
ABSTRACT

This research develops a general method that combines

optimization methods and an interior ballistics model to

automate the design process for propellent grains. It is a

multi-variable constrained optimization problem. The

augmented Lagrange multiplier method is used to control the

constrained problem while two zero-order methods (Powell's

and Hooke-Jeeves) perform the unconstrained minimization.

The interior ballistics model IBRGAC, developed at the

Interior Ballistics Laboratory, Aberdeen Proving Grounds,

Maryland, is used as the objective cost function. To

validate the process a representative 120mm tank gun system

is used with four propellent combinations. The examples

demonstrate that the scheme works and can be used as an

effective design tool. -K-
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LIST OF SYMBOLS

Term: Definition: Units:

A Area m2

a Acceleration m~s2

b Covolume m /kg
C Initial mass of propellent (or igniter) kg
cv  Specific heat at constant volume J/kg-K
c Specific heat at constant pressure J/kg-K
D Diameter m
d Distance between perforation centers cm
E Energy J
F Force N
f Fraction of work done against bore

friction that preheats chambex none
h Heat transfer coefficient watt/m2-K
L Length of propellent cm
m Mass kg
n Factor of safety none
P Pressure Pa
Pi Diameter of inner perforation cmI Diameter of outer perforation cm
Q Heat Flow watts
R Specific gas constant kJ/kg-K

Universal Gas Constant kJ/Kmol-K
r Linear burning rate m/s
S Surface area of partially burned

propellent grain m2

T Temperature K
To  Adiabatic flame temperature K
t Time s
V Volume m3

V Molar volume m3/kmol
v Velocity m/s
wi  Distance (web) between inner and outer cm

perforations
w Distance (web) between outer

perforations cm
wo  Distance (web) between outer

perforations and outer propellent
diameter cm

X Design vector (components are
numerically subscripted) none

x Projectile travel m
x Gas distance from breech m
y Position of projectile base m
z F-action of mass burned none
a Burning rate exponent none

Burning rate coefficient m/s-Pa
7 Ratio of specific heats none
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Lagrange multiplier (Except in Chapter
IV where it is the Nordheim friction
factor.) none

p density kg/m 3

ayp Yield point strength MPa

Subscripts:

b base of projectile
br breech
c chamber
g air pressure in front of projectile
I igniter propellent
o original value
p projectile
rp recoiling parts of gun
r bore resistance
t total of igniter and propellent
w chamber wall property
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CHAPTER I

INTRODUCTION

The advancing capabilities of digital computers has

allowed numerical optimization to develop into an effective

and useful analysis and design tool for the engineer. It

is applied successfully to many design problems in various

disciplines. Optimization schemes allow the engineer to

evaluate a large number of design alternatives in a

systematic and efficient manner to find the best design.

The approach is used to improve performance and/or decrease

cost while meeting the constraints appropriate to the

problem.

Interior ballistics is the applied physics required to

impart motion to a projectile inside a gun tube. Despite

its long history and wide application, active research

continues with efforts to build more realistic models of

the complicated chemical, thermodynamic, and dynamic

processes involved. The classic interior ballistics

problem is: given the characteristics of the gun, charge,

and projectile determine the muzzle velocity of the

projectile and the peak pressure in the gun. There is a

large knowledge base of both theoretically sound and

experimentally proven concepts that make the solution of

the interior ballistics problem possible.

The burning of chemical compounds, called propellents,
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is an important part of interior ballistics. The

combustion processes depend on many factors including the

propellent material and its geometry, the rate of burn,

propellent packing and packaging, and environmental

factors. The resulting gases produce the pressure field

that imparts acceleration to the projectile. The design of

the propellent grain shape to achieve the desired pressure-

time history, given the constraints imposed by the gun

system and projectile, is part of the design effort. The

purpose is usually to maximize the projectile muzzle

velocity.

Presently there are a number of computer based

interior ballistic models with a wide range of

capabilities. These models allow the interior ballistician

to predict the performance of a particular gun, charge, and

projectile combination.

Interior ballistics depends on parameters and

variables so numerous that a complete initial investigation

of them is not practical. To demonstrate that optimization

can be successfully applied, a specific gun system is

chosen as an example. The example used is the optimum

design of the propellent grain geometry for kinetic energy

projectiles that are fired from 120mm tank cannons. The

propellent g1.ain is considered improved if there is a net

increase in muzzle velocity without violating gun

constraints. This is done by application of numerical
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optimization in conjunction with the interior ballistic

model.

The approach taken in this thesis is to use an

interior ballistic model, and combine it with an efficient

and easy to use optimization method that searches the

design space for the maximum muzzle velocity without

violating the constraints of the problem.

The optimization method used is a sequential

unconstrained minimization technique (SUMT) called the

augmented Lagrange multiplier method (ALM). In the version

of the ALM used in this thesis the unconstrained

minimization is done by Powell's method or the Hooke-

Jeeves method. The interior ballistics model used is

IBRGAC, developed at the Ballistic Research Laboratory,

Aberdeen Proving Grounds, Maryland.

A background section that provides the information

necessary for understanding the problem is provided in

Chapter 2. This covers optimization, interior ballistics,

and gun nomenclature. Chapter 3 details the optimization

process and describes the algorithms and computer code

used. Chapter 4 outlines the laws, theories, assumptions,

and equations used to solve the interior ballistic problem.

At the end of the chapter is a description of the interior

ballistics code used. Chapter 5 contains the example

problems, results, and an analysis of the process. Chapter

6 discusses the conclusions and recommp'd:tions for further
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research.

The optimization scheme is not limited to the

particular example considered but has general applicability

in interior ballistics, as well as ballistics in general.

Although the scope of the problem in this thesis is

restricted, the method is not.
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CHAPTER II

BACKGROUND

This chapter provides the background to understand the

contextual scope and contribution of the thesis. It is

comprised of three parts. Part one covers optimization and

engineering design. Part two covers ballistics and

discusses currently available interior ballistics models.

Part three gives a brief background of how gun systems

function along with terminology.

1. Optimization and Design.

Optimization is part of human nature. There is no

endeavor that man has attempted that he has not tried to

improve. Mathematically the problem of finding the extrema

of functions, by hand calculation, has a long history (4).

The development of the digital computer provided the

impetus for the full scale development of numerical

optimization. Since Davidon introduced variable-metric

methods in 1959 (8) there has been an explosion in the

development of optimization schemes, resulting in dozens of

reliable, efficient algorithms.

In engineering design, the goal is to produce the

"best" design for the desired system or component. The

purpose of numerical optimization is to provide a tool to

aid the engineer in this task. Engineering problems are

5



normally not confined to one design variable nor is the

design space infinite. This results in multi-variable

design problems with constraints. The general form for a

nonlinear constrained optimization problem can be stated as

(17)

Minimize: F(X) ............... objective function,

Subject to:

gj(X) < 0 j=l,n .......... inequality constraints

hk(X) = 0 k=1,l .......... equality constraints

xi(lower) < x, < xi(upper) side constraints

i=l,n,

where T= (XX 2 ,...,Xn design variables.

The use of the term "minimize,, means that any optimization

scheme will locate the minimum function value. If a

maximum is desired multiplying the objective function by

negative one (-1.0) will convert the problem into an

equivalent minimization. The two general approaches to

solving this problem are direct methods and sequential

unconstrained minimization techniques (SUMT) (Figure 2.1).

Direct methods incorporate information about the

constraints directly into the optimization problem.

Sequential linear programming (SLP) (17) is one such method

where the problem and constraints are first linearized by a

Taylor series expansion. The resulting linear problem is

solved and the process is repeated until the nonlinear

minimum is found. Another approach is the method of
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Figure 2.1 Problem Solution Techniques.
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feasible directions. From a constraint boundary the

gradients of the objective function and any active

constraints are determined and a linear approximation of

the problem at that point (X) is found. A search direction

is then calculated that reduces the objective function

without violating the active constraints. Constraints are

active if the design vector is near the constraint boundary

so that any small move in that direction will intersect the

constraint or produce an infeasible design. It should be

noted that all these direct methods require gradient

information for the objective and constraint functions.

The second approach, SUMT was first developed by

Fiacco and McCormick (12) and incorporates the constraints

into a pseudo-objective function that can be minimized by

unconstrained techniques. The general form for the SUMT is

*(X..r) = F(X) + rpP(X). 2.1

Here 4 is the pseudo-objective function, F(X) the original

objective function, rp a scalar multiplier that determines

the magnitude of the penalty, and P(X) is a penalty

function that is determined from the constraints. The

penalty function affects t(Xr ) only when the

corresponding constraint is violated. When the pseudo-

objective function is minimized, the original constrained

objective function is minimized. Three current methods

used to solve Equation 2.1 are the exterior penalty

function, the interior penalty function, and the augmented
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Lagrange multiplier (ALM).

The exterior penalty function method creates a P(X)

that penalizes the design only when the constraints are

violated. The interior penalty function method penalizes

the design as it approaches the constraint boundary from

within the feasible region. Constraint violations are not

allowed and the initial design vector must start in the

feasible region of the parametric space (17).

The ALM is a modification of the Lagrange multiplier

method for functions with equality constraints. The

inequality constraints are modified into equality

constraints and incorporated into the Lagrange multiplier

equation, therefore the name augmented Lagrange.

For SUMT the problem is converted to a sequence of

unconstrained minimizations of n-variables. There are

three classes of methods used to solve the unconstrained

multivariable minimization problem; zero, first, and second

order.

Zero order methods use no explicit derivative

information to locate the minimum. These methods are best

when derivatives cannot be calculated or are difficult to

determine, but they do generally require more function

evaluations to obtain convergence. Powell's method of

conjugate directions is a widely used method of this class

(8). The direction vectors s' and sJ are conjugate to each

other if
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(ji)T H j = 0. 2.2

where H, the Hessian, is the matrix of second derivatives.

Powell's method assumes that a quadratic approximation can

be made of the objective function and proceeds to build a

corresponding approximation of the Hessian. For a

quadratic function, a minimum exists when then Hessian is

positive definite. This method has produced many

variations, most notably by Brent (4). These subsequent

variations attempt to improve determination of the search

directions. Rosenbrock's method (5) generates orthogonal

search directions to improve convergence. The method of

Hooke-Jeeves (8) uses the coordinate unit direction vectors

as the search directions and uses an acceleration step

during the search. Both Rosenbrock and Hooke-Jeeves

utilize the direction of the change in the design vector

between complete search sets to accelerate the minimization

process.

First order methods rely on computed first derivatives

to determine search directions and will converge more

quickly than zero order methods for most quadratic

functions. The method of Fletcher-Reeves (9) generates

gradient-based directions that are conjugate to each other.

A class of methods know as quasi-Newton methods approximate

the inverse of the Hessian matrix and use this

approximation for generating the search directions, without

actually requiring second derivative calculations (13).
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Davidon-Fletcher-Powell and Broyden-Fletcher-Goldfarb-

Shanno are the two the most common quasi-Newton methods,

differing only in the way in which the search directions

are updated.

Second order methods utilize both first and second

derivative information. Newton's method (13) expands the

objective function and constraints using a second order

Taylor series expansion and solves for the search direction

matrix S defined by

S= -VF. 2.3

If the function is quadratic, the method will converge in

one iteration. Both first and second derivatives must be

provided.

The interior ballistic model selected (see Section 3)

has multiple variables and is constrained. For some

propellents there are dependencies that will not allow the

model to evaluate certain combinations of parameters,

producing holes in the parametric space. The number and

combinations of analytical and empirical equations in the

model in addition to a different surface area and volume

regression equation for each propellent make the evaluation

of the first derivatives difficult. These factors make the

direct methods, with their dependence on explicit

derivative information, lebs desirable than SUMT using zero

order methods.

Of the SUMT methods, the exterior penalty function
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method approaches the solution from the infeasible region.

If this method is terminated early, it may lead to an

infeasible design. The interior penalty function method

approaches the solution from the feasible region. However,

it may have problems dealing with discontinuities of

- (2,rp) at the boundaries because of the way the penalty

function is generated. The ALM will approach the solution

from either the feasible or infeasible region and will

ensure constraint compliance at the solution and therefore

is the method of choice for this thesis.

The selected interior ballistic model is time

efficient. Since the parametric space is nonlinear and

this is a first try at this problem, the choice of zero-

order methods is indicated. Powell's method provides

good convergence and uses the idea of conjugate directions

without an explicit dependence on derivative information.

Hooke-Jeeves with fixed orthogonal search directions

combined with an acceleration step is robust.

optimization methods are tools for assisting the

engineer in design and analysis, not for replacing him.

Optimization techniques, when properly applied, result in

more efficient and economical designs. A more correct

description of the optimization process is "design

improvement". Despite the best algorithm and applications.

few designs are truly the "#best designs". Some advantages

from including optimization in design are (17):
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1. A reduction in- design time, especially when one

scheme can be applied to numerous problems.

2. A systematic design procedure.

3. A wide variety of design variables and constraints

can be handled.

The following disadvantages are also present:

1. Computational time increases as the number of

variables increase. This can make the process

prohibitively expensive or numerically ill-

conditioned.

2. The process does not have experience to draw on

during problem solving.

3. If the analysis is not theoretically precise, the

results of the process may be misleading.

2. Ballistics.

Ballistics is the science that deals with the

propulsion, flight, and impact of projectiles from guns.

Ballistics is organized into three phases. Interior

ballistics is the propulsion of the projectile inside the

gun system. Exterior ballistics is the flight of the

projectile through the atmosphere. Terminal ballistics is

the impact and penetration of the projectile into the

target. The sequence of events from the ignition of the

propellent in the projectile, to departure of the

projectile from the stabilizing tube is the interior

13



ballistic cycle and the subject of this thesis.

Ballistics started as an art not a science. Initially

interior ballistics was not differentiated from general

ballistics because there was no practical way to measure

muzzle velocity or pressure in the gun. All that could be

said was that given a certain charge mass, projectile, gun,

and angle of elevation a certain range could be obtained

(7).

Prior to valid theoretical models and the ability to

solve them, the practical approach was to solve the problem

experimentally. For example, LeDuc (11) fit a hyperbolic

curve to experimental data and generated ballistic tables.

Some analytical models existed, but their solution was not

practical for day to day use. A workable form of the

analytical solution did not come until Charbonnier in 1908

(11). Numerous assumptions and simplifications were

necessary, since accurate measurement of the pressure-

time curve was still not possible.

The development of a reliable piezoelectric gauge

around 1935 provided the means to accurately record the

pressure-time events in the gun and provided the impetus

to connect interior ballistics to the physics and

chemistry. The central problem was still the same but more

questions could be asked, and answered, by combining

theoretical models and empirical data.

The development of the digital computer caused a
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change in ballistic modeling. Before the digital computer,

closed-form solutions to the governing differential

equations or tabular and data curve fitting were

predominant. Most notable of the latter were the ballistic

tables of Bennet (11) in 1921, some of which are still in

use today. The first uses of digital computers were to

solve the governing differential equations. In 1962 Baer

and Frankle (2) introduced the first direct numerical

solution of the ordinary differential equations of interior

ballistics on a case by case basis. The solution of the

one dimensional (1-D) partial differential equations began

in the late 1960's. The first 1-D code was developed by

Baer, and subsequently numerous 1-D models have been

developed, most notably NOVA (16). The modeling of flame

speading phenomena, two phase flow, the condensed

propellent and products of combustion are examples of work

to improve the simulation of the events in the gun. These

are active research efforts(11).

One of the most widely used interior ballistics models

today is called IBHVG2 (Interior Ballistics of High

Velocity Guns, version 2) (1). It was derived from the

Baer-Frankle methodology and includes elements of MPRGUN

(Multipurpose Gun Code) (2). It is a lumped parameter

model in that it assumes the reaction chamber is well mixed

and represented by the rate of burning. The results from

IBKVG2 correspond with experimental data and there is a
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high degree of reliability in the model. Projectile Design

and Simulation PRODAS (6) is a model in use that takes

projectile design through all three ballistic phases. It

uses IBHVG2 as its interior ballistics model. Another

lumped parameter model, IBRGAC (Interior Ballistics Model,

Robbins-Gough-Anderson, Chambrage) (15), is derived from

the NATO technical cooperative program (TTCP), model IBRGA.

It is used both as a design tool and to verify predicted

results from other codes. Its primary advantages are that

it is a straightforward code, not expensive to run, and

based on an accepted international model. For these

reasons this code is selected as the interior ballistic

model to be used in this research.

3. Gun Nomenclature.

The typical gun system consists of a fire control

system, a cannon (Figure 2.2), and a round of ammunition

(Figure 2.3). The fire control system Calculates the

exterior ballistic solution for the flight of the

projectile. It applies the correction to the elevation and

deflection of the gun tube prior to firing.

The cannon is a tube that is closed at one end for

firing. The barrel provides a guide and support for the

projectile as it is accelerated by the impulse of the

popellent gases during the interior ballistic cycle. The

breech is opened to allow the projectile to be loaded and

is closed for firing. In front of the breech is the
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A - breech E - beginning of lands
B - breechblock F - rifled bore
C - reaction (or comoustion) chamber 3 muzzle
D - shoulder H - chase

Figure 2.2 T3ypical Tank Gun Nomenclature (11).

RIDING SURFWACE

I I RETAINING
~CASEBS B6 RJETLIAND

9 NDSE COMBUSTIBLE CASE kPRJCIEAS
ND SEALCAP ASSEMBLY

Figure 2.3 Typical Kinetic Energy Tank Round.
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reaction chamber that usually has a greater diameter than

the remainder of the barrel. It holds the propellent and it

is here that ignition and the initial pressure build-up

occurs. At the front end of the reaction chamber is an

area whose walls taper down to the barrel diameter. This

area is called the shoulder. Forward of the shoulder the

gun barrel has a uniform diameter, called the gun bore,

which continues to the muzzle.

There are two ways to stabilize the projectile in

flight. The first way is to impart spin to the projectile

as it is traveling down the gun tube. To do this the gun

barrel is rifled. Parallel grooves are cut into the barrel

that twist down the tube. The rotating band that

translates the twist of the rifling to projectile spin is

part of the case cap assembly. It is engraved by the

rifling as the projectile travels down the tube. The other

method is to fin stabilize the projectile. This is done by

attaching a boom and fins to the projectile. Normally a

smooth bore gun is used and the rotating band seals the

propellent gases behind the projectile. In both cases the

pressure behind the projectile must overcome the resistance

from the rotating band/gun tube interface.

The base of the round is the cartridge case. It holds

the propellent and ingiter and is designed to fit snugly in

the reaction chamber. The part of the round that travels

to the target is either a chemical energy or kinetic energy

18



projectile. The remainder of the round is called the case

cap assembly. It consists of the parts necessary to secure

and stabilize the projectile in the gun tube. It is

discarded by aerodynamic drag after the projectile leaves

the gun.

A chemical energy projectile has an explosive charge

that detonates upon impact. All the energy needed at

impact is provided by this charge. The terminal velocity

is not critical. A kinetic energy projectile does not

contain any explosive charge. Its destructive force is

dependent upon its kinetic energy at impact. The kinetic

energy is given as

KE = MV2 I 2.4
2

where M is the mass of the projectile and V is the velocity

at impact. It is essential that kinetic energy

projectiles have high velocity and mass.
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CHAPTER III

OPTIMIZATION METHOD

1. Introduction.

This chapter develops the specific optimization

methods and computer code that will be applied in Chapter V

to the interior ballistic problem. The code is set up to

accept the physical variables for ballistics that are

explained in Chapter IV.

2. General Problem Statement.

The nonlinear constrained optimization problem is

stated as

Minimize: F(X) ............... objective function.

Subject to:

gj(X) s 0 j=l,m .......... inequality constraints

hk(X) = 0 k=ll .......... equality constraints

xi(lower)< X, < xi(Upper) side constraints

i=l,n.

Here the design variables are viewed as the vector X given

as

T= l ,.xn} '

where the superscript T means transpose.

3. Augmented Lagrange Multiplier Meth-d.

The material in the background section of Chapter II

justified the choice of the augmented Lagrange multiplier

20



(ALM) method for solving the constrained interior

ballistics problem.

The ALM includes all constraint conditions in the

optimization scheme. This is done by generating a pseudo-

objective function that combines the objective function

with the equality and inequality constraints as in Equation

3.1. Side constraints are included in the inequality

constraint set. The pseudo-objective function is then

minimized as an unconstrained function of the n design

variables and (m+l) Lagrange multipliers. Minimizing the

new objective function results in the minimum of the

original cost function with all constraints satisfied. The

form of the general Augmented Lagrangian is (17)
mn 1

A(XX,rp)=F(X)+ Z [ Xj Aj + r P ' j ] + Z ( Xk+mhk(X)+rp[hk(X) ] 2),3. 1
j=1 k= 1

where

'j = max[gj (X),- \j/2rp]. 3.2

Here F(X) is the function to be minimized, h(X) the

equality constraints and g(X) the inequality constraints.

