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Understanding the Quadrupole Mass Filter
through Computer Simulation

Colin Steel and Michael Henchman
Department of Chemistry, Brandeis University, Waltham, MA  02254

A small portable mass spectrometer has been employed
with great success in our undergraduate laboratory curricu-
lum at Brandeis (1). The quadrupole mass spectrometer shows
many advantages over the traditional magnetic-sector instru-
ment and this is reflected in its popularity. It suffers, how-
ever, from one disadvantage. It is difficult to understand how
a quadrupole mass spectrometer works. Beginning with the
classic studies of Paul (2), many reviews have been written
to explain the operation of the quadrupole and we cite only a
few of them here (3–8). With some exceptions these accounts
are mathematical and hard to follow. They do not help us to
picture the motion of the ions in the complicated quadrupole
field. We show here how the trajectories of the ions in the
quadrupole can be very simply traced. By following these tra-
jectories, we can understand how the quadrupole “works”.
We can change the parameters that control the quadrupole
and we can see how this change affects the trajectories. We
can understand these changes by analyzing the forces that
act upon the ions—forces that vary with time. In this way
we develop a pictorial understanding of the working of a qua-
drupole which is not evident from the mathematics.

The trajectories of the ions in the quadrupole cannot be
traced experimentally nor can they be calculated analytically.
They have to be computed. Trajectories may be traced as a
student exercise in a straightforward way. The force acting
on an ion is simple to specify and this defines the equations
of motion in a differential form. Numerical integration then
yields the position of the ion as a function of time, which is

its trajectory.
The organization is as follows. In section 1 we describe the

instrument and its parameters that can be varied. Section 2 gives
a qualitative account of the operation of the quadrupole using
main concepts: (i) moderate rf voltages stabilize a trajectory,
(ii) large rf voltages destabilize a trajectory. In this section
some results from later sections are quoted without proof.
Section 3 develops the modeling of the trajectories. In sec-
tion 4, we show how the form of the trajectories can be un-
derstood by analyzing the forces on an ion in the quadru-
pole field.

1. Description of the Quadrupole Mass Spectrometer

A schematic of the quadrupole is shown in Figure 1.
Imagine singly charged positive ions being formed to the left of
Figure 1. They are accelerated in the Z direction by a negative
voltage, Vaccl, typically ~20 volts. They enter the quadrupole
close to the Z axis through a circular hole in a metal plate
(not shown in Fig. 1) and the diameter of the hole defines
the diameter of the ion beam entering the quadrupole field.
To the right, ions that emerge from the quadrupole strike a
detector and are measured as a current. Within the quadrupole,
an ion experiences no forces in the Z direction: consequently,
motion along the Z axis is not affected by the quadrupole
field. Typical velocities in the Z direction [vZ = (2 eVaccl /m)1/2]
give flight times along the 11-cm quadrupole ranging from
25 to 1.8 µs as the ionic mass is varied from 200 to 1 amu.
(Detailed instrumental parameters are given in the captions
to Figs. 1 and 3.)

The quadrupole rods are connected diagonally in pairs.
Within the region between the rods, they provide an electric
field that affects the motion of the ions in the XY plane. As
shown in Figure 1 the field is produced by applying dc and
rf potentials to the rods,

Rods on Y-axis: V1 = V3 = {U – Vocos ωt (1)

Rods on X-axis: V2 = V4 = +U + Vo cos ωt (2)

where U is the dc potential and Vo is the amplitude of the rf
potential, applied at a fixed frequency ω/2π in the MHz
range. With a flight time of 25 µs, an ion experiences about
50 rf cycles while traversing the quadrupole.

2. The Operation of the Quadrupole Mass Spectrometer
The working of a quadrupole mass spectrometer is com-

plicated and our aim here is to bring the reader to a simple
understanding. In section 2.1 we consider ions of a single mass
m entering a quadrupole and we ask which voltages, U and
Vo, let the ions be transmitted and which let them be deflected.
We represent our findings on a plot of U against Vo, which is
known as a stability diagram (Fig. 2). Unfortunately such a

