The <i>n</i> -octanol-water partition coefficient, K_{ow} is a partition coefficient for the two-phase system consisting of <i>n</i> -Octanol and Water. ^[1] K_{ow} is also frequently referred to by the symbol P, especially in
the English literature. Kow serves as a measure of the relationship between lipophilicity (fat solubility) and hydrophilicity (water solubility) of a substance. The value is greater than one if a substance is more soluble in fat-like solvents such as n-octanol, and less than one if it is more soluble in water.
If a substance is present as several chemical species in the octanol-water system due to association or dissociation, each species is assigned its own K_{ow} value. A related value, D, does not distinguish between different species, only indicating the concentration ratio of the substance between the two phases.

· Definition of the Kow or P-value

The K_{ow} or P-value always only refers to a single species or substance:

$$K_{ ext{ow}} = P = rac{c_o^{S_i}}{c_w^{S_i}}$$

mit:

- + $c_o^{S_i}$ concentration of species i of a substance in the octanol-rich phase
- \bullet $c_w^{S_i}$ concentration of species $\it i$ of a substance in the water-rich phase

If different species occur in the octanol-water system by dissociation or association, several P-values and one D-value exist for the system. If, on the other hand, the substance is only present in a single species, the P and D values are identical.

P is usually expressed as a common logarithm, i.e. Log P (also Log P_{ow} or, less frequently, Log pOW):

 $\log P = \log \frac{c_o^{S_i}}{c_o^{S_i}} = \log c_o^{S_i} - \log c_w^{S_i}$ Log P is positive for lipophilic and negative for hydrophilic substances or species.

Substance	log K _{OW}	Т
Acetamide	-1.155	25 °C
Methanol	-0.824	19 °C
Formic acid	-0.413	25 °C
Diethyl ether	0.833	20 °C
p-Dichlorobenzene	3.370	25 °C
Hexamethylbenzene	4.610	25 °C
2,2',4,4',5-Pentachlorobiphenyl	6.410	Ambient