The X's are the Lagrange multipliers. They are a measure

of the magnitude of the constraint violation and are

updated between iteration as follows:
p+1 p _

Xj =Xj + 2rp{max[gj(X)X /2rp]}, j=l,m 3.3

p +1 p

=+i k+m = 2rphk(X). k=l,l 3.4

The rp is a scaling factor that weights each constraint.

It is updated by a constant multiplying factor

21



rp = Yrp. 3.5

An upper limit rpmax is also established so that rp does

not increase indefinitely.

Given the initial conditions, Equation 3.1 is

minimized. I a solution is found, the algorithm is exited.

If not, the Xis and rp are updated by Equation 3.3, 3.4,

and 3.5, and the process continues (Figure 3.1).

The ALM is considered successful when the change in

the X's, the change in the original objective function, and

the change in the constraint functions are within specified

tolerances between consecutive iterations. A(XX,rp) is

minimized by a suitable unconstrained minimization method.

As discussed earlier, the zero order methods selected

are Powell's and Hooke-Jeeves. These approaches solve the

problem by function evaluations alone and do not use

gradient information to locate the minimum.

4. Powell's Method.

Powells is one of the most popular and reliable of

the zero order methods (8). It performs n+l line searches

per iteration. The method assumes quadratic behavior of

the function and generates directions that are conjugate to

an approximation of the Hessian matrix. The matrix H is

initialized as an nxn identity matrix. The columns are

initially set to have the coordinate directions as the

directions. After each set of searches along all current

directions, the search directions Si are updated by

22
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V= ai-s, i=l,n, 3.6

where ai is the scalar multiplier determining the amount of

change in X for the ith direction. After n searches, a new

direction Sn+ l is generated by connecting the initial I

with the currant X and the n+1 search is performed (17).

If the process has not converged the search directions are

reassigned as

S=S . i=l,n 3.7

and become the new set of search directions.

In each direction, Powell's method uses a uniform grid

search to determine an interval within which a local

minimum exists. Either a three point quadratic

approximation or the Golden Sections method is used to

locate the minimum within the given interval. Although a

quadratic approximation is less expensive in terms of

function evaluations, it is less robust than the Golden

Sections method. The convergence criteria is the change in

the design vector, within a specified tolerance, from

iteration to iteration.

5. The Hooke-Jeeves Method.

Hooke-Jeeves uses the coordinate directions as

exploratory search directions. Hook-Jeeves searches in

discrete steps for each direction. After a complete set of

exploratory searches, a scalar multiplier accelerates the

search in the direction indicated by AX. If the objective
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function value is not improved after the acceleration

step, the method returns to the previous X, reduces the

search increment and continues. It may require more

function evaluations since Hooke-Jeeves always makes use of

the coordinate directions, regardless of the behavior of

the function. However, it is less likely to fail through

numerical ill-conditioning. Convergence is achieved when

the search increment is reduced to a value that is less

than a predetermined tolerance.

6. Description of the Optimization Code.

The optimization code is written by the author in

FORTRAN 77. The code is designed as a series of shells.

The outer shell contains the ALM subroutines. In the next

shell are the one dimensional unconstrained minimization

subroutines. In the inner most shell are the objective and

constraint function subroutines. A copy of the code is

included in Appendix I. A short description of the code

follows.

There is one master header file,

,declarations.ins.f,. This file contains the variable

declarations, parameters, and common block definitions for

the outer two shells. It is appended to the beginning of

each subroutine and includes common and passed variables.

Each subroutine declares local variables as needed.

The main program is called 'optimum.ftn'. It

controls the process and calls the subroutines that monitor
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the optimization. All user interaction is done in

'optimum'. From this program the following subroutines are

called.

1. read-data: This subroutine reads the interior

ballistics code input records and assigns the

initial values to the design vector.

2. powell: It drives Powells method and keeps track

of search directions and convergence criteria.

3. hookjeeves: This is the Hooke-Jeeves algorithm

and controls the search and convergence criteria.

4. check-print: This program prints out the current

ALM iteration values and other diagnostic

information.

5. toltest: This performs the ALM convergence test

of the equality, inequality and original objective

function convergence criteria.

6. update: Here the updates of rp and the Xs for the

ALM pseudo-objective function by Equation 3.3,

3.4, 3.5 are performed.

7. printit: This subroutine prints the final

objective function value and the final design

vector.

The second shell is the unconstrained minimization

shell that contains the method of Powell and Hooke-Jeeves.

The Hooke-Jeeves subroutine is self contained and calls

no other subroutines. The subroutine ,powell, calls the
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subroutine 'search, and this subroutine calls the foliz:;ing

subprograms.

8. ugrid_ld: The uniform grid search algorithm

isolates the interval where the minimum is located

by conducting a one dimensional unconstrained line

search of uniform step sizes until such an

interval is found.

9. gold: The Golden Sections interval reducer locates

the minimum in the interval found by 'ugrid_ld,

through the use of an iterative reduction of the

interval. This reduction is done with the use of

the Golden Sections ratio of 6.18 and 3.82.

10. quad: This quadratic approximation subroutine uses

gaussian elimination to solve the system of

equations generated by the interval sent from

'ugrid_ld. It assumes quadratic behavior in the

interval.

Both methods call the subroutine 'funx.ftn,. It

performs the transformation of the objective function and

the constraint functions to the ALM pseudo-objective

function, Equation 3.1. Subroutine ,funx, calls the

following two subprograms. The first, 'fun-con.ftn', is a

user supplied subroutine that contains all of the equality

and inequality constraints and evaluates them for each

function call. The second, 'fun-int.ftn' is the modified

version of IBRGAC described in Chapter IV and found in
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Appendix II.

The user is responsible for providing the input data

as required by the interior ballistics code, the constraint

subroutines, and the subroutines that allow the transfer of

the variables from the optimization code to the interior

ballistics code. They are 'varin.ftn,, ,varout.ftn', and

part of 'readdata.ftn,. The user must also specify in

'optimum.ftn' the number of variables, equality

constraints, inequality constraints, and tolerances.
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CHAPTER IV

INTERIOR BALLISTICS

1. Introduction.

The first part of this chapter presents the

conservation equations and empirical relationships used in

a lumped parameter model to solve the interior ballistics

problem. It is primarily drawn from three sources; the

IBRGAC User's Manual (15), the IBVGH2 User's Manual (1),

and the derivation by Krier and Adams (11). Many of the

equations in these sources are repeated from previous work

that will not be cited here. The sequence of events during

the interior ballistic cycle are described in Section 2.

Section 3 defines the projectile equations of motion as a

function of time and their dependence on projectile base

pressure. The base pressure's relation to mean pressure in

the tube and the rate of propellent gas generation is

derived in Section 4. In Section 5, mean gas pressure and

its dependence on mean gas temperature and rate of

propellent gas generation is derived. Section 6 defines

the mean temperature and its relationship to the rate of

gas generation and losses to the system, which are detailed

in Section 7. Section 8 derives the rate of gas generation

and discusses propellent properties. In Section 9 tie gun

recoil equations of motion are derived. Finally, Section

10 lists the modeling approximations used in the previous
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sections.

The second part of the chapter describes the IBRGAC

code and its organization (Sections 11 and 12).

2. Interior Ballistic Cycle.

The interior ballistic cycle starts at propellent

ignition. After the propellent is ignited, pressure and

heat rapdily increase inside the chamber from the

generation of combustion gases (Figure 4.1). Projectile

motion begins after this pressure has overcome the

resistance caused by the initiation of engraving the

projectile's rotating band by the bore. Pressure

increases until the rate of volume increase overcomes the

rate of propellent gas generation. Acceleration continues

as long as there is a pressure differential across the

projectile. The interior ballistic cycle ends when the

projectile leaves the gun tube.

3. Projectile Equations of Motion.

A gun is a simple heat engine in which chemical energy

of the propellent is transformed into kinetic energy of the

projectile and heat (16). Newton's Second Law is

a= 4.1
m

where at time t projectile acceleration equals the net

force generated by propellent combustion divided by

effective mass. The projectile maintains a constant in-

bore mass. The integral of acceleration with respect to
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Figure 4.1 Interior Ballistic Cycle (11).
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time yields velocity while a subsequent integration gives

the distance the projectile has travelled (travel).

Newton's Second Law for this problem is
Ab

a p = (Pb - Pr - Pg), 4.2

where ap is projectile acceleration, Ab projectile base

area, Pb the pressure at the projectile base, Pr the bore

resistance to friction and engraving (as an equivalent

pressure), P the pressure of the air in the tube ahead of

the projectile, and mp the projectile mass. The solution

for projectile velocity as a function of time is obtained

by determining the pressures in the parenthesis of Equation

4.2 as functions of time and integrating. Pr(t) is

interpolated from tabular resistance pressure data and

Pg(t) is given as a constant average value. The remaining

parameter to be found is the base pressure Pb(t).

Projectile travel, in the ground based coordinate

system, is the sum of projectile displacement and the

recoiling gun displacement. Summing the integrals with

respect to time of projectile velocity and gun recoil

velocity (Equation 4.34) gives travel as

x v dt + fVrpdt. 4.3

4. Base Pressure Derivation.

From initial projectile movement (initial volume is

chamber volume minus the volume occupied by propellert)

until the projectile leaves the gun tube, the volume

occupied by the combustion gases is constantly
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increasing. As the available volume and quantity of gases

increases during propellent consumption, the gases are

accelerating down the tube. This is caused by the

difference in pressure from the breech to projectile

base. A solution for the distribution of pressure,

density, and gas velocity in the gun during firing is

obtained by the Lagrange pressure gradient approximation.

It states that "the velocity of the gas at any instant

increases linearly with distance along the bore, from zero

at the breech to the full shot velocity at the base of the

projectile", (7).

The approximations made in this model are: the chamber

is a cylindrical extension of the bore with the same total

volume, the entire charge may at any time be treated as

gaseous and gas density is uniformly distributed in the

gun tube at any time. If the distance from the breech is x

and y is the position of the base of the projectile, the

gas velocity vg can be expressed as

v X Ay. 4.4a
V y dt

The all gaseous propellent charge assumption means that

density is
Ct

P-' 4.4b
Aby

where Ct is the initial mass of propellent and igniter.

Uniformly distributed gas density means 2P = 0. When x=y

the gas velocity Vg equals projectile velocity vp.
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Therefore, Newtons First Law can be written as

d2 y Ab
2 -(Pb - Pr - Pg) 4.4cdt la

where previous definitions apply. Integrating the equation

of motion for the gas using the previous three equations

gives the pressure P(x) as a function of distance as

Px) = Pb + (1 - x2 (Pb - Pr - Pg)* 4.4d

The mean pressure Pm, between the breech and projectile

base, can then be determined as
pm = if'pdx = Pb + g- (Pb - Pr - Pg). 4.5

m y 0  3 (bmpg

Solving for the base pressure Pb gives

P ~~Ct(Pr + Pg) 1 C .Pb(t) = [Pm(t) + 3Ct p P / [ + - 4.6

To determine the base pressure Pb(t), the mean pressure

Pm(t) must be determined.

5. Mean Pressure Derivation.

Van der Waals, equation of state is (16)

(P + a/V2 ) (V - B) = RT. 4.7

Here R is the universal gas constant, V is the molar volume

of gas, the term a/V2 is the increase in pressure due to

intermolecular attractions, and B is the decrease in free

volume due to the finite vilume of the molecules. This

means the available free volume for the gas to move about

is less than the free chamber volume. At low pressure and
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densities these volumes are nearly identical. At high

pressure and densities the free volume difference is

noticeable.

As temperature and pressure increase in the gun, the

effect of intermolecular attractions decreases causing the

a/V2 term in Equation 4.7 to become negligible. Van der

Waals, equation is reduced to

P(V - B) = RT. 4.8

To use the preceding equation with the mass and volume of

gas, A is substituted in Equation 4.8 by the relation

R = R(Vm/V), 4.9

where R is the specific gas constant, m the mass, and V the

volume of gas. This form of Van der Waals, equation, after

simplification, is known as the Noble-Abel equation

P(V - mb) = mRT. 4.10

In Equation 4.10 the covolume b is defined as the Van der

Waals, constant B divided by the molecular weight of the

gas. Using mean values of the pressure Pm and temperature

Tmi, over the temperature range, Equation 4.10 is

Pm(V - Z mib i - mjb I ) ( Z miRi+ mIRI)Tm. 4.11i i
The subscript I is the igniter and for multiple propellents

the subscript i indicates the ith (i=l,n) propellent.

Substituting for the specific gas constant R in the above

equation with the propellent force F, defined as

F = RTo, 4.12

with To being the adiabatic flame temperature of the
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product gases, the mean pressure Pm can be stated as

Fim i Fim I

m= Tm[2 T- +- ]/(V - Z mibi - mIbI)" 4.13a
1 1

At time t, the mean pressure is calculated from Equation

4.13a for values of the mass of gas present, or

Firei (t) FireIPm(t) = Tm(t)[2 T +- ]/(V(t)-2 mi(t)bi-mibi). 4.13b

i Toi 0 i

The mass of gas present mi(t) at time t is equal to the

fraction of propellent mass burned zi(t), Equation 4.31,

multiplied by the original propellent mass Ci or

FiCizit) Fim I
Pm(t)=Tm( t ) [2 + ]O-/(V(t)-2; Cizi(t)bi-mib I ) . 4.13c

i Toi I i

The volume available for the gases at time t is

V(t) = Vc + Abx(t) - Vr(t) ,  4.14

where x(t) is projectile travel, Ab is area of the

projectile base, and Vc is initial chamber volume. The

total volume of unburnt propellent Vr(t) is calculated

from the fraction of mass burned by

Vr(t) = . - zi(t)). 4.15

The gas density is p. To determine the mean pressure Pm(t)

in Equation 4.13c, the mean temperature Tm(t) must be

known.

6. Mean Temperature Derivation.

From the First Law of Thermodynamics, the energy

balance in the gun tube can be stated as: the initial
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energy of the gases is equal to the internal energy of the

gases plus any losses. Losses include work done by and

heat transfered from the system and are discussed in the

next section. Using average values of specific heats over

the temperature range, the initial energy of the gases is

E1 = Z micviToi + micviToi, 4.16i
where mi is mass, Cvi specific heat (at constant volume),

and Toi adiabatic flame temperature of the propellent

product gases. The same definitions apply for the igniter.

The internal energy of the gases in terms of the mean

temperature Tm is

E= Z micvi + micvI]Tm. 4.172

Equation 4.17 and 4.18 are used in the energy balance

statement. The specific heat cv is first expressed as

cv = F/[ - l)TO], 4.18

where 7 is the ratio of specific heats, and the results are

solved for mean temperature Tm to obtain

Fim i  Fim I

SZ + - L ]
Tm = F. 4.19aFZ imi  Fim I 4.9

Toi + ToI]i ( Yi- I )  (7I-i)

At time t, the mean temperature is calculated from Equation

4.19a as
Fim i (t) Fim I

[ Z + - L(t) ]i (vii 7-1)

TM = 4.19bFini (t) FinI

[Toi + ToI]
i (7i-} (f3I-i3
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Again mi(t), the mass of the gas present at time t, is

calculated from the fraction of propellent mass burned

zi(t), Equation 4.31, multiplied by the original propellent

mass Ci or

FiCizi(t) Fim I

+ -L(t)]
i ('i-1) (i-)

Tm(t) = FiCizi(t) T FimI T 4.19c

oi +  To]Of (i-1) (7I-i)

For both the mean pressure and temperature, the derivation

of the fraction of mass burned zi(t) is in Section 8.

7. Work and Losses.

In the previous section there is loss L(t) due to work

performed and heat transferred from the system. There are

three general classes of loss. The first is work done to

the projectile and gun. They are; loss to projectile

translation and rotation and recoil of the gun. The

second is work lost to the propellents and resistances.

They are; energy losses to propellent gas and unburned

propellent motion, bore resistance due to engraving and

friction and air resistance in front of the projectile.

The third is heat transfer to the chamber wall. All these

can be written as follows:

L(t) = Ept + Epr + Erp + Ep + Ebr + Ec + Eh. 4.20

These losses and the relevant equations are listed in Table

4.1.
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Type of Energy Loss Equation

projectile translation Ept = 1 V 2

2 Mlp p
projectile rotation Epr = 4 mpVp2TW2

recoil of the gun E = 1 mrV 2
rp 2 rp r

propellent gas and E = . Abf 3 2dcx -

unburnt propellent motion 2 0  6

bore resistance due to Ebr = Abf PrVpdt

engraving and friction

loss to air resistance Ec = AbfPgVpdt

heat transfer to the chamber Eh = fo'Qdt
walls and gun barrel

Table 4.1 Table of losses for Equation 4.20.
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For energy loss to projectile rotation Epr, Tw is the

twist of rifling in turns per caliber. More precisely, Tw

is the ratio of complete revolutions to bore diameter for

the rifled grooves down the length of the gun tube.

Energy due to heat transfer to the internal chamber

walls and gun barrel by convection Eh is assumed to be

proportional to the difference of the mean temperature of

the system and average temperature of the wall. At time

t, this heat loss can be stated as

Eh fQdt, 4.21

where

Q(t) = Aw(t)h(Tm(t)-Tw(t), 4.22

and Tw(t) is the temperature of the chamber wall. The

exposed chamber wall area A. is

Aw(t) = 7rDb + 2Ab + T DbX(t), 4.23
Ab bb~)

where Db is bore diameter, V0 initial chamber volume, and

the heat transfer coefficient is given by

h = XCpPVg + ho . 4.24

Here cp, p , and vg are mean values for the previously

defined symbols and h0 is a natural convective term which

allows heat transfer if the projectile is not moving. The

Nordheim friction factor X is empirically derived from gun

tube experimentation and found to be

-2X = [13.2 + 4loglO[100.G:Db] - . 4.25

The chamber wall temperature Tw in Equation 4.22 is

derived from an energy balance that says

40



heat transfer + work = 4 internal energy.

The heat transfer is Eh and work is given by Ebr multiplied

by an empirical factor f, the fraction of work done against

bore friction that preheats the chamber. The change in

internal energy of the chamber wall is

= Twcpwmw - Tccpwmw, 4.26

where the w subscript indicates the chamber wall properties

for specific heat (at constant pressure) and mass of the

chamber wall. The initial chamber wall temperature is Tc.

Placing the above terms into the conservation equation and

substituting mass with density and volume yields

Eh + fEbr = cpwPwAwDw(Tw - Tc). 4.27

Here Dw is the chamber wall thickness. In terms of the

chamber wall temperature Tw, Equation 4.27 is

Tw Eh+fEbr + Tc, 4.28
cpwPwAwDw

and can be placed into Equation 4.22 for Tw(t) at time t.

8. Propellent and Rate of Burning.

Propellents are composed of compounds that ignite and

burn quickly, producing large quantities of gas rapidly.

Conventional propellents are primarily nitrocellulose and

their basic geometric unit is the grain.

The burning rate of the propellent is the rate at

which the surface of the propellent regresses. The

empirical equation is the steady state burning law (7)

r =P, 4.29
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where Pis the burning rate coefficient and a is the burning

rate exponent. The unit of r is meter per second.

Experimental burning rate data are fitted to the equation

to determine the coefficients, which are functions of

propellent temperature.

The burning of the propellent grains produces the

pressures necessary to overcome the initial resistive

forces and accelerate the projectile down the gun tube.

The model states that grains burn uniformly and without

deformation. At constant pressure the mass of the

combustion gases produced is proportional to the surface

area exposed. As burning continues, the rate of mass

produced depends on the surface area as a function of time.

The equations for the recession of the exposed surface area

for propellents are determined from geometric analysis of

the grain.

The mass fraction burning rate z is the rate at

which the propellent mass is being consumed and therefore

the rate gas is generated. The relationship is

ii = Siri/Vgi '  4.30

where Si is the remaining propellent grain surface area, ri

is the linear burning rate from Equation 4.29 and Vgi is

the initial grain volume. Integrating equation 4.30 yields

the fraction of mass burned at time t as

Zi =fdt. 4.31

The physical configuration of the grains within the

42



chamber (packing) has an effect on the rate of burning and

the resultant chamber pressure. This effect is not

considered within the scope of this research.

There are three types of propellent grain geometry:

regressive, neutral, and progressive. Regressive burning

grains reduce their surface area during burning. Neutral

burning grains maintain a constant surface area until

consumed. Progressive burning grains increase in surface

area as they burn. For progressive burning grains, once

the grain has burned a certain distance the perforations

intrude upon each other and burning becomes regressive. An

example of each type is depicted in Figure 4.2.

Another factor in propellent performance is the

density of loading. It is the weight of the propellent in

the chamber, divided by the volume of the chamber available

to the propellent. The loading density is a measure of how

much propellent is present and therefore how many moles of

gas will be generated. An increase in the density of

loading will generally increase pressure in the chamber.