Figure 1. The quadrupole mass filter; the lower part of the figure
shows the dc and rf voltages (U and Vo) applied to the rods. For
the instrument described in ref 1, the distance (ro) from the central
Z axis to the outer surface of a rod is 0.26 cm. The length (L) and
diameter of the rods are 11 cm and 0.63 cm and the applied
radiofrequency (ω/2π) is 2.26 MHz.
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Figure 3. X and Y trajectories for the points A, B, C, D, E in Figure
2. Constant U (= 33 volts) and various Vo (0, 305, 310, 585, 590
volts). xo = yo = 0.07 cm, ro = 0.26 cm, L = 11 cm, m = 199 amu,
ω = 14.2 × 106 rad/s. Vaccl = 20 V; time of flight through quadru-
pole = 25 µs.

stability diagram only applies to ions of a particular mass.
In section 2.2 we develop the generalized stability diagram

(Fig. 4)—much more useful because it applies to all masses.
The generalized diagram has two important applications. It
reveals how the quadrupole can filter ions according to their
mass-to-charge ratio (2.2.1) and it reveals how the quadru-
pole mass spectrometer can produce a mass spectrum (2.2.2).

In this section, we shall also examine the trajectories of
ions in the quadrupole, obtained as described in section 3.
The outcome of these trajectories—whether an ion is trans-
mitted or deflected—enables us to draw the stability diagram.
The detailed waveform of the trajectories (what the trajecto-
ries of the ions actually look like for different settings of U
and Vo) reveals how the quadrupole works.

2.1. Ions of a Single Mass: the Stability Diagram
We start with the simplest possible case, a quadrupole

with the radio frequency (ω) fixed and ions of only one mass
(m). Only two controls can be varied, the dc voltage (U) and
the rf amplitude (Vo). Therefore we ask: For what values of
U and Vo will the quadrupole transmit the ions, allowing them
to strike the detector and be recorded as a current? For what
values will the ions be deflected, strike the rods, and be lost?
To answer these questions, we could perform a large number
of experiments, varying U and Vo and viewing the outcome
(transmission or deflection). Our results would then be most
simply expressed on a plot of U versus Vo (Fig. 2). Each
experiment would be represented by a single point on this
plot and in each case we would record the outcome. Our
experiments would show that all ions with U and Vo values
lying within the “triangle” in Figure 2 are transmitted; those
lying outside the triangle are deflected to one of the rods.

Figure 2 is called a stability diagram. For ions to be trans-
mitted through the quadrupole, their trajectories must be
stable. When ions are deflected to a rod, their trajectories are
unstable. The region within the stability diagram in which all
trajectories are stable is roughly shaped like a triangle and may
be called the “stability triangle”. To understand the stability
diagram we must examine the shapes of the trajectories in
the various regions of the diagram. We obtain these trajectories
by procedures developed in section 3. At this stage we cannot
derive them but we can quote them and use them to under-
stand the working of the quadrupole.

Consider the points C and D in Figure 3. These points
lie within the stability triangle; their trajectories must be stable,
and the ions must be transmitted. Figure 3 shows that the X
and Y trajectories are all stable, as they should be. To “read”
these trajectories, recall that the quadrupole does not act on
the ion in the Z direction but only in the XY plane; and motion
in the XY plane is traced most simply by two trajectories, one
along the X axis and one along the Y. In each of the 10 trajec-
tory diagrams the upper and lower boundaries correspond to
rod surfaces. Since the velocity in the Z direction is constant,
the horizontal axis in each diagram represents both the length
of a rod and the time for an ion to traverse the filter.

We can now label the various regions of the stability
diagram as unstable or stable (Fig. 2). Trajectories are stable
within the stability triangle, requiring both the X and Y
trajectories to be stable (Fig. 3, C and D). Outside the
stability triangle, trajectories are unstable. This could result
from instability of either the X trajectory or the Y trajectory.
Once again, the trajectory calculations provide the answer.

Outside the triangle, at lower values of Vo, the Y trajectory is
unstable and the X is stable, as shown by Figure 3, A and B.
Complementing this, outside the triangle, at higher values
of Vo, the X trajectory is unstable and the Y stable, as shown
by Figure 3, insert E.

