lower metabolic activity. 

Differential vascularization, which would presumably lead to unequal 

oxygenation of tissues, is believed to influence developmental patterns in 

higher organisms. 132-134 Furthermore, phenotypic expression in cultured 

embryonic chick cells can be experimentally controlled by variations in 

oxygen tensions. 135 
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Several lines of evidence suggest that oxygen-derived free radicals 

may be involved in the process of cellular differentiation. Polytene 

chromosomes of salivary glands in insects exhibit a characteristic puffing 

pattern during development. I18 Uncouplers of mitochondrial respiration, 

e.g., dinitrophenol, menadione, oligomycin and antimycin A have been 

observed to induce chromosomal puffing. 136'137 

An important clue to the involvement of oxygen radicals in the process 

of differentiation is provided by the fact that alterations in the 

differentiated state are invariably accompanied by changes in the level of 

cellular free radical defenses. Notably, cancer cells appear to exhibit a 

reduction in the activity of mitochondrial SOD (~anga~o-isozyme).138-140 In 

many cases, the activity of cytosolic SOD (Cu/Zn isozyme) is also greatly 

reduced. 141 The rate of cell division, which is indicative of the extent of 

dedifferentiation, has been found to vary indirectly with SOD activity, 

i.e., the highest rates of cell division occur in cells with the lowest SOD 

activity. 139'142 Other antioxidant enzymes in cancer cells also exhibit 

decreased activity. 143 Conversely, SOD activity has been observed to 

increase during metamorphosis in insects 144 and during differentiation of 

the cellular slime mold, Didvmitn~ iridius. 145 

We have observed increases in Mn-SGD activity of up to 46-fold during 

the differentiation of various strains of the slime mold, Phvsarum 

~ . 1 4 6  Increased SOD activity was accompanied by an elevation in 

cyanide-resistant respiration (Fig. 5). The rate at which Mn-SCD activity 

increases roughly corresponds to the rate of differentiation. Under 

identical culture conditions, strains of Phvsarum. which did not 

differentiate, failed to exhibit increased SOD activity. The only other 

enzyme in Ph_vsarum previously reported to exhibit a large increase during 

spherulation is glutamate dehydrogenase (9-fold). Other enzymes examined in 

Phvsarum exhibit approximately constant or decreased activity during 

differentiation. 147 Of the enzymes examined, only superoxide dismutase 

activity increases so strikingly, and only the changes in superoxide 

dismutase activity parallel the rate of differentiation (Fig. 5). 

Inorganic peroxide concentration was greatly elevated in 

differentiating strains of Ph_vsarum, but not in a non-differentiating 

strain. 146 It is noteworthy that rates of ~O 2 generation and lipid 

peroxidation are lower in canoer cells than in normal cells. The decrease 
138 

in the rate of ~02 generation is believed to be due to low SOD activity, 

and the decrease in lipid peroxidation has been postulated to result from 

alterations in membrane composition of tumor cells. 142'148 The rate of 
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tumor growth has also been reported to be inversely related to lipid 

peroxidation, 148 which is consistent with the observation that lipid 

peroxides inhibit ndtcsis. 149 In regenerating rat liver, the level of lipid 

peroxides decreases during the mitotic phase of regeneration and increases 

during redifferentiation. 150 

Glutathione has been implicated in a ntm~er of developmental 

processes. Cell state transitions are frequently accompanied by alterations 

in GSH concentration. Dedifferentiated cells, such as cancer cells, contain 
151 high levels of GSH. For exaa~le, the growth rate of human skin tumors is 

reported to be proportional to GSH concentration. 152 In vertebrates, GSH 

increases during the mitotic phase of regeneration and subsequently declines 

as the cells redifferentiate. 153 7-Glutamyl transpeptidase (GGT), an enzyme 

which can catalyze GSH oxidation, appears to decrease in developing systems 

and to be lowest in differentiated cells. 154 Elevation of GGT activity has 

been observed in dedifferentiated and premalignant cells. 155'156 Once 

differentiated, cells contain a constant low level of GGT activity. 