9. Gun Recoil.

Recoil is the rearward movement of the gun in the

ground reference frame during firing. Recoil is caused by

reaction to the forward motion of the projectile and

propellent gases. Recoil systems are designed to absorb

this energy so that the gun will remain stable during
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Figure 4.2 Typical Propellent Grain Burning Types.
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firing. The equation of motion from Newton's Second Law is

arp = Ab (pbr - RP _ r). 4.33
mrp Ab

Here Pbr is the breech pressure, RP is the resistive force

to recoil motion, and the subscript rp means recoiling

parts. The acceleration of the recoiling parts is zero

until the pressure at the breech is greater than the

combined resistive forces to recoil motion and barrel

resistance. Integration of arp gives the corresponding

velocity vrp as

Vrp =f, adt, 4.34

10. Modeling Approximations.

Modeling the interior ballistic cycle uses the

following conditions:

1. The propellent gas mixture is described by the

Noble-Abel equation of state. This means that the

gases are well mixed and no solid or liquid

phases exists.

2. The propellent gas flow is taken to be one-

dimensional, inviscid, and compressible.

3. The steady state burning rate law can be used to

describe the recession of the rate of the

propellent grains.

4. The base of the projectile is flat and

perpendicular to the direction of travel.

5. Propellent grains are all the same size and
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configuration for a given propellent load. For

perforated propellents, all holes are placed in

the grain symmetrically.

6. All propellent is ignited simultaneously and

uniformly. The igniter is consumed by t=O.

7. All exposed burning surfaces recede at the same

rate and perpendicular to the surface. That is,

the grains shrink uniformly without deformation.

8. Decomposition of a unit mass of propellent will

always liberate the same amount of energy, which

heats product gases to the same temperatures.

9. The main constituents of '.he propellent Vas

mixture do not suffer further chemical or physical

reactions.

11. Description of IBRGAC.

IBRGAC is a lumped parameter interior ballistics code

written in FORTRAN. It was developed in 1987 at the

Ballistic Research Laboratory, Aberdeen Proving Ground,

Maryland and validated by experimental data.

IBRGAC uses the Lagrange and chambrage method for the

breech to base pressure gradient. The chambrage gradient

equation takes into account the narrowing of the front of

the chamber to calculate the pressure gradient in the gun

tube. It is demonstrated in the User's Manual that both

methods result in comparable projectile performance

predictions. The Lagrange method is used exclusively in
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this research for consistency.

The user provides a input file organized into 9

records that are defined as follows.

1. Record 1; Gun system data and pressure gradient

calculation selection flag.

2. Record la; If the chambrage gradient is selected,

this record is read and contains chamber dimension

data.

3. Record 2; Projectile mass, air resistance flag, and

f, the fraction of work done against bore friction

that preheats the chamber, data.

4. Record 3; Barrel resistance point data.

5. Record 4; Recoil data.

6. Record 5; Heat transfer data.

7. Record 6; Igniter data.

8. Record 7; Propellent data (up to 10 propellents).

9. Record 8; Propellent burning rate point data (for

each propellent used).

10. Record 9; Time increment data.

The data are read from the input file and printed in the

output file. All input data are required to be in the MKS

system. The example problem input files are in Appendix

III.

The model uses 4th order Runge-Kutta integration to

calculate projectile velocity and travel, projectile

resistance energy, system heat loss, recoil velocity and
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travel, and energy loss to air resistance. The time rate

of change of mass and surface area of propellent are

determined from the linear burning rate.

The algorithm continues until either the projectile

has left the tube or the stop time has been reached. The

program will terminate for detected errors in input and

output records or unacceptable grain dimensions. If time

expires before the projectile has exited the tube, current

projectile velocity rather than muzzle velocity is

displayed. For each time step, elapsed time,

acceleration, velocity, travel, breech and mean and base

pressures are calculated. Once the program is complete,

initial and residual propellent gas energy and all losses

from Section 7 are calculated for the cycle.

12. Program Organization.

The code has been reorganized into a main program

and six subprograms. This was done to allow integration

with the optimization code. A complete listing of each file

is in Appendix II. There is one master header file

•intball.ins.f'. This file possesses the variable

declarations, parameters and common block definitions. It

is appended to each subroutine. Each subroutine declares

local variables. A description of each file follows:

1. fun int; This is the main program and performs the

interior ballistic calculations with the exception
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of surface area and volume rate of change

calculations done in 'prfO17, and the loading

density in 'masscheck'. It is called by

subprogram 'funx, from the optimization program

(see Chapter III). All subroutines are called by

'funint, except 'readdata,.

2. read-data; This subroutine is called by the

optimization code. The input file values are

assigned to a backup set of variables and the

initial design vector is created.

3. reset-data; The subroutine resets all local

variables used in 'fun-int, from their values and

sets the working variables to their initial values

for each iteration.

4. varin; This subprogram is modified by the user

and assigns the values from the design vector X

to the respective working variables in 'funint,.

5. mass-check; This subroutine determines the density

of loading and maximum propellent charge for each

problem. The actual propellent volume is

calculated and compared to the maximum charge

volume. It can be quickly modified to accept any

factor for maximum propellent load.

6. prfO17; This subprogram determines the

acceptability of the propellent dimensions and

calculates the mass fraction and surface fraction
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of propellent burned.

7. varout; This subroutine returns the respective

working variables to the design vector after each

iteration.
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CHAPTER V

EXAMPLE PROBLEMS

1. Introduction.

The purpose of this chapter is to specify the

equipment used in the example problems, state the problems

solved, and critique the results. Section 2 describes the

hardware used in the example problems and includes the

specifications of the gun, projectile, and propellent. In

Section 3 the optimization objective function for the

interior ballistics problem is stated, while Section 4

develops the constraints by category. Section 5 explains

the parameters initialized in the optimization scheme. The

selected example problems, their purpose, organization,

input, and output are in Section 6. The analysis of the

results is in Section 7.

2. Baseline Equipment.

The gun, projectile, and propellents are described in

this section. The gun system is representative of the

current tank main gun.

The cannon is 4.57 meters long with a 120 mm bore

diameter. The chamber is 54.0 cm long and 15.4 cm in

diameter. In the forward 8.0 cm of the chamber its

diameter constricts to 12.7 cm, then reduces to 12.0 cm at

the barrel. The chamber volume is 9832 cm3. The gun is
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smooth bore with no twist.

The design factor of safety n for gun tube strength is

1.15 (19). The yield point strengths ayp of the gun, as a

function of distance down the bore, are:

a yp (MPa) Bore Location (m)

696.0 0.00 S x p 1.50

276.0 xp 4.00

171.0 Xp 4.57

Here xp indicates the projectile's location in the gun

tube. The von Mises-Hencky failure criteria (18) is used to

determine the maximum pressure Pmax for the gun as

Pmax = Cyp/1.732*n. 5.1

From 1.50 meters to the muzzle, a Ist order least squares

fit provides the distance-pressure functions (Pmax in MPa,

x in meters)

Pmax(Xp) = 346.0, 0.00 < xp < 1.50 5.2

Pmax(Xp) = 479.8 - 83.20*xp, 1.50 < xp 4.00 5.3

Pmax(Xp) = 502.9 - 91.23*x 4* .00 < Xp < 4.57 5.4

The pressure Pmax is used as the upper limit on breech and

base pressure. Breech pressure is checked against Equation

5.2. This pressure occurs at xp = 0.0 for the entire

cycle. Base pressure is checked against all three

equations as a function of xp. This pressure occurs at p

throughout the cycle.

The kinetic energy projectile weighs 9.796 kg,

including the case cap assembly. It is fin stabilized and
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does not require applied spin. The projectile base is

assumed to be a flat disk perpendicular to direction of

travel.

There are two propellent compounds and three

propellent grain geometries. The two compounds resemble

the M6 and M8 military propellents. Their thermodynamic

properties are listed in Table 5.1. All three grain

geometries are cylindrical (cord) propellents with zero,

one, and seven perforations. Figure 5.1 shows their

critical dimensions. The seven perforation propellent must

have the outer perforations (po) equally spaced about the

center. The three webs (w, wi, wo) need not be equal and

are determined from the input dimensions L, D, Pi, po, and

d.

3. Problem Objective Function.

The objective is to maximize projectile velocity for

the given conditions, without violating constraints. The

objective function is the projectile velocity equation

(the time integral of Equation 4.2), including all required

ancillary equations discussed in Chapter IV. All function

evaluations will be multiplied by negative one (-1.0) to

make the objective (maximum velocity) and formulation

(function minimization) compatible.

4. Problem Constraints.

The constraints fall into three categories; dimension,
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Propellent Impetus Adiabatic Covolume Density Ratio of
Flame Specific

Temperature Heats

J/g OK cm3 /g g/cm 3  none

Sample (M6) 1135.99 3141 .9755 1.6605 1.23

M8 1168.90 3768 .9550 1.2119 1.62

Table 5.1 Propellent Thermodynamic Properties (15 and 16).
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mass, and pressure. Constraints include both general and

specific criteria and need not directly involve design

variables. The constraints are developed for each component

of the problem, then as each example problem is developed a

specific constraint set is developed from this general set.

The size constraints for the propellent grains

include non-negative values for all sizes and mass, in the

form

xi ?: 0,

or

gl(X) = -x1. 5.5

For the given chamber size a practical limit of 6.0 cm is

put on grain length. This allows propellent grain to lay

in the reaction chamber and extend no farther than from

chamber wall to ingiter probe in the center of the chamber.

The form of this constraint is

L < 6.0,

or

L - 1.0. 5.6
g2 () -. 06

Equation 5.6 is normalized so the constraint magnitudes

will be comparable to each other. After normalization, the

constraints are multiplied by scaling factors to ensure

that they are of sufficient magnitude to affect the

objective function. For the zero perforation propellent

(see Figure 5.1 for propellent dimensions) .'se constraints

are:

56



1) 3 non-negative constraints (L, D, mass).

2) L > D.

The one perforation propellent diameter D must be greater

that the diameter of the inner perforation pit giving

1) 4 non-negative constraints (L, D, Pi' mass),

2) L > D, and

3) D > pi.

For the seven perforation propellent there are three other

size constraints. The first is that the propellent

diameter must be greater that the sum of the inner pi and

two outer po perforations. The second is that the distance

between the perforation centers d must be greater than the

sum of the inner and outer perforation radius. Finally, two

adjacent outer perforations and the inner perforation form

an equilateral triangle. The outer perforation po must be

less than one side of the triangle d. This leads to:

1) 6 non-negative constraints (L, D, Pot Pit d, mass),

2) L > D,

3) D > pi + 2*Po'

4) d > Pi/ 2 + po/2,

5) po > d.

The mass constraint for propellents says that

propellent volume must be less than chamber volume. This

is determined by comparing the total volume occupied for

all propellents to initial chamber volume Vc or
Mi

2 - < V c .  5.7
i 3.
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No reduction factor is included to account for volume lost

due to packing. Equation 5.7 is the only non-negative mass

related constraint, regardless of the number of

propellents.

Maximum pressure constraints are both equality and

inequality constraints. The maximum pressure in the gun

will occur at the breech. This pressure is key to

projectile performance. To keep pressure at maximum

without exceeding Pmax the breech pressure is constrained

to equal Pmax so that

Pbr = Pmax, 5.8

or
Pmax

h -(X) Pbr 1.0. 5.9

The constraint is normalized. The base pressure constraint

is an inequality constraint utilizing Equation 5.2, 5.3,

and 5.4. In this form
485.3 - 86.8,xp ? Pb(MPa), 5.10

where xp is checked to determine which equation to use.

5. Optimization Initialization.

The values used for the tolerances and multipliers

that are required for the optimization method are developed

in this section. The multiplier rp is initialized at

100.0. This is to ensure the constraints affect the

objective function value as quickly as possible. The rp

update factor 7y is set at 2 to provide a geometric

increase for the magnitude of rp per iteration. The
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maximum multiplier value rpmax is set at 108 to provide a

reasonable upper limit for rp. All Lagrange multipliers

X's are initially set to 1.0 to provide a neutral start

point. The update formulas will determine final X values.

From Chapter II the convergence criteria for the ALM

is set at .2. This is appropriate for the magnitude of the

velocity (104) and the Xs of the scaled and normalized

constraint values. The tolerance sent to the line searches

is .0001. This ensures that the search is not more precise

than the grain manufacturing tolerance, .007cm (19). This

value is not inconsistent since all input values are

converte& to meters in the interior ballistics code so that

.0001 is equivalent to a .01 tolerance for centimeter

values.

6. Example Problems.

The optimized and automated design process proposed

must be able to accomplish several tasks. This process

must attain, at least, the performance level of current

design methods. It must achieve a practical optimum

design rejard.Lass of the relative size of the parametric

space. It also must be flexible, work for various

combinations of variables, and be easy to use. The example

problems are designed to answer these questions.

In Appendix D of the IBRGAC User's Manual there is

a seven perforation propellent ",optimized" under current
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design techniques for a maximum breech pressure of 346 MPa.

This design was performed by holding all variables constant

and varying only the propellent inner web. The model was

executed once for each each web increment and the mass was

incremented manually until 346 MPa was attained.

The first example problem addresses the questions of

whether the proposed method can attain comparable

projectile performance compared to current design methods

and does the current method attain an optimum design? The

optimization process is started from the current best

design for the seven perforation propellent and from a

random point in the parametric space. These results will

indicate the optimization process performance against the

current design procedures and provide a measure of the

ability of the process to search the same parametric space

from different points to achieve an optimum.

The second example problem examines whether the

process continues to work for a slightly more complex

parametric space. Two propellents of differing geometries

are used i.e. one and seven perforation. This example

problem has two parts. In Part 1 an optimum design is

determined from the initial propellent geometry. In Part 2

the optimization is restarted from the final design of Part

1 to determine if the process has converged at the optimum

design in the parametric space.

The third example problem again addresses the question

60



of the optimization process performance in a larger

parametric space. Three propellents are used; zero, one,

and seven perforation.

The fourth example continues to examine the

optimization process performance, in a different parametric

space. In this example, two seven-perforation propellents

with different thermodynamic properties are used. As in

Example 2 a second optimization iteration is performed

starting from the first iteration's final design. This

checks the optimization performance of a different point in

a different space than Example 2.

All four examples will address the question of the

optimization method's flexibility and ease of use. The

first three will also allow a comparison of the effects of

a gradually increasing parametric space on the optimization

process and projectile performance.

The input files for each example problem and a sample

output file are listed in Appendix III. The output file

demonstrates the format and calculated results available

from IBRGAC.

Each example is organized into the following parts:

problem statement, initial and final design table, initial

and final performance table, constraint set, ALM iteration

history, pressure-time, and pressure-travel charts.

The problem statement covers the conditi.. ns of the

problem and its objective. Also in the problem statement
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is the identification of figure and table numbers

appropriate to the problem and the specification of the

design vector X for the example. Numerically subscripted

components of the design vector indicate propellent type

in multiple propellent examples. The number of constraints

for the problem is also stated.

The initial and final design table shows the original

specifications for the propellents used for the example and

compares them to the final values obtained by the

optimization process. The initial and final performance

table compares the velocity and maximum pressures of the

initial and final designs. This allows a comparison of

the change in performance resulting from the optimization.

The constraint set is taken directly from the

subroutine used in the code. This allows all of the

constraints in their actual format to be examined. An

explanation of each constraint is included in the

subroutine comments. The constraint set is generated from

Section 4 derivations for different propellent types. All

example problems have the pressure (Equation 5.9 and 5.10)

and mass (Equation 5.7) constraints included.

The ALM history shows the performance of the

optimization method for each example. The number of ALM

iterations, the number of function calls, the objective

function value (FCOST), and the Lagrange pseudo-objective

function value (ALM) are measures of the optimization
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method's performance. This allows a comparison of the

relative performance of the method in various parametric

spaces.

The pressure-time and pressure-travel profiles for the

initial and final designs allows a graphic portrayal of the

performance of the propellent design and a time history of

the projectile's velocity. The pressure-time curve

indicates the impulse for the propellent while the

pressure-travel curves gives the work performed. An

increase in the area under either curve indicates an

increase in projectile velocity.

The last figure of each example is a breech pressure

comparison graph. It show the difference between the

initial and final breech pressure as pressure-travel

profiles. This graphically displays the change in work

performed on the projectile from initial to final design.

Each example problem and its results are listed in

order and are analyzed in Section 7.
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Example 1: This example contains two parts.

First, the process is started from the "optimized" design

from Appendix D of the IBRGAC User's Manual. This is done

to check the performance of the optimization scheme against

the clirrent design method, as described earlier in this

section. Second, the same propellent is used but started

at a different point. This is done to compare the

optimum design attained from two distinct starting points

in the same parametric space. The initial and final design

results are given in Table 5.1.1. The initial and final

performance values of the optimization are in Table 5.1.2.

The set of constraints are stated in Table 5.1.3. The ALM

iteration history for Example la is given in Figure 5.1.1.

The pressure-time and pressure-travel profiles for Example

la are Figures 5.1.2 and 5.1.3. The pressure differential

curve is Figure 5.1.4.

The parametric space for this problem consists of six

variables, the five critical dimensions for the seven

perforation propellent used and its mass. The design vector

X for Example 1 is

xI =L,
x2 =Pi '

x3 = Po0X4 =D,

x 5 = d,
x6 = mass.

The propellent dimension terms are defined at the beginning

of the thesis. There is one equality constraint and 13

inequality constraints.
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Initial Values Example la Example lb
Propellent 1 Propellent 1

Type Sample Sample

No. Perf 7 7

Mass (kg) 8.70 8.90

Dimensions (cm)

L 3.175 4.000

D 1.702 2.000

Pi .0508 .0200

Po .0508 .0400

d .2807 .4000

Final Values Example la Example lb
Propellent 1 Propellent 1

Type Sample Sample

No. Perf 7 7

Mass (kg) 8.91 8.94

Dimensions (cm)

L 3.225 4.370

D .987 1.040

Pi .0108 .0100

Po .0208 .0400

d .2507 .2700

Table 5.1.1 Initial/Final Propellent Values.
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Example la

Initial Final

Projectile Velocity (m/s) 1398 1408

Max Breech Pressure (MPa) 346 345

Max Base Pressure (MPa) 240 237

Example lb

Initial Final

Projectile Velocity (m/s) 573 1407

Max Breech Pressure (MPa) 64 345

Max Base Pressure (MPa) 44 237

Table 5.1.2 Initial/Final Performance Values.
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SUBROUTINE FUN CON7(X,NOVAR)

C THIS IS THE CONSTRAINT SET FOR EXAMPLE 1. 7 PERFORATION GRAIN.
C FH =1
C FG =13
C................................................................
%INCLUDE Idectarations.ins.fl

COMMON/limits/dpmnaxba,dpmaxbr,pnaxbr,pmaxba,dL,total 0 L-prop,
+ chain vol
REAL*4 X(NO-VAR),dpmaxba,dpmaxbr,pmaxbr,pmnaxba,d I ,pmnax,cham vol,

+ total vol prop

C FOR 7 PERF PROPELLENT ............................... dimensions..
c fh1 :max breech pressure constraint Pa
c fgl :prop grain length .GT. 0 constraint m
c fg2 :inner perf diam .GT. 0 constraint in
c fg3 :outer perf diam .GT. 0 constraint in
c fg4 :prop grain diam .GT. 0 constraint m
c fg5 :dist between perf centers .GT. 0 constraint m
c fg6 :mass .GT. than 0 constraint kg
c 1g7 :prop diam .GT. (inner+outer perf diams) constraint
c fg8 :dist between perf centers .GT. (inner + outer radius) constraint
c fg9 :Length .GT. diameter constraint
c fg1O :max Length for the cord 6cm
c fg11 :equilateral triangle requirement
c fg12 :max base pressure constraint
c f913 :maximum volume of propel lent cannot exceed the space in the chamber

FG(1) =1000*(.X(1))
FG(2) = 1000*(-x(2))
FG(3) = 1000*(-x(3))
FG(4) = 1000*(-x(4))
FG(5) = 1000*(-x(5))
FGC6) = 100*(-x(6))
FG(7 = O0*(2*x(3)Ix(4) + x(2)Ix(4) - 1.0)
FG(8) = 100*(.5*x(3)Ix(5) + .5*x(2)/x(5) - 1.0)
FG(9) = 10D*(x(4)/x(1) -1.0)

FG(10)= 100*(x(f)/.06 -1.0)

FG(11)= 100*(x(5)/x(3) -1.0)

pinax =3.46e8
FH(1) = pinaxbr/pmax - 1.0

c Determine acceptable pressure ........................................
if (dpmaxba.gt.1.5.and.dpmaxba.Le.4.0) then
pnax = 8.320e7*dpnaxba + 4.708e8

else if (dpmaxba.gt.4.0.and.dpniaxba.le.4.57) then
pmax = -9.123e7*dpmaxba + 5.029e8

e(se i f (dpmaxba.gt.4.57) then
pnax =.86e8

end if
FG(12)= 5*(pxba/pmax - 1.0)
FG(13)= 100*(totat voljprop/cham-vol - 1.0)

RETURN
END

C END OF FUN-CON....................................................

Table 5.1.3 Example 1 Constraint Set.