Finally, we can label the boundaries of the stability triangle.
At lower values of Vo, moving inside the stability triangle from
outside (Fig. 3, B → C), the Y trajectory changes from being
unstable to stable and so the boundary is called the Y stabil-
ity boundary. Likewise, for higher values of Vo, it is the X
trajectory which changes from stable to unstable (Fig. 3, D
→ E) and the upper boundary of the stability triangle is called

Figure 2. The stability diagram for a particular ionic mass in terms
of the applied dc voltage (U) and rf amplitude (Vo). X and Y direc-
tions are defined in Figure 1 and are used throughout the text.
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the X stability boundary.
We ask the following general questions about the shape

of the stability diagram. Why is the stability region shaped
roughly like a triangle? Why does the Y stability boundary
have a positive slope and the X stability boundary a steep
negative one? Why are the X trajectories stable and the Y tra-
jectories unstable at low rf voltages? Why do X trajectories
(and ultimately Y trajectories) become unstable at high rf
voltages? Answers to these questions come from a qualitative
understanding of the stability diagram. To proceed, we must
invoke two results developed in section 4:

a. Low rf voltages stabilize the trajectory; and
b. High rf voltages destabilize the trajectory.

The first seems counterintuitive. As the rf voltage on a
rod switches from negative to positive, a positive ion will be
first attracted, then repelled. Intuition suggests that these two
effects should cancel but actually they don’t. As we shall see
in section 4 and from Figure 5, the overall effect is to drive
the ion towards the central Z axis and stabilize the trajectory.

The second is simpler to grasp. Large rf voltages induce
large oscillations in the motion of the ion about the Z axis
and the increasing amplitude in the motion causes the ion
ultimately to strike a rod. Again an analysis is given later in
section 4 and displayed in Figure 6.

Using these two concepts, we now explore the features
of the stability diagram by moving along the line A → B →
C → D → E in Figures 2 and 3 (where U is fixed). Point A is
simple to analyze and we use a and b (above) to analyze the rest.

Point A represents the situation of an ion in a dc field
with the rf switched off. In general the ion will not be located
exactly on the Z axis. Rods 2 and 4, at a positive dc voltage,
will repel the positive ion, causing it to oscillate in the X
direction. X motion is therefore stable (Fig. 3, trajectory A
[X ]). Rods 1 and 3, at a negative dc voltage, will attract the
positive ion, which will move toward and strike whichever
rod is closer. Y motion is therefore unstable (Fig. 3, trajectory A
[Y ]). Note that the X stability and Y instability are shown in
the stability diagram (Fig. 2).

We now move A → B → C. The rf voltage is increasing
but still low, so that its action is stabilizing (a). At A, the X
motion is stable; moving to C, it becomes more so. At A,
the Y motion is unstable with the briefest of flight times; at
B, it has been stabilized a little, still unstable but with a longer
flight time; and at C, the stabilizing rf field has made the
trajectory stable. At B, the Y motion is still just unstable and
at C, just stable, with the switchover occurring at the Y stability
boundary. The larger the initial dc voltage, the larger the rf
voltage needed to offset it. For that reason, the Y stability
boundary has a positive slope. Traces of the X and Y trajectories
for A, B, and C validate this description (Fig. 3).

We now move C → D → E. The rf voltage is still in-
creasing but is now large, so that its action is destabilizing
(b). At C, both X and Y motions are stable: ultimately both
must become unstable. The X motion becomes unstable at a
lower voltage (Fig. 3, trajectories E [X ] and E[Y ]). Again,
traces of the X and Y trajectories for C, D, and E validate
this description (Fig. 3). The switchover from X stable to X
unstable occurs at the X stability boundary, which has a steep
negative slope (Fig. 2). In section 4 we shall find that in the
case of X motion, the dc potential (U ) reinforces the large rf
potential (Vo) in driving the ion towards the X rods; hence as

U increases the value of Vo required to obtain X instability
decreases, resulting in a negative slope for the X stability
boundary. The steepness of the slope is associated with the
fact that the value at which the X motion becomes unstable
depends mainly on the large rf voltage (Vo) and, to first approxi-
mation, is independent of the relatively modest dc voltage.

The stability diagram describes the working of the
quadrupole for ions of a single mass. We now generalize the
description for ions of all masses in terms of the generalized
stability diagram. This involves only rescaling the axes; the
shape of the diagram remains unchanged.

2.2. Ions of All Masses: the Generalized Stability
Diagram

For ions of a single mass, the stability diagram describes
the range of quadrupole settings, U and Vo, which cause the
ion to be deflected or transmitted. For each different mass,
there is a different stability diagram. We need one diagram
that will work for all masses. Theory (derived in section 3.1)
tells us to replace the variables U and Vo by new variables α
and q, which we can think of as U/m and Vo/m. There are
other terms in α and q (eqs 3 and 4) but they can be ignored
because they are constant.