The antioxidant function of C~H as well as its role in the maintenance 

of cellular ion balance could potentiate many of the effects observed at 

different times during development. Antioxidants such as dihydrobenzoic acid 

and brief periods of anoxia retard or completely inhibit the development of 

Drosophila. 157 High concentrations of antioxidants 158 and changes in 

cellular ion balance 159 have also been implicated as factors leading to 

dedifferentiation and cancer in ~.tu~als. Free radicals, particularly 02 

have been reported to greatly affect membrane permeability to ions by 

increasing the level of lipid peroxidation and the oxidation of -SH groups 
160 in membrane A~ases. 

Changes in nuclear concentration of ions, such as K +, Na + and Mg ++, 

have been found to cause chromosomal puffing in insects. 161'162 Variations 

in C~H concentration can greatly affect the ion distribution in cells. 163 

GSH is also a modulator of cell redox state. 164 A large change in 

intracellular C~H concentration may thus affect the distribution of charges 

in the cell and will markedly affect the ratio of reducing to oxidizing 

equivalents. 

GSH concentrations decrease about 80% during differentiation in 

P _hysarum (Fig. 5).146,165-167 Furthermore, the rate at which C~H 

concentration decreases appears to inversely correspond to the rate of 

differentiation. 165 Increased free radical production during 

differentiation may result in ~'H oxidation and extrusion from cells, 
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Fig 5. Parameters of oxygen metabolism in ph_vsarum polvceDhalum during the 
cell cycle (growth) and during differentiation into spherules (induced by 
starvation). Oxygen consumption %~s measured in plasmodial homogenates in 
the presence of 1.3mM KCN in pH 7.1 buffered glucose (B), and in salts 
medium without K(I~ at pH 3.8 (A). Superoxide dismutase activity (C), and 
concentrations of hydrogen peroxide (E) and glutathione (D) were measured 
during the growth of plasmodia from the second (MII) through the third 
(MIII) post-fusion mitosis and during starvation-induced differentiation of 
microplasmodia grown in shake flasks. (Ac19_ pted from 146, 167). 
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a/heir, C=SH is also known to bind with proteins. Binding of GSH to 

proteins, which can affect enzyme activities, may also account for part of 

the decrease in GSH concentration observed during differentiation. 168 

Treatn~_nt of Physa;%ua with chemical agents that increase or decrease C~H 

concentration results in a corresl~3nding decrease or increase in the rate of 

differentiation. 165 Interestingly, the free radical-generating herbicide, 

paraquat was found to accelerate differentiation in Phvsartua. 166 Treatment 

of a non-differentiating strain of Physar~ with paraquat and buthionine 

sulfoximine (to decrease GSH level) induced the formation of inm~ture 
166 differentiated structures. 

In housefly larvae, GSH concentration is high during development but 

decreases dramatically during metamorphosis. 169 GSH concentration is 

relatively high i~iately following metamorphosis. It decreases during the 

next week and then sharply increaes around the ninth day of adult life. 

Thereafter, it declines steadily until death. 91'169 The cause of CaSH 

decline observed in adult insects appears to be due to the loss of Y- 

glutamylcysteine synthetase activity, and thus results from decreased 

synthesis rather than increased oxidation. 170 The age-related decline in 

C~H may also result from a decrease in glutathione reductase activity since 

the level of GSSG has been observed to increase in aging houseflies. 91 

Cyanide-resistant respiration in the housefly remains relatively 

constant during larval stages (approximately 11% of total respiration). The 

cyanide-resistant respiration is twice as great in pupae as in larvae and 

five times greater in pupae than in adults. 167 Superoxide dismutase (SOD) 

activity is low in larvae and increases very markedly during 

metamorphosis. 144 Increased SOD activity and cyanide-resistant respiration 

would seem to indicate that changes in the rate of free radical generation 

occur during metamorphosis. A large increase in free radical generation in 

pupae would account for increased SOD activity and decreased GSH 

concentration during this period. 

We have also observed a 2-fold increase in Mn-SOD activity and a one- 

third decrease in GSH concentration in differentiating mammalian 

myoblasts. 171 Interestingly, free radical-generators such as X-radiation 

and benzo(a) pyrene induce cytodifferentiation, i.e. adipogenesis, in 

embryonic mouse cells. 172 

On the basis of the above-cited evidence, w~ hvpothesize that 

differentiation is associated with high SOD activity and low ¢.SH 

cong@n~ration. 
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The influence of metabolic rate on life span, and the changes which 