67



NUMBER OF DESIGN VARIABLES 6
NUMBER OF EQUALITY CONSTRAINTS 1
NUMBER OF INEQUALITY CONSTRAINTS : 13

YOU HAVE SELECTED POWELLS METHOD

AT ITERATION NUMBER 1 AND CALL NUMBER 48
CURRENT FCOST = -1545.046
CURRENT ALM = -1499.489

AT ITERATION NUMBER 2 AND CALL NUMBER 79
CURRENT FCOST = -1501.847
CURRENT ALM = -1451.523

AT ITERATION NUMBER 3 AND CALL NUMBER 110
CURRENT FCOST = -1450.726
CURRENT ALM = -1409.354

AT ITERATION NUMBER 4 AND CALL NUMBER 162
CURRENT FCOST = -1394.435
CURRENT ALM = -1401.103

AT ITERATION NUMBER 5 AND CALL NUMBER 213
CURRENT FCOST = -1415.718
CURRENT ALM = -1405.178

AT ITERATION NUMBER 6 AND CALL NUMBER 248
CURRENT FCOST = -1408.722
CURRENT ALM = -1405.803

AT ITERATION NUMBER 7 AND CALL NUMBER 300
CURRENT FCOST = -1409.944
CURRENT ALM = -1407.968

AT ITERATION NUMBER 8 AND CALL NUMBER 335
CURRENT FCOST = -1404.827
CURRENT ALM = -1407.929

AT ITERATION NUMBER 9 AND CALL NUMBER 389
CURRENT FCOLT = -1409.682
CURRENT ALM = -1408.929

AT ITERATION NUMBER 10 AND CALL NUMBER 443
CURRENT FCOST = -1408.634
CURRENT ALM = -1408.958

AT ITERATION NUMBER 11 AND CALL NUMBER 480
CURRENT FCOST = -1408.864
CURRENT ALM = -1408.933

AT ITERATION NUMBER 12 AND CALL NUMBER 517
CURRENT FCOST = -1409.094
CURRENT ALM = -1408.939

AT ITERATION NUMBER 13 AND CALL NUMBER 554
CURRENT FCOST = -1408.864
CURRENT ALM = -1408.946

AT ITERATION NUMBER 14 AND CALL NUMBER 573
CURRENT FCOST = -1408.864
CURRENT ALM = -1408.884

THE FINAL FUNCTION VALUE IS (m/s): 1408.864
THE 6 VARIABLE VALUES ARE (cm & gm):

X(1) = 3.22500
X(2) = 0.01080
X(3) = 0.02080
X(4) = 0.98709
X(5) = 0.25072
X(6) = 891.00050

THE TOTAL NUMBER OF FUNCTION CALLS WAS : 573
THE FINAL ALM FUNCTION VALUE WAS : -1408.884

Figure 5.1.1 Example la ALM Iteration History.
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Pressure-Time Profile
Example la, Initial

Pressure (MPa1) Velocity (m/s)
400- .1600

3 5 0 .............. [........................ ... . .... 4 0 0

300- 1200

250- _1000

200- _800

150-60

100-40

0- -
0 0.002 0.004 0.006 0.008 0.01 0,0L2

Time (sec)

B ase Pressure - Brch Pressure ..... Pressure Limit

Vel oci ty 4' max velocity

Pressure-Time Profile
Example la, Optimized

Pressure (MPco) Velocity (m/s)
400- 1600

1408
3 5 0 ........................ ... ....q1 4 0 0

300 1200

250 1000

200- _800

100 __400

50-.20

0 -0
0 0.002 0.004 0.006 0.008 0.01 0.012

Time (sec)

-Base Pressure -Brch Pressure ...- Pressure Limit

velocity 4'Max Veiocity1

Table 5.1.2 Example l.a Pressure-Time Profiles.
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Pressure-Travel Profile
Example la, Initial

Pressure (MPa) Velocty (ma's)

450........ 0

300--10
250 1000

200- 1800

50-

0 ~0
0 1 2 34

Bcae Pressure - Brchi Pressure .. Pressure Limit

Velocity ~ 'Max Velocity

P ressure- Travel Profile
Example la, Optimized

Pressure (MPa) Velocity (Ini/s)
400--0

3000
2,50 - 4J

2100-10

250-10

200- T 00

150- 200

50 - 100

0 1 2 34
Travel (mn)

Bme Pressure Brch Pressure Pressure Limit

-velocity ~ 'may velocity

Figure 5.1.3 Example la Pressure-Travel Profiles.
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Breech Pressure Differential
Example ]a

Pressure (MPa)
400-

350-

300-

250-

200-

100-

50

0 1 2 3 4
Travel (in)

- rcht Pres FInal -Brch Pres Inial

Figure 5.1.4 Example la Breech Pressure Differential.
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Example 2: This example expands the parametric space

of the first problem to include both a one and a seven

perforation propellent. This gradual increase allows

analysis of the optimization method in steps. A second

optimization is started from the final design of the first

optimization. This will check the ability of the

optimization process in finding the best design. The

initial and final design results are given in Table 5.2.1.

The initial and final performance values of the

optimization are in Table 5.2.2. The set of constraints

are stated in Table 5.2.3. The ALM iteration histories for

both parts of Example 2 are given in Figure 5.2.1 and

5.2.2. The pressure-time and pressure-travel profiles for

Example 2 are Figure 5.2.3 and 5.2.4. The pressure

differential curve is Figure 5.2.5.

The parametric space for this problem consists ten

variables, the five critical dimensions for the seven

perforation propellent, the three critical dimensions of

the one perforation propellent, and their masses. The

design vector X for Example 2 is

x I  L1 ,
x 2 =Pil,
x3 =Pol
x4  =D 1 ,
x5 =dl,
x6 =L21
x7 =P12,
x8 =D 2 1
x9  =massl,,
Xl0 =mass2 .

The propellent dimension terms are defined at the beginning
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of the thesis. The subscript 1 indicates the seven

perforation and the 2 indicates the one perforation

propellent. There is one equality constraint and 19

inequality constraints.
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Initial Values Example 2
Propellent 1 Propellent 2

Type Sample Sample

No. Perf 7 1

Mass (kg) 4.35 4.35

Dimensions (cm)

L 3.175 3.175

D 1.702 1.702

Pi .0508 .0508

Po .0508

d .2807

Final Values Example 2
Propellent 1 Propellent 1

Type Sample Sample

No. Perf 7 1

Mass (kg) 4.22 3.85

Dimensions (cm)

L 5.560 5.240

D .8321 .4946

Pi .0183 .0000

Po .0008 ---

d .2182 ---

Table 5.2.1 Initial/Final Propellent Values.
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Example 2

Initial Intermediate Final

Projectile Velocity (m/s) 1104 1397 1430

Max Breech Pressure (MPa) 211 346 340

Max Base Pressure (MPa) 142 236 235

Table 5.2.2 Initial/Final Performance Values.
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SUBROUTINE FUN CON(X,NOVAR)

C THIS IS TXE CONSTRAINT SET FOR EXAMPLE 2. FH = 1 FG =19
%INCLUDE 'decLarations.ins.fl

COMMON/ L imi ts/dpmnaxba,dpmnaxbr,pmaxbr, pmaxba,d_L ,tot alI_voL _prop,
+ chain voL
REAL*4 X(NOVAR),dprnaxba,dpiiaxbr,pmaxbr,pmaxba,d I ,pmnax,cham-vol,

+ total vol prop

C FOR 7 PERF PROPELLENT.............................................
c fgl is the prop grain Length .GT. 0 constraint
c fg2 is the inner perf diam .GT. 0 constraint
c fg3 is the outer perf diam .GT. 0 constraint
c fg4 is the prop grain diam .GT. 0 constraint
c fg5 is the dist between perf centers .GT. 0 constraint
c fg6 is the prop diam .GT. (inner+outer perf diams) constraint
c f97 is the dist between perf centers .GT. (inner + outer radius) constraint
c fg8 is the Length .GT. diameter constraint
c f99 is the max Length for the cord 6cm.
c fg1O is the equilateral triangle requirement

FGM ) 1000*(-x(l))
FG(2) =1000*(-x(2))
FG(3) =1000*(-x(3))
FG(4= 1000*(-x(4))
FG(5) =1000*(-x(5))
FG(6) =100*(2*x(3)/x(4) + x(2)/x(4) - 1.0)
FG(7) 100*(.5*x(3)/x(5) + .5*x(2)Ix(5) - 1.0)
FG(8) =100*(x(4) - x(1))
FG(8) =100*(x(4)/x(l) - 1.0)
FG(9) =100*(x~l)/.06 - 1.0)
FG(10)= 100*(x(5)Ix(3) - 1.0)

C FOR 1 PERF PROPELLENTS IS....................................
c f911 is the .gt. zero for length
c fgl2 is the .gt. zero for perforation
c fg13 is the .gt. zero for diameter
c fg14 is the max diameter constraint
c fg75 is the pert size must be less than the diameter
c fg16 is that the Length cannot be less than the diameter
c fg17 is the max Length for the cord 6cm.

FG(11) = 1000.*(-x(6))
FG(12) = 10O.*(-x(7))

FG(14) =100.*(x(8)/.04 -1.0)

FG(15) =100.*(x(7)/x(8) -1.0)

FG(16) = OO.*(x(8)/x(6) -1.0)

FG(17) = 100.*(x(6)/.06 -1.0)

c Determine acceptable pressures ................................
c fhl is the max base pressure constraint
c fg18 is the max brch pressure constraint

pinax =3.46e8
FH(1)= pmaxbr/pinax - 1.0

if (dpmnaxba.gt.1.5.and.dpmaxba.le.4.O) then
pmax = -8.320e7*dpnaxba +4.708e8

else if (dpmaxba.gt.4.O.andi.dpmaxba.Ie.4.57) then
omax = 9.123e7*dpmaxba + 5.029e8

else if (dpmaxba.gt.4.57) then
pinax = .86e8

end if
FG(18)= 5*(pinaxba/prnax - 1.0)

C MASS CONSTRAINT..............................................
FG(19)= 100*(totaL _voljprop/cham vol - 1.0)

RETURN
END

Table 5.2.3 Example 2 Constraint Set.
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NUMBER OF DESIGN VARIABLES 10
NUMBER OF EQUALITY CONSTRAINTS I
NUMBER OF INEQUALITY CONSTRAINTS 19

YOU HAVE SELECTED HOOKE-JEEVES

SEARCH DELTA = 1.OOODOOOE-04
ACCEL FACTOR = 2.500000

AT ITERATION NUMBER 1 AND CALL NUMBER 80
CURRENT FCOST = -1329.755
CURRENT ALM = -1329.787

AT ITERATION NUMBER 2 AND CALL NUMBER 160
CURRENT FCOST = -1466.381
CURRENT ALM = -1423.137

AT ITERATION NUMBER 3 AND CALL NUMBER 241
CURRENT FCOST = -1354.288
CURRENT ALM = -1346.637

AT ITERATION NUMBER 4 AND CALL NUMBER 352
CURRENT FCOST = -1389.058
CURRENT ALM = -1360.571

AT ITERATION NUMBER 5 AND CALL NUMBER 435
CURRENT FCOST = -1353.227
CURRENT ALM = -1365.933

AT ITERATION NUMBER 6 AND CALL NUMBER 489
CURRENT FCOST = -1381.153
CURRENT ALM = -1373.239

AT ITERATION NUMBER 7 AND CALL NUMBER 575
CURRENT FCOST = -1373.145
CURRENT ALM = -1371.509

AT ITERATION NUMBER 8 AND CALL NUMBER 662
CURRENT FCOST = -1378.692
CURRENT ALM = -1380.083

AT ITERATION NUMBER 9 AND CALL NUMBER 779
CURRENT FCOST = -1395.569
CURRENT ALM = -1393.360

AT ITERATION NUMBER 10 AND CALL NUMBER 836
CURRENT FCOST = -1391.755
CURRENT ALM = -1393.354

THE FINAL FUNCTION VALUE IS (m/s): 1391.755
THE 10 VARIABLE VALUES ARE (m & kg):

X( 1) = 0.031200
X( 2) = 0.000183
X( 3) = 0.000458
X( 4) = 0.009546
X( 5) = 0.002532
X( 6) = 0.027800
X( 7) = 0.000058
X( 8) = 0.006571
X( 9) = 4.360002
X(1O) = 4.144999

THE TOTAL NUMBER OF FUNCTION CALLS WAS : 836
THE FINAL ALM FUNCTION VALUE WAS -1393.354

Figure 5.2.1 Example 2, Part 1 ALM Iteration History.

77



NUMBER OF DESIGN VARIABLES 10
NUMBER OF EQUALITY CONSTRAINTS 1
NUMBER OF INEQUALITY CONSTRAINTS 19

YOU HAVE zELECTED POWELLS METHUD

AT ITERATION NUMBER 1 AND CALL NUMBER 81
CURRENT FCOST = -1564.146
CURRENT ALM = -1528.375

AT ITERATION NUMBER 2 AND CALL NUMBER 134
CURRENT FCOST = -1548.266
CURRENT ALM = -1465.383

AT ITERATION NUMBER 3 AND CALL NUMBER 215
CURRENT FCOST = -1447.220
CURRENT ALM = -1404.940

AT ITERATION NUMBER 4 AND CALL NUMBER 272
CURRENT FCOST = -1418.827
CURRENT ALM = -1399.732

AT ITERATION NUMBER 5 AND CALL NUMBER 331
CURRENT FCOST = -1403.700
CURRENT ALM = -1401.875

AT ITERATION NUMBER 6 AND CALL NUMBER 447
CURRENT FCOST = -1421.262
CURRENT ALM = -1420.808

AT ITERATION NUMBER 7 AND CALL NUMBER 616
CURRENT FCOST = -1427.592
CURRENT ALM = -1428.370

AT ITERATION NUMBER 8 AND CALL NUMBER 790
CURRENT FCOST = -1430.584
CURRENT ALM = -1429.993

AT ITERATION NUMBER 9 AND CALL NUMBER 935
CURRENT FCOST = -1430.577
CURRENT ALM = -1430.759

AT ITERATION NUMBER 10 AND CALL NUMBER 1024
CURRENT FCOST = -1430.334
CURRENT ALM = -1430.790

THE FINAL FUNCTION VALUE IS (m/s): 1430.334
THE 10 VARIABLE VALUES ARE (m & kg):

X( 1) = 0.055600
X( 2) = 0.000183
X( 3) = 0.000008
X( 4) = 0.008321
X( 5) = 0.002182
X( 6) = 0.052400
X( 7) = 0.000000
X( 8) = 0.004946
X( 9) = 4.217497
X(10) = 3.849896

THE TOTAL NUMBER OF FUNCTION CALLS WAS 1024
THE FINAL ALM FUNCTION VALUE WAS -1430.790

Figure 5.2.2 Example 2, Part 2 ALM Iteration History.
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Pressure-Time Profile
Example 2, Initial

Pressure (MPa) Veloctly (n/s)
400 T./ 1104

3 5 0 .. .... ..... . ....... .. ....... .......... . ..................... ............. i"i 0

300 : " :::

2501 . 800

200-}" 600

400
[00t50 t 200

0 -- 0

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014
Time (sec)

- Base Pressure - Brch Pressure ........ Pressure Limit
Velocity ' Max Velocity

Pressure-Time Profile
Example 2, Optimized

Pressure (M Pa) Velocity (rn/s)
400-- L600
350.........

30014 ThE
300 1200

250 600

100 400

50 -{200

0 0.002 0.004 0.006 0.008 0.01 0.012
Time (sec)

I- cse Pressure - Brcri Pressure ....... Pressure Limit

Velocity ' Mox Velocity

Figure 5.2.3 Example 2 Pressure-Time Profiles.
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Pressure-Travel Profile
Example 2, Initial
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Figure 5.2.4 Example 2 Pressure-Travel Profiles.
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Breech Pressure Differential
Example 2
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Figure 5.2.5 Example 2 Breech Pressure Differential.
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Example 3: This example further expands the

parametric space of the first and second problem to include

a zero, one, and seven perforation propellent. This final

increase further examines the performance of the

optimization method in an even larger parametric space. The

initial and final design results are given in Table 5.3.1.

The initial and final performance values of the

optimization are in Table 5.3.2. The set of constraints

are stated in Table 5.3.3. The ALM iteration history for

Example 3 is given in Figure 5.3.1. The pressure-time and

pressure-travel profiles for Example 3 are Figure 5.3.2 and

5.3.3. The pressure differential curve is Figure 5.3.4.

The parametric space for this problem consists

thirteen variables, the two critical dimensions for the

zero perforation propellent, the three critical dimensions

of the one perforation propellent, the five critical

dimensions for the seven perforation propellent, and their

masses. The design vector X for Example 3 is

x I = L 1 ,
X2  =D 1 ,
x3 =L 2
X4= Pi2'
x5  D2 1
x = L3,
X7= Pi3'
X8= PO3 '
X9 = D3,
XI0 = d 3 ,
X = mass,
X12 = mass2,
x13 = mass3.

The propellent dimension terms are defined at the beginning
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of the thesis. The subscript 1 indicates the zero

perforation, the 2 indicates the one perforation

propellent, and the 3 indicates the seven perforation

propellent. There is one equality constraint and 25

inequality constraints.
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Initial Values Example 3
Propellent 1 Propellent 2 Propellent 3

Type Sample Sample Sample

No. Perf 0 1 7

Mass (kg) 3.00 3.00 3.00

Dimensions (cm)

L 3.175 3.175 3.175

D 1.702 1.702 1.702

Pi --- .0508 .0508

Po ...... .0508

d --- .2807

Final Values Example 3
Propellent 1 Propellent 2 Propellent 3

Type Sample Sample Sample

No. Perf 0 1 7

Mass (kg) .99 3.63 4.13

Dimensions (cm)

L 2.494 5.943 5.996

D 1.285 .580 5.996

Pi --- .0000 .0018

Po ..... .0018

d --- .2170

Table 5.3.1 Initial/Final Prcpellent Values.
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Example 3

Initial Final

Projectile Velocity (m/s) 1049 1368

Max Breech Pressure (MPa) 218 346

Max Base Pressure (MPa) 149 239

Table 5.3.2 Initial/Final Performance Values.

85



SUBROUTINE FUN CON(X,NOVAR)

C THIS IS THE CONSTRAINT SET FOR EXAMPLE 3. FH = 1 FG =25
%IlNCLUDE 'decLarations.ins.fl

COMMON/limits/dpmaxba,dpmaxbr,pinaxbr,pmaxbe~d_ I total _vol prop,
+ chain vol
REAL*4 X(NOVAR),dpmaxba,dpnaxbr,pnaxbr,pinaxba,d I ,pmax~chamnVoL,

+ totat vol prop

C FOR 0 PERF PROPELLENT ..................................dimensions.....
c fgl :prop grain Length .GT. 0 constraint m
c fg2 :prop grain diam .GT. 0 constraint in
c fg3 :mass .GT. than 0 constraint kg
c fg4 :Length .GT. diameter constraint
c fgS :mnax Length for the cord 6cm.+

FG(2 = 100C,*(-x(l))
FG(3) 100*(-x(11))

FGW4 = 100*(x(2)/x(1) - 1.0)
FG(5) =100*(x(l)/.06 - 1.0)

C FOR 1 PERF PROPELLENT ..................................dimensions.....
c fg6 :prop grain Length .GT. 0 constraint in
c fg7 :inner perf diam .GT. 0 constraint in
c f98 :prop grain dian .GT. 0 constraint in
c f99 :mass .GT. than 0 constraint kg
c fg1O :prop diam .GT. inner perf diam constraint
c f911 :length .GT. diameter constraint
c f912 :max Length for the cord 6cm.