When we make an α versus q plot, we obtain the gener-
alized stability diagram (Fig. 4), which applies to all masses
(strictly, all mass-to-charge ratios). Its universal applicability
is shown by the location of the apex, which is always at the
(α, q) point (0.237, 0.706). Again the X stability boundary
always terminates at the (α, q) point (0, 0.91). Using the
generalized stability diagram it is easy to show how the quadru-
pole works as a mass-to-charge ratio filter and how it can
deliver a mass spectrum.

2.2.1. The Quadrupole as a Mass Filter

Again we restrict discussion to singly charged ions. For
a quadrupole to function as a mass filter with unit mass reso-
lution, it must be able to separate mass m from mass (m – 1)
and lower masses, and from mass (m + 1) and higher masses.
That is, we have to be able to tune the quadrupole so that

Figure 4. Generalized stability diagram in terms of the dimension-
less parameters α and q. The three inset diagrams show X and Y
trajectories for m = 202, 199, and 197 amu in the regions exhib-
iting (A) Y instability, (B) no instability, and (C) X instability. For all
insets U = 82 volts and Vo = 497 volts, Vaccl = 20 volts, ro = 0.26
cm, xo = yo = 0.1 cm, L = 11 cm, ω =14.2 × 106 rad/s.
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mass m lies within the stability triangle, whereas all other
masses, (m – 1) and lower and (m + 1) and higher, do not.
How can we do this? We could tune mass m to the tip of the
apex of the generalized stability diagram (Fig. 4) because most
of the surrounding points lie outside the stability diagram.
In principle, that is a good idea; in practice it isn’t, because
random voltage fluctuations in U and Vo would move the
mass m in and out of the stability triangle. In practice we tune
it not to the apex (α = 0.237; q = 0.706) but slightly below,
say to point B in Figure 4 (α = 0.233; q = 0.706), where
noise will not kick the ion of mass m out of the triangle.

With the quadrupole tuning mass m to the point B (Fig.
4), we now check on masses (m – 1) and (m + 1). If they lie
outside the stability triangle, the quadrupole can act as a mass
filter. If they lie inside, mass m will not be selected from
masses (m – 1) and (m + 1) .

We start by calculating the quadrupole voltages needed
to focus the mass m on the point B. We call these values U
and Vo. By using the equations that define α and q (section
3) and substituting the values of α and q that define the point
B, we can evaluate U and Vo,

α = 8 e U/m ro
2

 ω2 = 0.233 (3)

q = 4 e V o/m ro
2

 ω2 = 0.706 (4)

We now ask, with the quadrupole tuned at voltages U
and Vo, where the (singly charged) masses (m – 1) and (m +
1) will appear on the stability diagram.

Let’s start with mass (m – 1). We want to locate its posi-
tion on Figure 4 (i.e., its α and q values). These are given by
eqs 5 and 6:

α = 8 e U /(m – 1) ro
2

 ω2 (5)

q = 4 e Vo /(m – 1) ro
2

 ω2 (6)

Notice that the α and q values for mass (m – 1) are both larger
by the same factor, m/(m – 1), than those for mass m at point
B. Since the ratio (α/q) is fixed (by the tuning of m to B), mass
(m – 1) will be located on the straight line drawn through
the origin and passing through B… somewhere in the vicinity
of point C. The corresponding values for mass (m + 1) will
be smaller, placing it on the same straight line but now below
B… somewhere in the vicinity of point A. The straight line
on which these masses lie is called the scan line. Clearly, for
given values of U and Vo all masses lie on the same scan line.

To investigate if a particular quadrupole can function as
a mass filter in a particular case, we must establish whether
points A and C lie inside or outside the stability triangle. In
section 3 we use the trajectories shown in Figure 4 to estab-
lish the resolution that can be achieved.

2.2.2. Running a Mass Spectrum on the Quadrupole
The above discussion tells us that to maximize resolu-

tion, each mass must progressively be brought to point B in
Figure 4. When any particular mass is being measured, all
the other masses will be strung out along the scan line, the
heaviest closest to and the lightest furthest from the origin.
To run a mass spectrum, we move all the masses progres-
sively through point B. This is done by starting at a low value
for U and Vo and progressively increasing both while keep-
ing the ratio U/Vo constant at 1/2(0.233/0.706) throughout.