occur in the free radical defenses during differentiation and 

dedifferentiation, raise the possibility that a dynamic equilibrium exists 

between prooxidants, antioxidants and cellular charge distribution, which 

acts as a set point for the regulation of gene expression. We hypothesize 

that differentiation, in part, results from the establishment of this 

equilibrium and senescence is due to a shift in the equilibrium in favor of 

prooxidants. An isportant function of the antioxidants is to meintain 

cellular redox state and ion balance, both of which affect chromatin 

configuration and gene expression. II'163 

Non-histone proteins are believed to play an important role in the 

regulation of gene expression I18 and must migrate from the cytosol into the 

nucleus before chromosomal puffing can occur. It is well documented that 

nonhistone proteins are extremely sensitive to surrounding charges and ion 

balance, and that they undergo age-related alterations in overall 

charge. 120-122 It would seem possible that changes in cellular redox state 

and ion ba/ance, which appear to occur during differentiation, may affect 

the migration of non-histone proteins into the nucleus as well as the 

binding properties of these proteins to chromatin. In aging individuals, 

alterations in the cellular redox state and ion balance may initiate events 

which ultimately lead to decreased regulatory control and 

dysdifferentiation. According to our model, antioxidant defenses modulate 

nuclear-cytoplasmic interaction. Aging is due to attrition of this type of 

regulation and cancer is due to the loss of the optimal equilibrium between 

antioxidants and prooxidants. High concentrations of prooxidants would be 

associated with differentiation, whereas, low concentrations of prooxidants 

or high levels of nonenzymic antioxidants are related to mitotic activity. 

Only with further study can the validity of these hypotheses be assessed. 

CONCLUSIONS AND SUMMARY 

We have reviewed the evidence suggesting the involvement of metabolic 

rate and oxygen metabolites in processes of aging and development. There is 

now little doubt that the rate of aging and metabolic rate of organisms are 

inversely correlated in poikilotherms as well as hcmeotherms. In the 

former, a variety of experimental studies have demonstrated that regimes 

which lower metabolic rate extend life span and retard the rate of age- 

related physiological and biochemical changes. In hcmeotherms, apparently, 

there are three categories of metabolic potential (i.e. total energy 
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consumed during life). Within each category, basal metabolic rate is 

inversely correlated with species-specific longevity. 

In the current belief, the biochemical effects of metabolic rate are 

mediated by the active oxygen species, generated as a result of univalent 

reduction of oxygen. Experimental increase in physical activity has been 

shown to sti~tlate the production of free radicals and their subsequent 

reaction products. 

Efforts to demonstrate, unambiguously, a direct causal relationship 

between oxygen radicals and the aging process have so far been unsuccessful 

because steady state concentrations of free radicals are very low and the 

aging process is extremely slow. Furthermore, it is also difficult to rule 

out the causal involvement of other biological factors in aging especially 

when virtually every physiological function exhibits an age-related 

alteration. It is our suggestion that a more fruitful experimental approach 

would be to focus on the predictions of the free radical theory of aging. 

Antioxidant administration does not seem to prolong longevity in many 

cases probably because organisms exert a homeostatic control over their 

endogenous antioxidant levels. Administration of exogenous antioxidants 

tends to depress levels of endogenous antioxidants. 

Age-related increase in exhalation of alkanes in vivo. which are 

products of free radical induced lipid peroxidation, suggests that free 

radical-induced damage tends to increase with age. There is some evidence 

that this enhanced vulnerability is due to both an age-dependent decline in 

antioxidant defenses as well as increased production of oxygen free 

radicals. The metabolic potential (which is a measure of aging rate) of 

mammals appears to be directly correlated with the efficiency of antioxidant 

defenses in relation to per unit metabolic rate and inversely related to in 

vitro auto-oxidizability of tissues. 

We postulate that aging is due to the loss of a balance between 

prooxidants and antioxidants in cells, which is necessary for the 

maintenance of differentiated state of cells. 

We have discussed some intriguing experimental evidence that oxygen 

free radicals may also play an inductive role in developmental events. 

Intracellular environment becomes less reducing during differentiation. 

High levels of SOD activity and low levels of C~H are in general associated 

with differentiation while the reverse is true during dedifferentiation. It 

is postulated that changes in cellular redox state may be responsible for 

altered gene expression during differentiation and aging. 
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The main i~plication of the arguments presented in this review is that 

oxygen metabolites play a causal role in the induction of cellular 

diferentiation and senescence. 
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