FG(6) =1000*C-x(3))
FG(7 = 1000*(-x(4))
FG(8) = 1000*(-x(5))

FG(10) =100*(x(4)/x(5) -10)
FG(11) = 100*(x(5)/x(3) -10)
FG(12) = 100*(x(3)I.06 -1.0)

C FOR 7 PERF PROPELLENT ..................................dimensions.....
c fg13 :prop grain Length .GT. 0 constraint in

c fg14 :inner perf diam .GT. 0 constraint m
c fg15 :outer perf diam .GT. 0 constraint in
c fg16 :prop grain dian .GT. 0 constraint in
c fg17 :dist between perf centers GT7. 0 constraint m
c fg18 :mnass .GT. than 0 constraint kg
c fg19 :prop diam .GT. (inner+outer perf diams) constraint
c fg2O :dist between perf centers .GT. (inner + outer radius) constraint
c fg2l :Length GT7. diameter constraint
c fg22 :max Length for the cord 6cm.
c fg23 :equilateral triangle requirement.
c tg24 :max base pressure constraint
c fg25 :mnaximumi Volume of propellent cannot exceed the space in the chamber

FG(13) = 1000*(-x(6))
FG(14) =1000*C-x(7))
FG(15) = 1000*(-x(8))
FG(16) =1000*(-x(9))

FG(17) = 100*(-x(10))

FG(19) =100*(2*x(8)/x(9) + x(7)/x(9) - 1.0)
FG(20) = 100*(.5*x(8)Ix(10) + .5*x(7)Ix(1O) - 1.0)
FG(21) =100*(x(9)/x(6) -10)
FG(22) =100*(x(6)I.06 -1.0)

FG(23) = 100*(3.O*x(8)I(4.O*x(9)) + x(7)/(4.O*x(9)) -10)

c fhl :inax breech pressure conatraint
pinax = 3.46e8
FH(1) = paiaxbr/pmax - 1.0
if (paxba~ gt.1.5. and.dprnaxba.Le.4.O) then
pmax = -8.32Oe7*dpinaxba + 4.708e8

else if (dpmaxba.gt.4.O.and.dpnaxba.le.4.57) then
pinax -9.123e7*dpmaxba + 5.029e8

else if dpmexba.gt.4.57) then
pinax = .86e8

end I f
P0(24) = 5*(pinaxba/pnax - 1.0)
P0(25) =100*(total volprop/chan vol - 1.0)

RETURN
END

Table 5.3.3 Example 3 Constraint Set.
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NUMBER OF DESIGN VARIABLES 13
NUMBER OF EQUALITY CONSTRAINTS. 1
NUMBER OF EQUALITY CONSTRAINTS: 25

YOU HAVE SELECTED HOOKE-JEEVES

SEARCH DELTA = 1.OOOOOOOE-04
ACCEL FACTOR = 2.500000

AT ITERATION NUMBER 1 AND CALL NUMBER 101
CURRENT FCOST = -1491.332
CURRENT ALM = -1461.602

AT ITERATION NUMBER 2 AND CALL NUMBER 167
CURRENT FCOST = -1467.293
CURRENT ALM = -1404.639

AT ITERATION NUMBER 3 AND CALL NUMBER 236
CURRENT FCOST = -1417.090
CURRENT ALM = -1361.723

AT ITERATION NUMBER 4 AND CALL NUMBER 306
CURRENT FCOST = -1366.709
CURRENT ALM = -1355.552

AT ITERATION NUMBER 5 AND CALL NUMBER 375
CURRENT FCOST = -1361.439
CURRENT ALM = -1357.584

AT ITERATION NUMBER 6 AND CALL NUMBER 519
CURRENT FCOST = -1364.183
CURRENT ALM = -1365.158

AT ITERATION NUMBER 7 AND CALL NUMBER 664
CURRENT FCOST = -1365.460
CURRENT ALM = -1366.705

AT ITERATION NUMBER 8 AND CALL NUMBER 777
CURRENT FCOST = -1367.985
CURRENT ALM = -1367.011

AT ITERATION NUMBER 9 AND CALL NUMBER 853
CURRENT FCOST = -1367.394
CURRENT ALM = -1366.895

AT ITERATION NUMBER 10 AND CALL NUMBER 930
CURRENT FCOST = -1366.816
CURRENT ALM = -1366.905

AT ITERATION NUMBER 11 AND CALL NUMBER 1121
CURRENT FCOST = -1367.399
CURRENT ALM = -1367.278

AT ITERATION NUMBER 12 AND CALL NUMBER 1316
CURRENT FCOST = -1367.478
CURRENT ALM = -1367.605

AT ITERATION NUMBER 13 AND CALL NUMBER 1.24
CURRENT FCOST = -1367.565
CURRENT ALM = -1367.590

THE FINAL FUNCTION VALUE IS (m/s): 1367.565
THE 13 VARIABLE VALUES ARE (m & kg):

X( 1) = 0.024935
X( 2) = 0.012850
X( 3) = 0.059425
X( 4) = 0.000000
X( 5) = 0.005798
X( 6) = 0.059960
X( 7) = 0.000018
X( 8) = 0.000018
X( 9) = 0.008613
X(10) = 0.002171
X(11) = 0.992000
X(12) = 3.625999
X(13) = 4.130000

THE TOTAL NUMBER OF FUNCTION CALLS WAS 1394
THE FINAL ALM FUNCTION VALUE WAS : -1367.590

Figure 5.3.1 Example 3 ALM Iteration History.
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Pressure-Time Profile
Example 3, Initial
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Pressure-Travel Profile
Example 3, Initial
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Figure 5.3.3 Example 3 Pressure-Travel Profiles.
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Breech Pressure Differenitial
Example 3
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Figure 5.3.4 Example 3 Breech Pressure Differential.
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Example 4: This example demonstrates the optimization

of two propellents with different thermodynamic

characteristics. Two seven perforations propellents are

used. This allows the comparison of the optimization method

in a different parametric space. Just like the second

example, a second optimization is started from the final

design of the first optimization. This checks the ability

of the optimization process in finding the best design.

The initial and final design results are given in Table

5.4.1. The initial and f-nal performance values of the

optimization are in Table 5.4.2. The set of constraints

are stated in Table 5.4.3. The ALM iteration histories for

both parts of Example 4 are given in Figure 5.4.1 and

5.4.2. The pressure-time and pressure-travel profiles for

Example 4 are Figure 5.4.3 and 5.4.4. The pressure

differential curve is Figure 5.4.5.

The parametric space for this problem consists twelve

variables, the five critical dimensions for the first seven

perforation propellent, the five critical dimensions for

the second seven perforation propellent, and their masses.

The design vector X for Example 4 is

x2 =pil
x3= Pol'
x 4  = DlI
x 5  dl,
x 6 =L 2 1,
X7 =Pi2'

X9 =D21
X10 =d2,

91
= m n nbm a-



xll = mass,

X12 = mass2.

The propellent dimension terms are defined at the beginning

of the thesis. The subscript 1 indicates the first seven

perforation propellent and the 2 indicates the second seven

perforation propellent. There is one equality constraint

and 24 inequality constraints.
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Initial Values Example 4
Propellent 1 Propellent 2

Type Sample M8

No. Perf 7 7

Mass (kg) 4.35 4.35

Dimensions (cm)

L 3.175 3.175

D 1.702 1.702

Pi .0508 .0508

PO .0508 .0508

d .2807 .2807

Final Values Example 4
Propellent 1 Propellent 2

Type Sample M8

bo. Perf 7 7

Mass (kg) 5.37 3.20

Dimensions (cm)

L 3.576 3.548

D .9821 1.002

Pi .0800 .0383

PO .0400 .0508

d .2607 .2707

Table 5.4.1 Initial/Final Propellent Values.
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Example 4

Initial Intermediate Final

Projectile Velocity (m/s) 1341 1391 1395

Max Breech Pressure (MPa) 325 346 345

Max Base Pressure (MPa) 226 234 234

Table 5.4.2 Initial/Final Performance Values.

94



SUBROUTINE FUN CON(X NOVAR)

C THIS IS THE CONSTRAINT SET FOR EXAMPLE 4 FH =1 FG = 24
%I1NCLUDE Ideclarations.ins.fl

COMMON/Limits/dp1maxba,oipmaxbra.faAxbr,pnaxba,di ,total vol~prop,
+ chain vol

REAL*4 X(tiVAR),dnmaxba,dpfnaxbr,pmaxbr,prnaxba,dL,pmax,cham-voL,
+ total-vol prop

C FOR SAMPLE 7 PERF PROPELLENT...................................
c fgl is the prop grain Length .GT. 0 onstraint
c fg2 is the inner perf diam .GT. 0 constraint
c fg3 is the outer perf diam .GT. U constraint
c fg4 is the prop grain diam .GT. 0 constraint
c fg5 is the dist between perf centers .GT. 0 constraint
c fg6 is the mass .GT. 0 constraint
c fg7 is the prop diam .GT. (inner+outer perf diams) constraint
c f98 is the dist between perf centers .GT. (inner + outer radius) constraint
c fg9 is the Length .GT. diameter constraint
c f91O is the max Length for the cord 6cm
c fgll is the equilateral triangle requirement

FG(2) = 1000*( x(2))

FG(3) = 10UO*(-x(3))
FG(4) = 1OO0*(-x(4))
FG(5) = 1OO0*C-x(5))
FG(6) = 100*(-x(l1))
FG(7) = 100*C2*x(3,be(4) + x(2)/x(4) - 1.0)
FG(8) =100*(.5*xC3)Ix(5) + .5*x(2)Ix(5) - 1.0)
FG(9) = 100*(x(4)/x(1) - 1.0)
FG(1O)= 100*(x(1)/.06 - 1.0)
FG(11)= 100*(x(S)/x(3) - 1.0)

C FOR M8 7 PERF PROPELLENTS IS......................................
c fg12 is the prop grain Length .GT. 0 constraint
c fg13 is the inner perf diam .GT. 0 constraint
c fgl4 is the outer perf diam .GT. 0 constraint
c fg15 is the prop grain diam .GT. 0 constraint
c fg16 is the dist between perf centers .GT. 0 constraint
c fgll is the mass .GT. 0 constraint
c fg18 is the prop diam .GT. (inner+outer perf diams) constraint
c fg19 is the dist between perf centers .GT. (inner + outer radius) constraint
c fg20 is the Length .GT. diameter constraint
c fg2l is the max Length for the cord 6cm.
c fg22 is the equilateraL triangle requirement
c fg23 is the max base pressure constraint
c fhl is the max brch pressure constraint

FG(12)= 1000*(-x(6))
FG(13)= 1000*(-x(7))
FG(14)= 1000*(-x(8))
FG(15)= 1000*(-x(9))
FG(16)= 1000*(-x(10))
FG(17)= 100*(.x(12))
FG(18)= 100*(2*x(8)/x(9) + x(7)/x(9) - 1.0)
FG(19)= 100*(.5*x(8)/x(10) + .5*x(7)Ix(10) -1.0)
FG(20)= 100*(x(9)Ix(6)- 1.0)
FG(21)= 100*(x(6)/.06 - 1.0)
FG(22)= 100*(x(1O)/x(8) - 1.0)

c Determine acceptable pressures ................................
pmax = 3.46eB
FH(1)= pnlaxbr/pmTax - 1.0

if (dpmnaxba.gt.1.5.and.dpmaxba.Le.4.0) then
pmax = 8.320e7*dpmaxba + 4.708e8

else if (dpmnaxba.gt.4.0.and.dpmaxba.Le.4.57) then
pmax = 9.123e7*dpmaxba + 5.029e8

else if (dpmaxba.gt.4.57) then
pmax =.86e8

end if

FG(23)= 5*(pmaxba/pmax - 1.0)
FG(24)= 100*(totat vol prop/chanVo -o 1.0)

RETURN
END

Table 5.4.3 Example 4 Constraint Set.



NUMBER OF DESIGN VARIABLES 12
NUMBER OF EQUALITY CONSTRAINTS 1
NUMBER OF INEQUALITY CONSTRAINTS 24

YOU HAVE SELECTED HOOKE-JEEVES

SEARCH DELTA = 1.00000OOE-04
ACCEL FACTOR = 2.500000

AT ITERATION NUMBER 1 AND CALL NUMBER 92
CURRENT FCOST = -1519.152
CURRENT ALM = -1487.421

AT ITERATION NUMBER 2 AND CALL NUMBER 155
CURRENT FCOST = -1480.552
CURRENT ALM = -1419.600

AT ITERATION NUMBER 3 AND CALL NUMBER 217
CURRENT FCOST = -1423.870
CURRENT ALM = -1374.297

AT !TERATION NUMBER 4 AND CALL NUMBER 279
CURRENT FCOST = -1371.400
CURRENT ALM = -1359.452

AT ITERATION NUMBER 5 AND CALL NUMBER 381
CURRENT FCOST = -1367.596
CURRENT ALM = -1365.239

AT ITERATION NUMBER 6 AND CALL NUMBER 483
CURRENT FCOST = -1365.586
CURRENT ALM = -1367.228

AT ITERATION NUMBER 7 AND CALL NUMBER 620
CURRENT FCOST = -1368.504
CURRENT ALM = -1368.291

AT ITERATION NUMBER 8 AND CALL NUMBER 827
CURRENT FCOST = -1377.971
CURRENT ALM = -1378.822

AT ITERATION NUMBER 9 AND CALL NUMBER 1039

CURRENT FCOST = -1392.342
CURRENT ALM = -1391.591

AT ITERATION NUMBER 10 AND CALL NUMBER 1144
CURRENT FCOST = -1391.594
CURRENT ALM = -1391.761

THE FINAL FUNCTION VALUE IS (m/s): 1391.594
THE 12 VARIABLE VALUES ARE (m & kg):

X( 1) = 0.035075
X( 2) = 0.000233
X( 3) = 0.000458
X( 4) = 0.009871
X( 5) = 0.002607
X( 6) = 0.034775
X( 7) = 0.000983
X( 8) = 0.000458
X( 9) = 0.010621
X(10) = 0.002857
X(11) = 5.323147
X(12) = 3.254370

THE TOTAL NUMBER OF FUNCTION CALLS WAS : 1144
THE FINAL ALM FUNCTION VALUE WAS : -1391.761

Figure 5.4.1 Example 4, Part 1 ALM Iteration History.
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NUM3E2 OF DESIGN VARIABLES 6

NUMBER OF EQUALITY CONSTRAINTS 1
NUMBER OF INEQUALITY CONSTRAINTS 13

YOU HAVE SELECTED POWELLS METHOD

AT ITERATION NUMBER I AND CALL NUMBER 95

CURRENT FCOST = -1542.902
PREVIOUS FCOST = 1.OOOOOOE-06
CURRENT ALM = -1501.385
PREVIOUS ALM = 1.OOOOOOOE-06

AT ITERATION NUMBER 2 AND CALL NUMBER 158
CURRENT FCOST = -1502.262
PREVIOUS FCOST = -1542.902
CURRENT ALM = -1442.825
PREVIOUS ALM = -1501.385

AT ITERATION NUMBER 3 AND CALL NUMBER 222
CURRENT FCOST = -1443.458
PREVIOUS FCOST = -1502.262
CURRENT ALM = -1402.508
PREVIOUS ALM = -1442.825

AT ITERATION NUMBER 4 AND CALL NUMBER 291

CURRENT FCOST = -1407.329
PREVIOUS FCOST = -1443.458
CURRENT ALM = -1394.635
PREVIOUS ALM = -1402.508

AT ITERATION NUMBER 5 AND CALL NUMBER 362
CURRENT FCOST = -1394.807
PREVIOUS FCOST = -1407.329
CURRENT ALM = -1393.702
PREVIOUS ALM = -1394.635

AT ITERATION NUMBER 6 AND CALL NUMBER 467
CURRENT FCOST = -1395.328
PREVIOUS FCOST = -1394.807
CURRENT ALM = -1395.892
PREVIOUS ALM = -1393.702

AT ITERATION NUMBER 7 AND CALL NUMBER 535
CURRENT FCOST = -1395.332
PREVIOUS FCOST = -1395.328
CURRENT ALM = -1396.150
PREVIOUS ALM = -1395.892

THE FINAL FUNCTION VALUE IS (m/s): 1395.332
THE 12 VARIABLE VALUES ARE (m & kg):

X( 1) = 0.0357-0

X( 2) = 0.000083
X( 3) = 0.000408
X( 4) = 0.009821

X( 5) = 0.002607
X( 6) = 0.035480
X( 7) = 0.000383
X( 8) = 0.000508
X( 9) = 0.010021
X(10) = 0.002707
X(11) = 5.368001
X(12) = 3.204000

THE TOTAL NUMBER OF FUNCTION CALLS WAS : 535

THE FINAL ALM FUNCTION VALUE WAS : -1396.150

Figure 5.4.2 Example 4, Part 2 AIM Iteration History.
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Pressure-Time Profile
Example 4, Initial
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Figure 5.4.3 Example 4 Pressure-Time Profiles.
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Pressure-Travel Profile
Example 4, Initial
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Breech Pressure Differenitial
Example 4
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Figure 5.3.5 Example 4 Breech Pressure Differential.
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7. Analysis.

The analysis is divided into two parts. The first

part is an individual examination of each example problem

and the second part is an overall analysis of the trends

the example problems indicate.

Both optimizations in Example 1 intialized at the

current design and a random point in the parametric space,

attain identical projectile performance of 1408 m/s without

violating constraints. This indicates that the process is

insensitive to the starting points. An analysis of the

differences in the grain dimensions between Example la and

lb show that the primary difference is in the outer

perforation diameter po and the grain length L. The

relationship between the two values in the region is, for

constant velocity, an increase in po results in a

concurrent decrease in L. This results in similar initial

grain surface areas, resulting in comparable projectile

velocities. There is also a .7 percent increase in

projectile velocity from the current design. This

indicates that the process is comparable to current design

methods.

In Example 2 the projectile velocity is improved from

a non-optimum starting point in the parametric space.

Again no constraints are violated. The second optimization

improves the projectile velocity from 1397 to 1430 m/s, a

difference of 2.7 percent. The optimum is therefore nearly
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attained in the first optimization. Examination of the one

perforation propellent, Propellent 2, shows that the

process eliminated the single perforation pi during

optimization. This demonstrates that the process can

simplify geometries to improve performance This example

demonstrates that the method continues to perform for

larger parametric spaces.

The third example resulted in improved projectile

performance from a non-optimum point in the parametric

space. The velocity, 1368 M/s, is the lowest of the four

examples and is a 2.1 percent decrease from Example 1.

Since the same propellent thermodynamics are used and

identical geometries are present, a closer value could be

expected. Analysis of the differences in the problem

statements show that the mass constraints prohibited the

attainment of the higher velocities reached in Example 1 or

2. When a propellent mass (for a multiple propellent

problem) is the active design variable, it is incremented

to locate a local optimum. For each change in the active

propellent mass, there is no corresponding change for any

other propellent mass in the problem. This prohibits a

propellent from total elimination by reduction of its mass

to zero. Despite this, Example 3 does demonstrate

continued performance of the optimization method in a

larger parametric space.

Example 4 also improves projectile performance within
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the constraints. The velocity attained in the first

optimization, 1391 m/s is only improved by .30 percent in

the second optimization to 1395 m/s. This indicates that

in this new parametric space the optimum is nearly

attained. The similarity to the previously optimized

projectile velocities is due to the relative closeness of

the two propellents used, M6 and M8 (see Table 5.1). The

question, can the method perform in a different parametric

space, is still answered since the propellents are

different.

In each example the projectile velocity is improved

within the given constraint conditions. Example 1

demonstrates that the scheme will approach the optimum from

reasonable starting points and that it matches well with

current design techniques. Table 5.2 compares optimized

velocities and net improvements.

In Examples 2, 3, and 4 the scheme continues to

perform for multiple grains and types of propellents. In

Examples 2 and 4 the second optimization provides small

improvement indicating that the optimum is nearly

attained. This demonstrates the method will locate the

optimum in most cases with built in tolerances.

In Example 2 the inner perforation was reduced to

zero, showing that the propellent geometry can be

simplified if performance is improved. However the mass

constraint prohibits elimination of a propellent, through
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Example Inital Final Percent 2nd Itr

Velocity Velocity Change Change

m/s m/s %

la 1398 1408 +.7 n/a

2 1104 1430 +29.5 +2.4

3 1049 1368 +23.3 n/a

4 1341 1395 +3.9 +.39

Figure 5.2 Performance Synopsis

Example No. of N". of Method
Function Calls Variables

la 573 6 Powell's w/ Golden

2(itr 1) 836 10 Hook-Jeeves
(itr 2) 1024 10 Powell's w/ Golden

3 1394 13 Hook-Jeeves

4(itr 1) 1144 12 Hook-Jeeves
(itr 2) 535 12 Powell's w/ Quadratic

Figure 5.3 Optimization Method Comparison.

104



the reduction of mass to zero, in multiple propellent

problems.

The higher dimensioned parametric space appears to be

well behaved as can be seen by the optimization method

performance and resultant velocities. Hook-Jeeves and

Powell's performed equally, neither showing a distinct

advantage. Powell's method used with the three point

quadratic approximation (Example 4, Optimzation 2) does

converge in less function calls. However, if this method is

used near an unfeasible region in the parametric space this

advantage will be offset. Table 5.3 compares optimization

performance by example.

The questions from Section 6 have been answered by the

example problems. Example 1 demonstrated that the method

attains comparable performance levels with current design

methods. All four of the example problems show that a

practical optimum design is attained regardless of the size

of the parametric space. Pinally, the differences in the

four example problems and the relative ease with which the

design vector and constraint set can be set show the

flexibility and ease of use of the method.

105



CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

1. Conclusions.

A general method is developed for optimum and

automated propellent grain design of a constrained

multivariable interior ballistics system. The results

obtained in Chapter V indicate that the method is

computationally feasible and yields results comparable with

current hunt and search design methods.

This automated design process is an aid to the

interior ballistician. It is straightforward to implement

and does not require heavy computational support. The

interior ballistics model can be quickly changed or

improved without affecting the optimization scheme. The

process does include constraint effects directly and is

flexible in that constraint parameters can be changed

without difficulty. The method is tested on a specific

problem, but the application is not restricted since the

example's characteristics are shared by a large class of

interior ballistics problems.