3. Computer Modeling

In this section we show how the performance of the quadru-
pole may be analyzed under any conditions by examining
the trajectories of the ions, which are readily obtained by
computer simulation. The first step is to derive the equations
governing the motion of the ions. Although these equations
may be found in other references (2–5, 7, 8), they are repeated
here for convenience and completeness.

3.1. Theoretical Background
The dc and rf voltages determine the potential in the

X–Y plane in the charge-free region between the rods and
the potential (V ) there must satisfy the two-dimensional
Laplace equation (9, 10) ∂2V/∂x2 + ∂2V/∂y2 = 0. The simplest
equation satisfying this differential equation is, V(x,y) =
(x2 – y2)?K where K is some constant determined by the
boundary conditions. The internal surfaces of the rods mark
the edge of the charge-free region and fix the boundary con-
ditions on the X and Y axes so that

V ({ ro,0) = V (ro,0) = (U + Vo cos ωt)
and

V (0, { ro) = V (0, ro) = {(U + Vo cos ωt)

so that K = (U + Vo cos ωt)/ro
2. Thus,

V (x, y) = (x2 – y2)(U + Vo cos ωt)/ro
2 (7)

We see from eq 7 that an equipotential curve within the
quadrupole, that is, V (x, y) = const, has the form of a rectan-
gular hyperbola. Indeed, early quadrupoles were constructed
using rods having hyperbolic surfaces (2, 6 ). But in practice
this was found to be unnecessary, and rods circular in cross-
section, which are much more easily fabricated, are now used.

The force in the X direction on an ion, charge e, at (x,y)
is Fx = {e ∂V /∂x, with a similar formula for the force Fy in the
Y direction. These equations for Fx and Fy in conjunction
with Newton’s second law (force = mass ? acceleration) and
eq 7 immediately yield

Fx = m?d 2x/dt 2 = {2e(U + Vo cos ωt) x/ro
2 (8)

Fy = m?d 2y/dt 2 = 2e(U + Vo cos ω t) y/ro
2 (9)

Notice that, since there are no cross terms, the motions in the X
and Y directions are independent. This justifies displaying
ion trajectories as independent X and Y paths in Figures 3 and
4. Equations 8 and 9 are second-order differential equations.
Generally they are recast (4 ) into dimensionless form by using
the substitutions

φ = ωt/2 (10)

α = 8eU/ro
2mω2 (3′)

q = 4eVo/ro
2mω2 (4′)

in which case they become

d 2x/d φ2 = { (α + 2q cos 2φ)x (8′)
d 2y/dφ2 = (α + 2q cos 2φ)y (9′)

The parametric dependence of α and q on m/e emphasizes
again that the quadrupole sorts ions according to their mass-
to-charge ratio.

Finally, the equivalent three-dimensional Laplace equation
∂2V /∂x2

 + ∂2V /∂y2
 + ∂2V /∂z2

 = 0 is the fundamental equation
for the quadrupole storage ion trap (2, 5, 7) and an essentially
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similar theory applies to these devices.

3.2. Trajectory Generation
To generate ion trajectories, we have to integrate the dif-

ferential equations of motion (8 and 9). Direct integration
to provide analytical solutions for the ion trajectories is not
possible: instead, they are derived very easily by numerical
integration, using a few lines of computer code. To do so we
first recast eqs 8 and 9 in first-order form, defining u = dx/dt
and v = dy/dt as the velocities in the X and Y directions:

du/dt = {2e(U + Vo cos ωt) x/mro
2 = f (t,x) (11)

dv/dt = 2e(U + Vo cos ωt) y/mro
2 = g(t,y) (12)

Numerical integration by the Euler method (11, 12)
starts at an initial state (uo, vo, xo, yo, to). A time interval dt
generates a new state (u1, v1, x1, y1, t1). This is repeated n
times. The trajectory of the ion is then represented by the
set (xi, yi, ti), where i = 0, 1, …, n. We have to make assump-
tions about the initial conditions. At time zero (to = 0) we
assume that uo = vo = 0 and that the ion enters the quadru-
pole off axis at the point (xo, yo). In passing from (uo, vo, xo,
yo, to) to (u1, v1, x1, y1, t1), changes duo, dvo, dxo, dyo, dto occur
such that u1 = uo + duo, etc. The incremental changes are
estimated as follows: duo = f (to, xo)dt ; dvo = g(to, yo)dt ; dxo =
uodt ; dyo = vodt ; dto = dt. Better estimates of these increments
are given by the 4th-order Runge–Kutta method (11, 12),
which was employed throughout this study in implementing
the numerical integration. The time interval (dt) was typically
a factor of 30 less than the period (2π/ω) of the rf field. The
upper limit of integration is given by the flight time of the
ion through the quadrupole, which is determined from the
value of vZ and L.