2. Recommendations for Future Research.

The software developed in this research should be

tested on several more problems with different parametric

spaces. The accuracy of the program can be estimated by
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solving a variety of actual problems with known solutions.

The numerical techniques used in this present work can be

improved, both in computational efficiency and convergence

speed. A first order method should be integrated into the

ALM process to allow greater flexibility.

The integration of both exterior and terminal ballistic

models to extend the design capabilities is a long term

goal.
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APPENDIX I

OPTIMIZATION CODE

This appendix contains the optimization code used in

this thesis. The first item is the declaration file

followed by the main progam and the appropriate

subroutines. Three called subprograms are not included.

The objective function 'fun-int.ftn' is Appendix II. The

constraint subroutines 'fun-con.ftn' are included with each

example problem. The subroutine that reads the input file

,readdata.ftn', although called by the main program, is

included in Appendix II. The files are listed below.

1. declaration.ins.f.

2. optimum.ftn.

3. hook jeeves.ftn.

4. powell.ftn.

5. search.ftn.

6. ugrid_ld.ftn.

7. gold.ftn.

8. quad.ftn.

9. gaussz.ftn.

10. funx.ftn.

11. checkprint.ftn.

12. printit.ftn.

13. tol test.ftn.

14. update.ftn.

110



C* 'decIarations.ins.f'
C
*

C. DECLARATIONS, PARAMETERIZATION & COMMON BLOCK FILE FOR
C* THE AUGMENTED LAGRANGIAN MULTIPLIER *
C* JOE ROBERT GONZALEZ *
C* 562-88-9645 *

C* THIS FILE IS CALLED FROM THE PROGRAM 'optimum.ftn'

c In the common /PARTIALS/ block the following definitions apply:
c rpa = the ALM pseudo-objective function rp.
c rpemax = the maximum value rp is allowed to attain.
c lam h(i) = the LaGrangian multiplier for the equality
c constraints (that is lambda for the H's).
c lam g(j) = the LaGrangian multiplier for the inequality
c constraints (that is lambda for the G's).
c fh(i) = the calculated value of the respective equality
c constraint.
c fg(j) = the calculated value of the respective inequality
c constraint.

c In the common /CONTROLS/ block the following defiritions apply:
c calls = the number of function evaluation calls.
c ifault = the 'no local minimum can be found' flag.
c flag = a general purpose integer flag.

c In the main portion of the program the following definitions apply in
c addition to those listed above:
c af = the acceleration factor for hooke-jeeves.
c converge = the 'convergance flag for the ALM.
c d = detla, the search interval for hooke jeeves.
c eps = epsilon, the tolerance for use in the line searches.
c fcost = the current value of the ALM function.
c fcost p = the previous value of the ALM function.
c fun cost = the current value of the objective function.
c fun costp = the previous value of the objective function.
c gamma = the gamma in the ALM pseudo-objective function.
c i,j,k,l,m,n = working counters.
c imax = the maximum array size allocated.
c itr = the number of ALM iterations performed.
c lam hp(i) = the previous (amda for the equality constraints.
c lam gp(j) = the previous lamda for the inequality constraints.
c novar = the number of independent variables (n).
c num nh = the number of equality constraints.
c p = a 'p' appended to a variable name is used to
c designate the previous value of that variable.
c technique the selection for the line search technique.
c 1 = Powell's method.
c 2 = Hook-Jeeves method.
c tolerance = the ALM tolerance for use in the main program.
c xfinal(n) = the final calculated solution.
c xinit(n) = the start point for the optimization.

c subroutines defined in header of 'opti.f' ............................
EXTERNAL FUNX,FUNFHG,SEARCH,UGRID,GOLD,QUAD,GAUSSZ

INTEGER*2 I WANT,I,J,K,L,M,NNOVAR,NUM G,NUM HFLAG
INTEGER*2 CXLLS,IFAULT,IMAX,ITR,TECHNIaUE -

c parameter establishment ..............................................
PARAMETER (IMAX = 30)

REAL*4 XINIT(IMAX),XFINAL(IMAX),FCOST,FCOSTP,FG(IMAX),FUN COST
REAL*4 LAM H(IMAX),LAM HP(IMAX),LAM G(IMAX),LAM GP(IMAX)
REAL*4 RPA7RP MAX,RP P IME,GAMMA PRTME,GAMMA,FHTIMAX),FUN COSTP
REAL*4 AF,D,EIS,TOLERANCE

c common blocks .....................................................
COMMON/PARTIALS/RPA,RP MAX,LAM H,LAM G,FH,FG
COMMON/CONTROLS/CALLS,TFAULT,FAG,NUM.H,NUM_G
COMMON/VALUES /FUN_COST,FUNCOSTP

LOGICAL rnNVERGE
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C* THE AUGMENTED LAGRANGIAN MULTIPLIER METHOD *
C* BY: JOE ROBERT GONZALEZ

C* TO MINIMIZE FUNCTIONS OF MORE THAN ONE DIMENSION THAT HAVE *
C* EQUALITY AND/OR INEQUALITY CONSTRAINTS. *
C**

C* THIS PROGRAM USES FOLLOWING CONSTRAINING ALGORITHM: *
C* 1) THE AUGMENTED LAGRANGIAN MULTIPLIER *
C*
C* WITH THE FOLLOWING MINIMIZATION ROUTINES: *
C* 1) POWELL'S METHOD w/ LINE SEARCH *

C* 2) THE METHOD OF HOOK-JEEVES
C**

C* TO MINIMIZE UNCONSTRAINED FUNCTIONS THAT HAVE EQUALITY AND/OR *
C* INEQUALITY CONSTRAINTS OF MORE THAN ONE DIMENSION. *
C* *

C* THE SUBROUTINES CALLED FROM USER MAIN ARE (INDENTED NAMES ARE *

C* CALLED BY THE PRECEEDING SUBROUTTNES): *C*

C* TOL TEST : DETERMINES IF THE ALM TOLERANCE HAS BEEN MET. *
C* UPDATE : UPDATES THE LAGRANGIAN MULTIPLIERS FOR THE PSUEDO- *
C* OBJECTIVE FUNCTION. *
C* CHECK PRINT PRINTS OUT CURRENT VALUES FOR EACH ALM ITERATION. *
C* PRINTTT : PRINTS OUT THE FINAL VALUES. *
C* POWELL : CONTROLS THE POWELL'S METHOD SEARCH. *
C* SEARCH : CONTROLS THE LINE SEARCH SUBROUTINES.
C* UGRID UNIFORM GRID SEARCH METHOD FOR MINIMUM BRACKETING. *
C* GOLD : THE GOLDEN SECTIONS METHOD FOR THE MINIMUM. *
C* QUAD : THE QUADRATIC APPROXIMATION METHOD FOR THE MINIMUM.
C* GAUSSZ : SOLUTION TO SYSTEM OF EQUATIONS BY GAUSSIAN *
C* REDUCTION WITH PARTIAL PIVOTING. *
C* HOOK JEEVES : PERFORMS THE HOOK-JEEVES METHOD.
C* READ-DATA : THE INPUT DATA SUBROUTINE FILE FOR FUN INT.FTN *
C* FUNX : PERFORMS THE ALM MODIFICATIONS TO DETEOMINE THE *
C* VALUE OF THE PSEUDO-OBJECTIVE FUNCTION. *
C* FUN INT PERFORMS THE CALCULATION OF THE COST FUNCTION. *
C* FUN-CON : PERFORMS THE ASSOCIATED EQUALITY AND INEQUALITY *
C* CONSTRAINT FUNCTION EVALUATIONS.
C*

PROGRAM OPTIMUM
%INCLUDE 'declarations. ins.f,

INTEGER*2 ITYPE

C INITIALIZATION OF COUNTERS AND FLAGS ..................................
ITR = 1
CALLS = 0
IFAULT = 0
VIRGIN = 0
ITYPE = 0

RPA = 100.0
RP MAX = 1.00e8
GARMA = 2.0

FCOST = .00
FUN COST = .00
FCOT P = 1.00e-6
FUNCOSTP = 1.00e-6

CONVERGE = .FALSE.

TOLERANCE = .2
EPS = .0001

C USER INPUT ...........................................................
PRINT*,' ENTER NUMBER OF DESIGN VARIABLES:'
READ*, NOVAR
PRINT*,' ENTER NUMBER OF EQUALITY/INEQUALITY CONSTRAINTS:'
READ*,NUMH,NUM_G

PRINT*,' NUMBER OF DESIGN VARIABLES :',novar
PRINT*,' NUMBER OF EQUALITY CONSTRAINTS:',nun h
PRINT*,' NUMBER OF EQUALITY CONSTRAINTS:',numg

C INITIALIZE La da's ....................................................
DO 10 1=1,NUM H

LAM HP(I) =-0.0
10 LAM H(I) = 1.0

DO 20-1=1,NUM_G
LAM GP(M) = 0.0

20 LAMG(1) = 1.0 112



C READ DATA INPUT SET ...................................................
CALL READDATA(XINIT,NOVAR)

C MINIMIZATION ROUTINE SELECT
TON ........................................

90 PRINT-,' SELECT MINIMIZATION TECHNIQUE:'
PRINT-,' POWELLS METHOD => 1'
PRINT*,' HOOKE-JEEVES => 2'
READ-, TECHNIQUE

IF (TECHNIQUE.EQ.I) THEN
PRINT*,' YOU HAVE SELECTED POWELLS METHOD'
PRINT*,' ENTER "0" FOR GOLDEN SECTIONS.'
PRINT*,' ENTER "1" FOR QUADRATIC APPROXIMATION.'
READ*,ITYPE

ELSE if (TECHNIQUE.EQ.2) then
PRINT*,l YOU HAVE SELECTED HOOKE-JEEVES'
PRINT*,- ENTER SEARCH DELTA E<1] AND ACCELERATION FACTOR [>=1'
READ*,D,AF
PRINT*,- SEARCH DELTA =',D
PRINT*,' ACCEL FACTOR =',AF

END IF

C MINIMIZATION EXECUTION ................................................
100 IF (TECHNIQUE.EQ.1) THEN

CALL POWELL(XINIT,EPS,NOVAR,XFINAL,FCOST,ITYPE)
ELSE IF (TECHNIQUE.EQ.2) THEN
CALL HOOKJEEVES(XINIT,EPS,NOVAR,O,AF,XFINAL,FCOST)

END IF

C DIAGNOSTIC PRINT ......................................................
CALL CHECK PRINT(ITR,XFINAL,FCOST,FCOSTP,NOVAR)

C CHECKING FOR CONVERGENCE ..............................................
CALL TOLTEST(LAMHP,LAMGP,TOLERANCE,CONVERGE,FCOSTP,FCOST)

C IF CONVERGENCE FAILED CONTINUE (check atm max itr) .................
IF ((CONVERGE).EQV.(.FALSE.)) THEN
IF (ITR.GE.25) THEN
PRINT*,' --- MAX [TERATIONS EXCEEDED *
PRINT*, THE LAST SET OF VALUES ARE:'
CALL CHECKPRINT(ITR,XFINAL,FCOST,FCOST_PNOVAR)

ELSE
CALL UPDATE(LAM HP,LAM GP,GAMMA)
ITR = ITR-+ 1
FCOST P = FCOST
FUN C5STP = FUN COST
DO TOl I = 1,NOVAR

101 XINIT(I) = XFINAL(1)
GOTO 100

END IF
END IF

C PRINT RESULTS ........................................................
1000 CALL PRINTIT(XFINAL,FCOSTNOVAR)

STOP
END

C END OF USER MAIN .....................................................
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SUBROUTINE HOOK JEEVES(IX,EPSNOVAR,DELTAALFA,XIFXI)

C This is the Hook-Jeeves unconstrained minimization aLgorithm.

C WHERE THE FOLLOWING DEFINTIONS APPLY:
C
C NOVAR = NUMBER OF VARIABLES (HEREAFTER REFERED TO AS "N").
C CALLS = THE NUMBER OF FUNCTION CALLS.
C IX(N) = THE START POINT FOR THE SEARCH.
C XI(N) = THE CURRENT X SET.
C XP(N) = THE PREVIOUS X SET.
C YI(N) = THE CURRENT Y SET.
C YSP(N) = THE CURRENT Y SET + DELTA* DJ(N)
C YSM(N) = THE CURRENT Y SET - DELTA* DJ(N)
C DJ(N) = THE UNIT DIRECTION VECTOR FOR VARIABLE N.
C DELTA = THE STEP SIZE FOR THE SEARCH.
C ALFA = THE ACCELERATION FACTOR FOR THE SEARCH.
C EPS = THE "EPSILON" OR TOLERANCE FOR THE SOLUTION.
C TIMES THROUGH = THE NUMBER OF SEARCH SETS FOR THE METHOD.

%INCLUDE 'dectarations.ins.f'

REAL*4 IX(IMAX),XI(IMAX),YI(IMAX),DJ(IMAX),YSP(IMAX),YSM(IMAX),
+ XP(IMAX),FXI,FYSP,FYSM,FYITIMES_THROUGH,ALFA,DELTA

TIMES-THROUGH = 0

C Assign the working vectors ............................................
DO 100 N=1,NOVAR

XI(N)=IX(N)
YI(N)=IX(N)

100 CONTINUE

C Main loop ............................................................
70 DO 200 N=1,NOVAR
C Assign the search directions .........................................

DO 150 M=1,NOVAR
150 DJ(M)=O

DJ(N)=1

DO 160 M=1,NOVAR
160 YSP(M)=YI(M)

YSP(N)=YI(N)+DELTA*DJ(N)
CALL FUNX(YI,FYI,NOVAR)
CALL FUNX(YSP,FYSP,NOVAR)

IF (FYSP.LT.FYI) THEN
YI(N)=YSP(N)
FYI=FYSP

ELSE
DO 170 M=1,NOVAR

170 YSM(M)=YI(M)
YSM(N)=YI(N)-DELTA*DJ(N)
CALL FUNX(YSM,FYSM,NOVAR)
IF (FYSM.LE.FYI) THEN
YI(N)=YSM(N)
FYI=FYSM

END IF
END IF

200 CONTINUE

C Improvement so accelerate .......................................
CALL FUNX(XI,FXI,NOVAR)

IF (FYI.LT.FXI) THEN
DO 250 N=1,NOVAR

XP(N)=XI(N)
XI(N)=YI(N)

YI(N)=XI(N)+ALFA*(XI(N)-XP(N))
250 CONTINUE

TIMES THROUGH = TIMESTHROUGH 41
GOTO 70

C Max iteration check ..................................................
ELSE IF (TIMES THROUGH.GT.50) THEN
PRINT*,, ***-hooke jeeves iterations .GT. 50 *
RETURN

C End of Minimization ..................................................
ELSE IF (DELTA.LT.EPS) T'EN

RETURN
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ELSE
DELTA=OELTA/2
DO 300 N=1,NOVAR

300 YI(N)=XI(N)
END IF
TIMES THROUGH =TIMES-THROUGH + 1
GOTO 70
END

C END OF HOOK-JEEVES................................................



SUBROUTINE POWELL(IX,EPS,NOVAR,XI,FXI,ITYPE)

C This subroutine is the aLogirthm for Powell's method. It controls
C the search directions and the convergence in at this LeveL. The
C searches are conducted in the following subroutines:
C
C SEARCH= THE CONTROLLING SEARCH SUBROUTINE.
C QUAD = A QUADRATIC APPROXIMATION FOR THE MINIMUMIN LINE SEARCH.
C (USES IGAUSSZ' TO SOLVE FOR MINIMUM).
C GOLD = THE GOLDEN SECTIONS METHOD FOR THE MINIMUM IN LINE SEARCH.
C UGRID = UNIFORM GRID SEARCH METHOD FOR MINIMUM BRACKETING.

C VARIABLE DEFINTIONS:
C IX(N) = INTIAL GUESS OF MINIMUM POINT
C XI(N) = THE CURRENT WORKING X MINIMUM DURING THE SEARCH
C XN(N) = THE HOLDER DURING THE REASSIGNMENT OF THE NEXT XI
C XP(N) = THE PREVIOUS X MINIMUM AS THE SEARCH PROGRESSES
C YI(N) = THE CURRENT WORKING Y SEARCH LOCATION
C YS(N) = THE Y POINT THAT IS "S"ENT INTO THE LINE SEARCH
C YM(N) = THE LINE SEARCH Y "M"INIMUM THAT IS RETURNED
C DJ(N) = THE CURRENT DIRECTION VECTOR OF UNIT LENGTH
C DJNORM = THE NORM OF THE CALCULATED DJ VECTOR
C LAMXDJ = RUNNING SUM OF THE PRODUCT OF THE LAMDA AND THE DJ
C DJSUM = THE RUNNING SUM OF THE NORM CALCULATION
C EPS = THE TOLERANCE
C XNS = X POINTS NORMAL CALCULATION SUM HOLDER
C H(N,N) = THE H MATRIX WHERE THE DIRECTION VECTORS ARE STORED
C HOLD(N,N+l) = THE TRANSITION MATRIX WHERE THE NEW DIRECTION
C VECTORS ARE DETERMINED.
C NORMX = THE NORM OF THE XI AND XP VECTOR TO DETERMINE THE
C TOLERANCE FIT.
C LOOKER = THE NUMBER OF ITERATIONS OF POWELL'S DONE.

%INCLUDE 'dectarations.ins.f'

INTEGER*2 LOOKER,ITYPE
REAL*4 XI(IMAX),IX(IMAX),XP(IMAX),DJ(IMAX),H(IMAX,IMAX),

+ FYM,FXI,FYI,YI(IMAX),LAM(IMAX),HOLD(IMAXIMAX+1),xn(IMAX),
+ YM(IMAX),YS(IMAX),NORMX,DJNORM,DJSUM,XNS,LAMXDJ,dnpn(IMAX)

INTRINSIC SORT

LOOKER = 0

DO 100 N=1,NOVAR
XI(N) = IX(N)
YI(N) z IX(N)

100 CONTINUE

C INITIALIZING THE HOLD MATRIX & PUTTING THE ORIGINAL DIRECTION VECTORS
C IN THE H MATRIX ......................................................
99 DO 150 K=I,NOVAR

HOLD(K,NOVAR+l) = 0
DO 150 M=1,NOVAR

HOLD(K,M) = 0

IF (K.EQ.M) THEN
H(K,M) = 1

ELSE
H(K,M) = 0

END IF
150 CONTINUE

C GETTING THE CURRENT DJ OUT OF THE H MATRIX FOR THE CURRENT N .........
C START OF THE MAIN N COUNTING LOOP FOR THE NUMBER OF VARIABLES ........
200 DO 300 N=I,NOVAR+l
C ASSIGNING THE SENDING Y FOR THE SEARCH ...............................

O0 250 M=I,NOVAR
250 YS(M) = YI(M)

c CURRENT SEARCH DIRECTION .............................................
201 DO 225 M=1,NOVAR
225 DJ(M) = H(M,N)

C THE SEARCH CALL ......................................................
CALL SEARCH (YS,DJ,EPS,N,FYM,YM,LAM,NOVAR,itype)
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C A FUNCTION EQUALITY PROBLEM CHECK, IF=1 THEN CAN'T FIND MIN IN SEARCH
C SO RESET SEARCH DIRECTIONS AND START OVER FROM LAST FEASIBLE POINT.

IF (IFAULT.EQ.1) THEN
STOP 'RESTART PROCESS'

END IF
C SAVING THE DIRECTION VECTOR FOR THE CURRENT N ............

DO 275 M=1,NOVAR
HOLD(M,N) = LAM(M)*DJ(M)
H(M,N) =HOLD(m,n)
YI(M) =YM(M)

275 CONTINUE
FYI =FYM

c THE N+1 SEARCH DIRECTION...........................................
IF (N.EQ.NOVAR) THEN
DO 280 M=1,NOVAR

280 H(M,NOVAR+1)=YI(M) -XI(M)

END IF
300 CONTINUE

C SETTING THE X'S AND Y'S To THEIR NEW VALUES .............
DO 325 M=1,NOVAR

XP(M) = XI(M)
XI(M) = YI(M)

325 CONTINUE
FXI = FYI
Looker =looker + 1

C CALCULATING THE NORM OF THE LAST 2 X POINTS TO CHECK CONVERGANCE...
XNS=O
DO 350 M=1,NOVAR

350 XNS = XNS+(XI(M)-XP(M))**2
NORMX =SQRT(XNS)

C IF CONVERGANCE HAS BEEN REACHED, XI, FXI IS RETURNED TO MAIN.....
IF (NORMX.LT.EPS) then
RETURN

c iterations exceeding allowable .....................................
ELSE IF (LOOKER.GT.50) then
PRINT*, I### POWELL ITERATIONS > 50 ##
RETURN

ELSE
C UPDATING THE SEARCH DIRECTIONS (OJ'S) FOR THE NEXT PASS .......

DO 410 J=1,NOVAR
LAMXDJ = 0
DO 400 M=1,NOVAR

400 LAMXDJ =LAMXDJ+HOLD(J,M)
410 HOLD(J,NOVAR+l) = LAMXOJ

c adding the directions together ......................................
Do 420 J=1,NOVAR+l

DJSUM = 0
DO 430 K1I,NOVAR

430 DJSUM DJSUM4HOLD(k,j)**2
DJNORM SQRT(DJSUM)
DO 440 K=1,NOVAR

C SETTING THE NEW OJIS TO A UNIT LENGTH TO PREVENT CRAWLING TO A SOLUTION
440 HOLD(k,j) = HOLD(k,j)/DJNORM
420 CONTINUE

C POSITION OF THE REVISED DJIS IN THE H MATRIX FOR USE.........
00 450 n=l,NOVAR

Do 450 m1l,NOVAR
450 H(M,N) = HOLO(M,N+l)

END IF
GOTO 200
END

C END OF POWELL ......................................................
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SUBROUTINE SEARCH(YS,DJ,EPS,NFYMIN,YMIN,LAMNORM,NOVAR,itype)

C THIS SUBROUTINE CONTROLS THE SEARCH PROCEDURES FOR POWELL' METHOD.
C WHERE TO FOLLOWING DEFINTIONS APPLY .................................
C YS = THE SENT VALUE TO START FROM
C DIR = THE DIRECTION OF THE SEARCH
C DJ = THE SENT DIRECTION TO SEARCH
C IFAULT = THE EQUALITY PROBLEM FLAG
C ITYPE = THE LINE SEARCH SELECTION FLAG
C LAMNORM = THE NORMALIZED DELTA OF THE SEARCH
C YMIN = THE RETURNED MINIMUM IN THAT DIRECTION
C XASTRT = THE INTERVAL START FROM UGRID
C XBEND = THE INTERVAL END FROM UGRID
C SAV YS = THE RETAINED VALUES OF THE START POINT

%INCLUDE 'decLarations.ins.f'

INTEGER*2 ITYPE
REAL*4 YS(IMAX),DJ(IMAX),YMIN(IMAX),FYMINDIR,SAV YS(IMAX),

+ LAMNORM(IMAX),LAMRAW,XASTRT(IMAX),XBEND(IMAX)

INTRINSIC SORT

DIR = 1.0
IFAULT = 0

C SAVING THE INCOMING START POINT VALUES ..............................
DO 25 1=1,NOVAR

25 SAVYS(I)=YS(I)

C CALLING THE UNIFORM GRID SEARCH SUBROUTINE ...........................
CALL UGRID ld(YS,DJ,NOVARXASTRT,XBEND,DIR)
IF (IFAULT.EQ.1) THEN
RETURN

END IF

IF (ITYPE.EQ.1) THEN
C CALLING THE QUADRATIC APPROXIMATION INTERVAL REDUCER ................

CALL QUAD(XASTRT,XBEND,YMIN,FYMIN,NOVAR)
ELSE

C CALLING THE GOLDEN SECTIONS INTERVAL REDUCER ........................
CALL GOLD(XASTRT,XBENDEPS,FYMIN,YMIN,NOVAR)

END IF

C CALCULATING THE FINAL LAMBDA FOR POWELLS METHOD TO RETURN TO POWELL..
LAMRAW=O
DO 100 I=1,NOVAR

100 LAMRAW=LAMRAW+(YMIN(I)-SAV YS(l))**2
LAMNORM(N)=SQRT(LAMRAW)*DIR -

RETURN
END

C END OF SEARCH ........................................................



SUBROUTINE UGRID 1D(XS,DJ,NOVAR,XP,XN,DIR)

C This subroutine performs a I dimensional uniform step search untit
C a intervaL is found that contains a minimum is found.

C WHERE THE FOLLOWING DEFINITIONS APPLY:
C
C XS(N) = THE CURRENT X VALUE
C XP(N) = THE PREVIOUS X VALUE, INTERVAL START
C XN(N) = THE NEXT X VALUE, INTERVAL END
C DJ = THE OIRECTION VECTOR FOR THE SEARCH
C DEL = THE INCREMENT OF THE SEARCH
C FXS,
c FXN,
c FXS = THE FUNCTION VALUES FOR EACH RESPECTIVE X
C DIR = IF THE SEARCH IS NEGATIVE THIS SETS A NEGATIVE DISTANCE
c COUNT = THE NUMBER OF STEPS TAKEN TO FIND A MINIMUM

%INCLUDE 'dectarations.ins.f'

INTEGER*2 count
REAL*4 DJ(IMAX),XS(IMAX),XN(IMAX),XP(IMAX),DEL,FXS,FXN,FXP,DIR

DEL = 0.001
count = 0

C ADDING AND SUBTRACTING THE DEL TO THE INITIAL VALUE .................
DO 100 N=1,NOVAR

XN(N) = XS(N)+DEL*DJ(N)
XP(N) = XS(N)-DEL*DJ(N)

100 CONTINUE

CALL FUNX(XS,FXS,NOVAR)
CALL FUNX(XN,FXN,NOVAR)
CALL FUNX(XP,FXP,NOVAR)

c CASES LISTED OUT ....................................................
c case 1. V

IF FXP.GT.FXS.and.FXN.gt.FXS) THEN
RE

c case 2. i\
ELSE IF (cXP.LT.FXS.and.FXNIt.FXS) THEN

GOTO 300
c case 3. -\

ELSE IF (FXP.EQ.FXS.AND.FXN.lt.FXS) THEN
GOTO 300

c case 4. \
else iT (FXP.GT.fxs.AND.FXN.eq.FXS) then

goto 300
c case 5. \\

eLse if (FXP.GT.fxs.AND.FXN.Lt.FXS) then
goto 300

c case 6. //
else if (FXP.LT.fxs.AND.FXN.gt.FXS) then

goto 290
c case 7. /

else Tf (FXP.EQ.fxs.AND.FXN.gt.FXS) then
goto 290

c case 8. /-
else if (FXP.LT.fxs.AND.FXN.eq.FXS) then

goto 290
c case 9. --

ELSE IF (FXP.EQ.FXS.AND.FXN.EQ.FXS) THEN
goto 390

END IF

C IF THE SEARCH IS TO LEFT THEN THIS RESETS THE VALUES TO ALLOW IT ....
290 DO 295 N=I,NOVAR
295 XN(N)=XP(N)

DEL = -DEL
FXN = FXP
DIR = -1.0
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C THIS IS THE MAIN SEARCH STEP LOOP .................................
300 D0 310 N=1,NOVAR

XP(N) = XS(N)
XS(N) = XN(N)

310 XN(N) =XN(N)+DEL*DJ(N)
FXS=FXN
CALL FUNX(XN, FXN ,NOVAR)

IF (FXN.LT.FXS) THEN
C STEP CHECK........................................................

IF (COUNT.EQ.100) THEN
PRINT*,, no minimum found in 100 steps'
RETURN

END [F
COUNT = COUNT +1
GOTO 300

C THE FUNCTION VALUES ARE EQUAL AND NO MINIMUM IS FOUND, IFAULT IS SET

ELSE IF (FXN.EQ.FXS) THEN
390 PRINT*, 'THERE MAY BE AN EQUALITY PROBLEM IN THIS EQUATION.'

IFAULT1l
END IF

C AN INTERVAL HAS BEEN FOUND ........................................
RETURN
END

C END OF UNIFORM GRID................................................
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SUBROUTINE GOLD(AX,BX,TOL,FXMIN,XMIN,NOVAR)

C THIS SUBROUTINE PERFORMS A GOLDEN SECTIONS SEARCH FOR THE LOCAL
C MINIMA IN A GIVEN INTERVAL
C ............................... ......................................
C WHERE THE FOLLOWING DEFINITIONS APPLY
C AX = THE START OF THE SEARCH INTERVAL
C AX = END OF THE SEARCH INTERVAL
C XMIN = THE RETURNED MINIMUM VALUE FOR X
C MU = THE GOLDEN SECTIONS MU OF .618 OF INTERVAL
C LAMDA = THE GOLDEN SECTIONS LAMDA OF .382 OF INTERVAL
C TOL = THE TOLERANCE OF THE SOLUTION (COMPARED TO ABNORM)
C ABNORM = IS THE LINEAR DISTANCE BETWEEN THE ENDS OF THE INTERVAL
C MIN = THE END OF INTERVAL LOWEST VALUE VARIABLES
C F = THE F PREFIX INDICATES A FUNCTION VALUE

XINCLUDE ,dectarations.ins.f'

REAL*4 AX(IMAX),BX(IMAX),LAMDA(IMAX),XMIN(IMAX),MU(IMAX),AB,
+ ABNORM,TOL,FA,FBFMU,FLAMDA,FXMIN,MIN1(IMAX),
+ MIN2(IMAX),FMIN1,FMIN2

INTRINSIC SORT

C CALCULATION OF THE FIRST MU AND LAMDA ...............................
DO 100 N1I,NOVAR
MU(N) = AX(N)+.618*(BX(N)-AX(N))
LAMDA(N) = AX(N)+.382*(BX(N)-AX(N))

100 CONTINUE

C THE INITIAL FUNCTION CALLS ..........................................
CALL FUNX(AX,FA,NOVAR)
CALL FUNX(BX,FB,NOVAR)
CALL FUNX(MUFMU,NOVAR)
CALL FUNX(LAMDA,FLAMDA,NOVAR)

C THE START OF THE INTERVAL CHECK WITH A DETERMINATION OF ASNORM ......
110 AB=O

DO 125 N=INOVAR
125 AB=AB+(BX(N)-AX(N))**2

ABNORM=SQRT(AB)

200 IF (ABNORM.LE.TOL) THEN
GOTO 400

ELSE IF (FLAMDA.LT.FMU) THEN
C THE INTERVAL IS CONVERGING TO THE LEFT ..............................
300 DO 350 N=1,NOVAR

BX(N) = MU(N)
MU(N) = LAMDA(N)
LAMDA(N) = AX(N)+.382*(BX(N)-AX(N))

350 CONTINUE
FB = FMU
FMU = FLAMDA
CALL FUNX(LAMDA,FLAMDA,NOVAR)
GOTO 110

ELSE
C THE INTERVAL IS CONVERGING TO THE RIGHT ..............................

DO 250 N=1,NOVAR
AX(N) = LAMDA(N)
LAMDA(N) = MU(N)
MU(N) = AX(N)+.618*(BX(N)-AX(N))

250 CONTINUE
FA = FLAMDA
FLAMDA = FMU
CALL FUNX(MU,FMU,NOVAR)
GOTO 110

END IF
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C ONCE THE TOLERANCE IS MET THE LOWEST VALUE IS USED..........
400 IF (FA.LT.FLAMDA) THEN

do 405 i~l,novar
405 minl(i) =ax(i)

fminl =fa
ELSE
do 410 i=l,novar

410 MINI(i) =LAMDA(i)
FMIN1 =FLAMDA

END IF

IF (FB.LT.FMU) THEN
do 415 i=1,novar

415 MIN2(i) = Bx(i)
FMIN2 = fB

ELSE
do 420 i~l,novar

420 MIN2(i) =MU(i)
FMIN2 =FMU

END IF

IF (FM1N1.LT.FMIN2) THEN
do 425 i1l,novar

425 XMIN(i) = MINi~i)
ELSE
do 430 i=l,novar

430 XMIN(i) = MIN2Ci)
END IF
CALL FUNX(XMIN,FXMIN,NOVAR)

RETURN
END

C END OF GOLDEN SECTIONS..............................................

122



SUBROUTINE QUAD(AX,BX,XQMIN,FXQMIN,NOVAR)

C THIS SUBROUTINE PERFORMS THE QUADRATIC APPROXIMATION OF THE LINE
C SEARCH MINIMUM. IT CALLS GAUSSZ.FTN TO SOLVE THE SYSTEM OF
C EQAUTIONS.
C NOTE: SEE GOLD FOR ALL OTHER VARIABLE NAMES
C ORIG = THE MATRIX OF THE SYSTEMS OF EQUATION GENERATED FOR
C EACH DIRECTION TO ESTIMATE THE MINIMUM OF X(N)
C CX = THE MIDPOINT OF THE AX - BX INTERVAL
C YY = THE RETURNED SOLUTION VECTOR FOR EACH ORIG

%INCLUDE 'declarations.ins.f'

REAL*4 AX(IMAX),BX(IMAX),CX(IMAX),XQMIN([MAX),FXQM[N,ORIG(3,4)
REAL*4 YY(3),FA,FB,FC

C DETERMINING THE VALUE OF C ..........................................
DO 100 N=1,NOVAR

100 CX(N)=(AX(N)+BX(N))/2

CALL FUNX(AX,FA,NOVAR)
CALL FUNX(BX,F8,NOVAR)
CALL FUNX(CX,FC,NOVAR)

C MAKING EACH ORIG MATRIX, N NUMBER OF TIMES ..........................
DO 200 N=1,NOVAR

ORIG(1,1):AX(N)*AX(N)
ORIG(2,1)=BX(N)*BX(N)
ORIG(3,1)=CX(N)*CX(N)

ORIG(1,2)=AX(N)
ORIG(2,2)=BX(N)
ORIG(3,2)=CX(N)

DO 150 I=1,3
150 ORIG(I,3)=1.0

ORIG(1,4)=FA
ORIG(2,4)=FB
ORIG(3,4)=FC

C THE EQUALITY CHECK IN ANY N DIRECTION FOR A DEFAULT XMIN(N) .........
IF (AX(N).EQ.BX(N)) THEN
XQMIN(N)=AX(N)

ELSE

C THE CALL TO THE MATRIX SOLUTION SUBROUTINE TO SOLVE ORIG ............
CALL GAUSSZ(ORIG,YY,3,4)
XQMIN(N)=-YY(2)/(2*YY(1))

END IF
200 CONTINUE

CALL FUNX(XQMIN,FXQMIN,NOVAR)

RETURN
END

C END OF QUAD ..........................................................
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SUBROUTINE FUNX(X,F ALM,NOVAR)

C This subroutine converts the objective function to the pseudo-
C ojective function of the ALM method.

%INCLUDE 'declarations.ins.f'

REAL*4 X(IMAX),F ALM,SUMFLH,SUMFH2,SUM PSI,SUMPSI2,PSI(IMAX)

REAL*4 SUM FH2,SGM_FGT,FGT(IMAX) -

INTRINSIC MAX

flag = 0
calls = calls + 1

C CALLING THE COST FUNCTION AND CONSTRAINT FUNCTION EVALUATIONS ........
CALL FUN INT(X,NOVAR,FCOST,virgin,fLag)
CALL FUN-CON(X,NOVAR)

C ALM TERM GENERATION ..................................................
SUMFLH = 0
SUMFH2 = 0
DO 100 I=1,NUM H

SUMFLH = SUMFLH+LAM H(I)*FH(I)
100 SUMFH2 = SUMFH2+FH(T)**2

DO 110 I=1,NUM G
110 PSI(I) = MAX(FG(1),'LAMG(I)/(2*RPA))

SUM PSI = 0
SUM PSI2 = 0
Oo T3o I=I,NUM G

SUM PSI = SOM PSI+LAM G(I)*PSI(I)
130 SUMPSI2 = SUM-PSI2+RPA*PSI(I)**2

c THE PSEUDO-OBJECTIVE FUNCTION .......................................
F ALM = FCOST+SUMPSI+SUMPSI2+SUMFLH+RPA*SUMFh2
FUN COST = FCOST

c MAX ITERATION FOR FUNCTION CALLS CHECK ...............................
IF (CALLS.EQ..2000) THEN
STOP '---max iterations for method reached -------

END IF f

RETURN
END

C END OF ALM FUN .......................................................
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SUBROUTINE GAUSSZ(A,X,N,NI)
**** * **** ****

C THIS SUBROUTINE PERFORMS GAUSSIAN REDUCTION TO SOLVE THE SYSTEM OF
C EQUATIONS.
C ........................ •..............................•................INTEGER*2 I,J,K,LM,N,J1,JJ,NI

REAL*4 AIJ,X(N),A(N,NI),FA,FB,FC,BIG,DUMMY

DO 100 J=1,N
AIJ=A(J,J)
J1=J+1
IF (JI.GT.N) GO TO 980
BIG=ABS(A(J,J))
M=J
DO 900 L=J1,N

IF (ABS(A(L,J)).LE.BIG) GOTO 900
900 CONTINUE

DO 990 JJ=J,N1
DUMMY = A(M,JJ)
A(MJJ) = A(J,JJ)
A(J,JJ) = DUMMY

990 CONTINUE
980 CONTINUE

DO 200 K=J,Nl
200 A(J,K)=A(J,K)/AIJ

DO 300 I=1,N
IF (I.EQ.J) GO TO 300
AIJ=A(I,J)
DO 400 K=J,N1

400 A(I,K)=A(I,K)-AIJ*A(J,K)
300 CONTINUE
100 CONTINUE

DO 500 I1=,N
500 X(I)=A(I,NI)

RETURN
END

C END OF GAUSSZ ........................................................
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SUBROUTINE CHECK PRINT( ITR,XFINAL,FCOST,FCOST P,NOVAR)

c This subroutine prints the design vector, function value and pseudo-
c objective function value for each complete ALM iteration.

%INCLUDE 'decLarations.ins.fl

PRINT*,- AT ITERATION NUMBERI,ITR,- ND CALL NUMBER-,CALLS
PRINT*,' THE VALUES OF THE VARIABLES ARE:-

c Print the current design vector ...................................
do 7 1=1,novar

7 WRITE(*,10)1,xfinal(I)
10 FORMAT(5X,l X(1,12,I) 1F00.6)

WRITE (*,11)
11 FORMAT(/)

IF (FLAG.EQ.1) PRINT*,' *** NOTE: ALL PROPELLENT EXPENDED

c Print the current and last function and ALM values .................
PRINT*,- CURRENT FCOST = ::fun cost
PRINT*,' PREVIOUS FCOST = 'fun-costp
PRINT*,- CURRENT ALM =', fcost
PRINT*,' PREVIOUS ALM = ',fcost~p

WRITE (*, 11)
PRINT*, RP = 1,rpa

c Print the current Lambda and value of the constraint function ...
do 20 1=1, NUM H

20 WRITE(*,60)T,fh(i),lam h(i)
do 30 11NUM G

3D WRITE(*,50)T,fg(i),i,am .g(i)
50 format~lx,1FG(1,12,1) =',i18.6,- & LAM_G(',12,') =1,e08.6)
60 format~lx,1FH(1,12,1) = ,e18.6,9 & LAM_H(',12,1) =1,e08.6)

WRITE(*,11)

RETURN
END

C END OF CHECK PRINT................................................

SUBROUTINE PRINTIT(XFINAL,FCCZT,NO.AR1

c This subroutine prints the final design vector, function value and
c number of function calls.

%INCLUDE IdecLarations.ins.fl

PRINT*, - THE FINAL FUNCTION VALUE IS (mis):', FUNCOST*(-1.0)
PRINT*, ' THE ',NOVAR,' VARIABLE VALUES ARE:'
DO 7 I=1, novar

7 WRITE(*,10)I,xfinaL(I)
10 FORMAT(5X,- X(',12,1) = 1,1F10.6)

WRITE(*,11)
11 FORMAT(/)

WRITE(*,20)((xfinaL(I)*100),I=1,NOVAR)
20 FORMAT(1OX,8F12.5)

PRINT*, 'THE TOTAL NUMBER OF FUNCTION CALLS WAS ',CALLS
PRINT*, 'THE FINAL ALM FUNCTION VALUE WAS :,FCOST

RETURN
END

C END OF PRINT IT ........................................ ...........
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SUBROUTINE TOLTEST(LAM HP,LAM GP,TOLERANCE,CONVERGE,FCOSTP,
+_- FCOT) -

C This subroutine determines if the convergence has occured for the

C ALM method to terminate.
C LOCAL DEFINTIONS .....................................................
C TOTAL = THE SUM OF THE NUMBER OF INEQUALITY AND EQUALITY

C CONSTRAINTS.
C DIFFH = THE DIFFERENCE BETWEEN THE CURRENT AND PREVIOUS LAMBDA

C FOR EQUALITY CONSTRAINTS.
C DIFFG = SEE ABOVE, FOR INEQUALITY CONTRAINTS.
C ALM SUM = THE COUNTER FOR THE NUMBER OF CONSTRAINTS IN TOLERANCE.
C DELTA C = THE CHANGE IN THE COST FUNCTION SINCE LAST ITERATION.
C ....................................................................
%INCLUDE 'dectarations.ins.f'

INTEGER*2 TOTALALM SUM

REAL*4 DIFFHDIF 'G,DELTAC

INTRINSIC SORT

ALM SUM = 0

DELTA C = ABS(FUN COST - FUNCOSTP)
TOTAL = NUMH + NUM G

DO 100 I=1,NUM H
DIFFH = LAM H(I)-LAM HP(I)
IF (DIFFH.LE.TOLERANCE) THEN
ALM SUM = ALM SUM+1

END I'
100 CONTINUE

DO 110 I=1,NUM G
DIFFG = LAM f(I)-LAM GP(I)
IF (DIFFG.LE.TOLERANCE) THEN
ALM SUM = ALMSUM+1

END I'
110 CONTINUE

IF (DELTA C.LE.TOLERANCE.AND.ALM SUM.EQ.TOTAL) THEN
CONVERGE .TRUE.