Using a 486 PC and uncompiled QuickBasic, such a
program takes less than two seconds to run and display the
trajectories on the monitor, so a student can quickly change
experimental parameters and view the results.

This allows for ready experimentation to examine how
a quadrupole “works”:

1. For the conditions shown in Figure 4 the mass range
that gets through the filter is about 199 ± 2.25, so that
the resolution is m/∆m = 199/2.25 ≈ 88. This agrees
well with the value obtained from the empirical for-
mula (5) m/∆m = 0.357/(0.237 – α0.706), where α0.706

is the value of α at the point of intersection of the scan
line with q = 0.706. Lowering α/q (or U/Vo) even mod-
estly can result in a serious loss of resolution. Thus,
when α/q is lowered by 10% to 0.30 the resolution
drops to ≈ 12. By changing U and Vo so as to tune in a
new mass to point B (Fig. 4) and tracing new trajec-
tories, the student can show that the resolution m/∆m
is independent of m and depends only on the value of
α0.706.

2. In Figure 3 we showed how for a given mass and at
constant dc potential (U) the points on the Y and X
stability boundaries could be obtained by systemati-
cally increasing Vo and looking at the values of Vo at
which the changes from Y unstable to Y stable and from
X stable to X unstable occur. By varying U and repeating
this procedure the stability diagram may be mapped.

3. Other factors that can influence the resolving power of a
quadrupole (5), such as ω, the initial values xo, yo, the rod
length L, and the rod separation (2 ro) are quite subtle
and require a more detailed analysis, accounting for

the fact that not all ions will start with uo = vo = 0.

4. Detailed Description of the Trajectories

In this section, a closer examination of the forces on an
ion and the resulting trajectories elucidates and clarifies the
main concepts used in section 2: (i) moderate rf voltages are
stabilizing, and (ii) large rf voltages are destabilizing.

4.1. Moderate RF Voltages Are Stabilizing
The upper part of Figure 5 shows a stable Y trajectory

of an ion when U = 0 and Vo = 100 volts; notice the absence
of a dc potential, so the ion is subject to only a rf field. The
main diagram shows a detail of this trajectory during the first
1.5 µs. Also shown as the dotted curve is the force on the
particle (Fy) according to eq 9. Since y > 0, this equation shows
that Fy oscillates with the same frequency (ω) as the rf po-
tential on the Y rods.

At t = t1 the particle is moving toward a Y rod, but dur-
ing the interval [t1,t2] the ion reverses direction because it
suffers an impulse (= ∫t1

t2
 Fydt) that is directed towards the cen-

tral Z axis (a stabilizing impulse). During the next interval
([t2,t3]) the impulse changes direction towards a Y rod (a desta-
bilizing impulse). However, since the particle is now closer
to the axis than during the previous interval and since Fy de-
pends upon y, the magnitude of the impulse during [t2,t3] is
less than during the preceding interval [t1,t2]. Thus the par-
ticle is subjected to a series of impulses that are stabilizing,
destabilizing, stabilizing, …, and in which each destabiliz-
ing impulse is smaller that the preceding stabilizing impulse.
The direction and magnitude of these impulses is represented
by the arrows attached to the Y trajectory. The net result of
this train of impulses is stabilization and the overall motion
of the particle is toward the center. This results in the low-
frequency oscillation about the central Z axis with a period
of about 8.5 µs, which can be seen in the full trajectory.

Returning to the central detail, we see that superimposed

Figure 5. Stable Y trajectory obtained at U = 0 volts, Vo = 100
volts, and m = 199 amu; other parameters as for Figure 4. The upper
part of the figure shows the trajectory through the entire filter. The
full line in the detail is an enlargement of this trajectory during the
initial 1.5 µs (shaded area of total trajectory). The lowest section
shows the voltage on the Y rods. This voltage results in the oscillating
force (arbitrary units) shown as a dotted curve in the main detail.
The force imparts successive impulses (shown as a series of arrows)
on the ion, driving the ion toward the center.
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on this low-frequency motion, the trajectory exhibits a high-
frequency oscillation that has the same frequency as Fy and
so must also equal the rf frequency ω. These two frequencies
can also be clearly seen for the Y trajectory in Figure 4 insert B.

4.2. Large RF Voltages Are Destabilizing
The upper part of Figure 6 shows the total X trajectory

of an ion when U is still zero but now the rf amplitude (Vo)
has been increased from 100 to 647 volts. The central diagram
shows an enlargement during an early part of the trajectory.
Also shown, as the dotted curve, is the force on the particle
(Fx) according to eq 8. As in the previous figure, at t1 the
particle is moving toward a rod and during the interval [t1,t2]
the ion reverses direction because of the impulse ∫t1

t2
 Fxdt directed

toward the central axis. However, in this case V0 is sufficiently
large, and consequently the magnitude of the impulse suffi-
ciently great, that during the next interval ([t 2,t′′]) the particle
is driven close to the central axis. Because x is now small, eq
8 tells us that the force (and also the impulse) must be small
and is not able to reverse the direction of the ion. In fact at
t′′ the force is zero, since x = 0. Although the two impulses
during [t2,t′′] and [t′′,t3] are small, they play a crucial role. If
the magnitude of the impulse during [t′′,t3] is greater than the
magnitude of the impulse during [t2,t′′], the ion will be driven
closer to an X rod at the turning point t′′′ than at the prior

pulse ∫t1
t2

 Fxdt), then we may have (t′′ – t2) > (t3 – t′′), so that
the magnitude of the impulse during [t 2,t′′] becomes greater
than the magnitude of the impulse during [t′′,t3]. In this case
the position of the particle at t′′′ will be farther from the X
rod than at t′. In this case the amplitude will decrease and
the trajectory would still be stable. Clearly the X stability
boundary condition is obtained when (t′′ – t2) = (t3 – t′′).
Such a change from an unstable to a stable X trajectory can
be seen by looking at Figure 3, E and D.

Finally, observe that, although the rf period is (t3 – t1),
the period for the high-frequency X oscillation is 2(t′′′ – t′) =
2(t3 – t1). That is, the high-frequency X oscillation occurs at
not at ω, as for the stable Y oscillation, but at ω/2. The dif-
ference in the high-frequency X and Y oscillations can be
clearly seen in Figure 4C.

4.3. Instability of the Y Trajectory at High RF Voltages
In Figures 2 and 3 we referred to a situation in which

the dc voltage was held constant at U = 33 volts. The Y
trajectory is unstable A → B, stable C → D → E, and must
become unstable again at still higher rf voltages (recall con-
cept b). Why is a higher rf voltage (Vo ≈ 695 volts) required
to destabilize a Y trajectory than an X trajectory (Vo ≈ 650
volts)? This result seems paradoxical in view of the fact that
in the absence of rf voltage, the dc voltage stabilizes the X
trajectory and destabilizes the Y trajectory (Fig. 3A).

The answer is to be found in Figure 6. For X motion
during the period [t1,t2], the rf and dc voltages reinforce. This
means that the ion can receive a sufficiently large turning
moment during this time so that the ion is driven to the center
and can satisfy the condition (t′′ – t2) = (t3 – t′′) for the X
stability boundary at relatively small Vo. During the same
period, for Y motion the rf and dc voltages oppose; so to get
the rf voltage large enough to counteract the dc voltage, Vo
has to be increased over its value for X motion.
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Figure 6. Unstable X trajectory obtained at U = 0 volts, Vo = 647
volts, and m = 199 amu; other parameters as for Figure 4. The
upper part of the figure shows the total trajectory. The full line in the
detail is an enlargement of this trajectory during the small initial
section shown as the shaded area in the total trajectory. The low-
est part of the diagram shows the voltage on the X rods. This voltage
results in the oscillating force (arbitrary units) shown as a dotted
curve in the main detail. The force imparts successive impulses
(shown as a series of arrows) on the ion, driving it toward a rod
with ever-increasing amplitude and an oscillation frequency equal
to 1/2 the radio frequency.

turning point, t′. That is, the amplitude is increasing and the
trajectory is unstable, as can be seen from the total trajectory.

On the other hand, if the position of t′′ is moved to the
right by decreasing Vo (and thus the magnitude of the im-