ELSE
CONVERGE = .FALSE.

END IF

RETURN
END

C END OF TOL TEST ......................................................

SUBROUTINE UPDATE(LAM HP,LAM GP,GAMMA)

C This subroutine updates the lambda's and the rp for the ALM method.
%INCLUDE 'decLarations.ins.f'

INTRINSIC MAX

c aim update of Lambda's for equaLity constraints ......................

DO 200 1=1,NUM N
LAM HP(I)=LAR H(I)

200 LAM-H(I)=LAMH(I)+2*RPA*FH(I)

c aim update of Lambda's for inequality constraints ....................
DO 210 1=1INUM G

LAM GP(1)=LARG(I)
210 LAMIG(I)=LAMG(I)+2*RPA*MAX(FG(1),-LAMG(I)/(2*RPA))

c rp update .............................................................
RPA=GAMMA*RPA
IF (RPA.GE.RP MAX) THEN

RPA=RP MAX-
END IF

RETURN
END

C END OF UPDATE .......................................................
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APPENDIX II

INTERIOR BALLISTICS CODE

This appendix contains the interior ballistics code

used in this thesis. This is a modified version of IBRGAC

(15) to fit the optimization model. The first item is the

declaration file followed by the main progam. It is

organized by subroutine and includes all of the design

vector assignment and return subroutines. The files listed

below.

1. intball.ins.f.

2. fun int.ftn.

3. prfOl7.ftn.

4. read data.ftn.

5. reset data.ftn.

6. mass check.ftn.

7. varin.ftn (Example 1-4).

8. var out.ftn (Example 1-4).
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C* lintbalL.ins.f'

C* DECLARATIONS, PARAMETERIZATION & COMMON BLOCK FILE FOR *
C* THE INTERIOR BALLISTICS CODE, IBRGAC (FRCi BRL)

C**

C* THIS FILE IS CALLED FROM THE SUBROUTINE 'funint' IN loptimum.f' *
C* *

c The following defintions apply (The s_ prefix indicates the saved original
C of the variable):

c Variable Type: Variable Units:
c Name: Meaning:
c Record 1 .....................................................................
c CHAM REAL*4 CHAMBER VOLUME cm'3
c GRVE REAL*4 GROOVE DIAMETER cm
c ALAND REAL*4 LAND DIAMETER cm
c GLR REAL*4 GROOVE/LAND RATIO none
c TWST REAL*4 TWIST turns/caliber
c TRAVP REAL*4 PROJECTILE TRAVEL cm
c IGRAD INTEGER*2 GRADIENT FLAG none
c 1 = Lagrange
c 2 = Chambrage

c Record la ....................................................................
c NCHPTS INTEGER*2 NUMBER POINTS TO DESCRIBE CHAMBER none
c For I=1,nchpts
C CHDIST(I) REAL*4 INITIAL DISTANCE FROM BREECH cm
c CHDIAM(I) REAL*4 DIAMETER AT CHDIST(I) cm

c Record 2 .....................................................................
c PWRT REAL*4 PROJECTILE MASS kg
c IAIR INTEGER*2 CALCULATE ENERGY LOST TO AIR
c RESISTANCE FLAG none
c HTFR REAL*4 FRACTION OF WORK DONE AGAINST
c BORE TO HEAT TUBE none
c PGAS REAL*4 GAS PRESSURE IN FRONT OF PROJECTILE Pa

c Record 3 .....................................................................
c NPTS INTEGER*2 NUMBER OF BARREL RESISTANCE POINTS none
c For 1=1,npts
c BR(I) REAL*4 BORE RESISTANCE MPa
c TRAV(I) REAL*4 TRAVEL cm

c Record 4 .....................................................................
c RCWT REAL*4 MASS OF RECIOLING PARTS kg
c NRP INTEGER*2 NUMBER OF RECOIL PAIR POINTS none
c For I=1,nrp
c RP(I) REAL*4 RECOIL FORCE N
c TR(1) REAL*4 RECOIL TIME s

c Record 5 .....................................................................
c HO REAL*4 FREE CONVECTION HEAT TRANSFER
c COEFFICIENT w/cm'2-k
c TSHL REAL*4 CHAMBER WALL THICKNESS cm
c CSHL REAL*4 HEAT CAPACITY OF STEEL OF CHAMBER WALL J/g-k
c TWAL REAL*4 INITIAL TEMPERATURE OF CHAMBER WALL k
c HL REAL*4 HEAT LOSS COEFFICIENT none
c RCHOS REAL*4 DENSITY OF CHAMBER WALL STEEL g/cm'3

c Record 6 .....................................................................
c FORCIG REAL*4 IMPETUS OF IGNITER PROPELLENT J/g
c 0Vl REAL*4 COVOLUME OF IGNITER cm'3/g
c TEMPI REAL*4 ADIABATIC FLAME TEMP OF IGNITER k
c CHWI REAL*4 INITIAL MASS OF IGNITER kg
c GAMAI REAL*4 RATIO OF SPECIFIC HEAT FOR IGNITER none
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c Record 7....................................
c NPROP INTEGER*2 NUMBER OF PROPELLENT TYPES none
c For 1=1,nprop
c FORCP(I REAL*4 IMPETUS OF PROPELLENT J/g
c TEMPPMI REAL*4 ADIABATIC TEMPERATURE OF PROPELLENT k
c COVP(I) REAL*4 COVOLUME OF PROPELLENT cm .3/g
c CHWP(I) REAL*4 INITIAL MASS OF PRC.ELLENT kg
c RHOPMI REAL*4 DENSITY OF PROPELLENT 9/cm'3
c GAMAP(I) REAL*4 RATIO OF SPECIFIC HEATS FOR PROPELLENT none
c NPERFS(I) INTEGER*2 NUMBER OF PERFORATIONS ON PROPELLENT none
c GLENP(I) REAL*4 LENGTH OF PROPELLENT GRAIN cm
c PDPI(I) REAL*4 DIAMETER OF INNER PERFORATIONS
c IN PROPELLENT GRAINS cm
c POPO(I) REAL*4 DIAMETER OF OUTER PERFORATIONS
c IN'PROPELLENT GRAINS cm
c GDIAP(I) REAL*4 OUTSIDE DIAMETER OF PROPELLENT GRAIN cm
c DBPCP(I) REAL*4 DISTANCE BETWEEN PERFORATION CENTERS cm

c Record 8 ..................................................................
c For J=l,nprop
c NBR(J) INTEGER*2 NUMBER OF BURNING POINTS none
c For 1=1,nbr(j)
c ALPHA(J,I) REAL*4 EXPONENT none
c BETA(J,I) REAL*4 COEFFICIENT cm/s-MPa&(aplha(j))

c PRESS(J,I) REAL*4 PRESSURE MPa

c Record 9 ..................................................................
c DELTAT REAL*4 TIME INCREMENT (STEP) ms
c DELTAP REAL*4 PRINT INCREMENT ms
c TSTOP REAL*4 STOP TIME FOR CALCULATIONS ms
c

c parameter defintions...............................................
INTEGER*2 IMAX
REAL*4 P1

PARAMETERCIMAX = 20)
PARAMETER(PI =3.14159)

c File Input/Output..................................................
CHARACTER*10 bdfi Le,outfit

c interior ballistics definitions ....................................
c Record 1...........................................................

REAL*4 cham,grve~atand,gtr,twst,travp
INTEGER*2 igrad
REAL*4 scham,s grve,s-atand,sgtr,stwst,stravp
INTEGER*2 sigrad

c Record la..........................................................
REAL*4 chdist(10),chdiam(10)
INTEGER*2 nchpts
REAL*4 schdist(1O),s-chdiam(1O)
INTEGER*2 snchpts

c Record 2 ..........................................................
REAL*4 prwt,htfr,pgas
INTEGER*2 iair
REAL*4 s~prwt ,s htfr, sga
INTEGER*2 s iair pa

c Record 3 ..........................................................
REAL*4 br(10),trav(1O)
INTEGER*2 npts
REAL*4 sbr(1O),strav(1O)
INTEGER*2 s-npts

c Record 4 ..........................................................
REAL*4 rcwt,rp(1O),tr(1O)
INTEGER*2 nrp
REAL*4 s-rcwt,s rp(1O),str(1O)
INTEGER*2 s-nrp

c Record 5...........................................................
REAL*4 ho,tsht,csht twat hL rhocs
REAL*4 sho,stsht ,sc chf,s'twat ,sht ,srhocs

c Record 6 ..........................................................
REAL*4 forcig,covi,tem~pi,chwi,gamai
REAL*4 sforcig,scovi ,s tefpi ,s chwi ,sgamai
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c Record 7 .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
REAL*4 forcp(1O),tempp(1O),covp(1O),chwp(1O),rhop(1O),

+ gamap(1O),glenp(1O),pdpi(1O),pdpo(1O),gdiap(1O),
+ dbpcp(10)
INTEGER*2 nprop,nperfs(1O)
REAL*4 s forcp(1O),s tempp(1O),s covp(1O),'schwp(1O),

+ srhop(1O),sgjamap(IO),sgjLenp(1O),sppi(1O),
+ spdpo(1O),sgdiap(1O),sdbpcp(1O)
INTEGER*2 snprop,s-nperfs(1O)

c Record 8 .......................................................
REAL*4 3(pha(1O,1O),beta(1O,1O),pres(1O,1O)
INTEGER*2 nbr(1O)
REAL*4 s alpha(1O,1O),sbeta(1O,1O),spres(1,1O)
INTEGER*2 s-nbr(1O)

c Record 9 .......................................................
REAL*4 dettat,dettap tstop
REAL*4 s-deltat ,s-deltap,ststop

c end of record declarations.......................................

c Lagrange chamber volume values...................................
REAL*4 bore,bl,b2,b3,b4,zz,bint(4),bvot,rl,r2,diam,area,temp,

+ chmLen
REAL*4 sbint(4),sbvol,schmLen, s bore

c Local use declarations ..........................................
REAL*4 step, tmpi, Lambda, pmaxm,pmaxba,tpmaxm, tpmaxbr ,pmaxbr,

+tpmaxba,tpmax,as(4),bs(4),ak(4),vpO,trO,tcw,i bo(1O),
+ volgi,pmean,volg,wallt,ptime,z(20),y(20)

REAL*4 dpmaxba,dpaxbr,maxmass,Ld,pf m-r total vol prop,
+ chain vol

INTEGER*2 ibrp,nde,iswl, il,i,j,k, l,m,y axis,x axis

REAL*4 velocity, values(20,20)

REAL*4 resp,eLpt,eLpr,pt,vzp, j4zp,elgpin,eLbr,eLrc,areaw,avcp,
+ avc,avden,zl8,zl9,avvet,htns,etht,a: r,etar, rfor,areab,
+ eprop,rprop tenergy,tgas,vl,covl,pbase,pbrch,jlzp,
+ j zpj3zp aht aLf alt,bt,bata,ganma,delta,ds(20),p(20),
+ t Irmvelo,tmvel dis to,dfract,efi,efp,tenerg,tengas,
+ frac(1O),surf(1O),points, rivel ,tmveL ,u

c COMMON BLOCKS...................................................

COMMON/RECORDS /cham,grve,atand,gLr,twst,travp,igrad,chdist,
+ chimnht rthtfr pgas iair,br,trav,npts Ircwtr ,_
+ rrhothcsltah,'hcfocgcvtepcw,

+ gamai,forcp,teinpp,covp,chwp,rhop,gamap,nperfs,glenp,pdpi,
+ ppo,gdiap,dbpcp,nprop,alp papres,nbr,deLtat,deLtap,tstop,

COMMON/S RECORDS/s cham s grve,s saand, sgLr,s twst,s travp,
+ s-igrad, s cidi sts schdiadis-nchpts spr;t , shtr, spgas,
+ s-iai r,s Er, s tray, s npts, s rcwt ,s rp,s tr, snrp, sho,

+ stsh , scshls stwal , h rosfri covi,s temnpi,
+ s chwi ,s gainai ,s -forcp,s tempp,s covp,s chwp,s rhop,
+ sgainap,s nperfslsgtenp,s pdpi,s pdpo,s gdiaps dbpcp,
+ s-nprop,salpha,s tstop,s reta,sj~res,s Rbr,s-deTtat,
+ s-deltap,sbint,sbvoL,sc'hmten, S bore

COMMON/LIMITS /dpmaxba,dpmaxbr,pnaxbr,pmaxba,max mass, Id,
+ total vol..prop,cham vol

COMMON/LOCALS /bore,bl,b2 Ib3,b4,zz,bint,bvol,rl,r2,diam,areab,
+ temp,chmlen,step,tnpi , ambda,pmaxm,tpaxm,tpnaxbr,
+ tpmxba,tpinax,as,bs,ak,vpO trO,tcw,ibo,voLgi,pmean,voLg,
+ wallt,ptiine,z,y,pomnts ibrp nde iswl,area,resp,
+ eLpt,elpr,vzp, j4zp elgpin,eL~r,e(rc,areaw,avcp,avc,avden,
+ z18,z19,avvel,htns~elht,air,elar, rfor,eprop,rprop,tenergy,
+ tgas,pt,vl ,covl ,pbase,pbrch,jlzp, j2zp,j 3zp,a2t,alf,alt,bt,
+ bata, oafima,delta,ds p,t, rmvelo,tmvelo,disto,dfract,efi ,efp,
+ tenerg,tengas,frac,surf,rinvet,tmveL,il,u

COMMON/FILES /outfit,bdfite

c end of intball.ins.f ....................................................
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SUBROUTINE FUN INT(X,NOVAR,FX,BURNEO UP)

c This subroutine is called from 'funx.ftn'. It is a modified
c version of the lumped parameter interior ballistics code IBRGAC,
c from the Interior Ballistics Laboratory, Maryland. It has been
c modified to accept iterative changes the input data. The following
c changes have been made:
c
c 1. The input file is now read by an external subroutine,
c 'read data.ftn'
c 2. The datfa is initialized by an external subroutine,
c 'reset data.ftn'
c 3. SubroutTne 'mass check.ftn' checks the volume of propellent to
c see if it wiLL-fit into the chamber.
c
c See 'intbaLL.ins.f' for variable definitions. In addition the following
c defintions apply:
c burned up = the propel lent is all burned up flag.
c bad weE = the flag for a web violation.
c
%INCLUDE 'intball.ins.f'

INTEGER*2 NOVAR,BURNED_-UP
REAL*4 X( NOVAR), FX, BAD WEB

BAD WEB = 0.0
BURZED UP = 0
FX = 0.0

C RESET VARIABLES FOR RUN............................................
CALL reset-data

c VARAIBLE ASSIGNMENT................................................
CALL VAR IN(X,NOVAR,FX)
IF (FX.LT.O.O) RETURN

c CHECK MASS OF PROPELLENT...........................................
CALL MASSCHECK

c START INTERIOR BALLISTICS CALCULATIONS .............................
c Calculate total mass of propellent and igniter ......................

tmpi = 0.0
do 20 izl,nprop

20 tirpi = tmpi + chwp(i)
tmpi =trrpi + chwi

c Use Chambrage......................................................
if(igrad.gt.1) then

go to 131
else

c Calculate the diameter of the bore [eq 1.3) .........................
bore = (glr*grve**2+aland**2)/(gLr+1.0)
bore = sqrt(bore)

end if

c Calculate the area of the bore.....................................
131 areab = pi*bore**2/4.0
c Calculate the Nordheim Friction Factor [eq 7.15) .....................

lambda = 1.0/((13.2+4.0*LoglO(100.0*bore))**2)

c Initialization of Runge-Kutta values ...............................
as(1) =0.5
as(2) = l.-sqrt(2.)/2.
as(3) =1.+sqrt(2.)/2.
as(4) = 1.0/6.0

bs(l) = 2.0
bs(2) = 1.0
bs(3) = 1.0
bs(4) =2.0

ak(1) = 0.5
ak(2) = as(2)
AM(3 = as(3)
ak(4) = 0.5

do 5 i =1,nprop
vpo =chwp(i)/rhop(i)+vpO

5 continue
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volgi = cham - vpO - chwi * covi
pmean z forcig * chwi / volgi
voLg = voLgi
volgi = volgi + vpO
wallt = twal
ptime = 0.0
ibrp = 8
z(3) = 1.0
nde = ibrp + nprop

write(6,132)areab,pmean,vpO,voLgi
132 format(lx,'area bore m-2 ',e16.6,' pressure from ign pa,e16.6,/

+1x,, volume of unburnt prop m'3 ,e16.6,1 init cham voL-cov ign m
+'3 ',e16.6)

c write(0,6)
c write(6,6)
c6 format(lx,' time acc veL dis mpress
c + pbase pbrch 1)

iswi=0
19 continue

do 11 J=1,4
C ........ ................................. .... ............ ........ ..............
c For Loop the following applies to the z & y arrays:
c variable defintion variable defintion
c z(1) proj accel y() proj velocity
c z(2) proj velocity y(2) proj travel
c z(3) d(time) y(3) time
c z(4) d(proj resistance y(4) proj resistance
c energy) energy
c z(5) d(heat Loss) y(5) heat loss
c z(6) recoil accel y(6) recoil velocity
c z(7) recoil velocity y(7) recoil travel
c z(8) d(air resistance y(8) energy Loss from air
c energy) resistance

c FIND BARREL RESISTANCE ..............................................
do 201 k=2,npts

if(y(2)+y(7).ge.trav(k)) then
go to 201

end if
go to 203

201 continue

k = npts

c determine bore resistence due to friction and engraving [eq 7-8]
203 resp = (trav(k)-y(2)-y(7))/(trav(k)-trav(k-1))

resp = br(k)-resp*(br(k)-br(k-1))

c FIND MASS FRACTION BURNING RATE .....................................
do 211 k=l,nprop

if(ibo(k).ne.1) then

CALL prfOl7(pdpo(k),pdpi(k),gdiap(k),dbpcp(k),glenp(k),
+ surf(k),frac(k),y(ibrp+k),nperfs(k),u bad web)

if (bad web.lt.0.0) then
fx = :100.O*bad web
return

end if
c if surf is less than minimum then propellent all burned up ..........

if(surf(k).tt.l.e-1O) ibo(k)=l
end if

211 continue

c ENERGY LOSS TO PROJECTILE TRANSLATION [eq 7-4) ......................
elpt=prwt*y(1)**2/2.0
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c ENERGY LOSS DUE TO PROJECTILE ROTATION (eq 7-5] ..........
etpr=pi**2*prwt*y(1 )**2*twst**2/4.0

c ENERGY LOSS DUE TO GAS AND PROPELLANT MOTION ............
c Chambrage

if(igrad.eq.2) then
c net projectile travel

ptr ()y7
c total current volume behind projectile

v zp = bvot+areab*ptc A4 determined at zp

c e .3j4zp= bint(4)+((bvoL+areab*pt)**3-bvoL**3)/(3.0*areab**2)
eLgpm = tmpi*y(l)**2*areab**2*j4zp/(2.0*vzp**3)

c Lagrange (eq 7.6] ..............................................
else
etgpm = tmpi*y(l)**2/6.0

end if

c ENERGY LOSS FROM BORE RESISTANCE ................................
eibr =y(4)
z(4) = areab*resp*y( I)

c ENERGY LOSS DUE TO RECOIL (eq 7.9] ..............................
eLrc = rcwt*Y(6)**2/2.

c ENERGY LOSS DUE TO HEAT LOSS....................................
c (eq 7.13)

areaw = cham/areab*pi*bore+2.0*areab+pi*bore*(y2)+y(7))
avden = 0.0
avc = 0.0
avcp = 0.0
z 18 = 0
Z19 = 0

do 213 k1l,nprop
c z18 is the Left hand numerator term in eq 7.19

z18 =forcp(k)*gamapck)*chwp(k)*frac(k)/(gamap(k)-l.)
+ /tempp(k)+zl8

c z19 is the Left hand denominator term in eq 7.19
z19 = chwp(k)*frac(k)+zl9

c the top left numerator term in eq 7.17
avden = avden+chwp(k)*frac(k)

213 continue

c (eq 7.193 specific heat at constant pressure of propellent gasses
avcp = (zl8+forcig*gamai*chwi/(gamai-1 .)/tempi)/(zl9+chwi)

c (eq 7.17] mean gas density
avden = (avden+chwi)/(voLg+covl)

c (eq 7.16] mean gas velocity
aVvet = .5*y(l)

c (eq 7.14] Nordheim heat transfer coefficient
htns = tambda*avcp*avden*avvel+ho

c (eq 7.12] Q dot
i(5) = areaw*htns*(tgas-waLLt)*hL

c (eq 7.11) heat Loss
eLht = y(5)

c wall temperature
waLit = (eLht+htfr*elbr)/(cshl*rhocs*areaw*tshl)+twal

c ENERGY LOSS DUE TO AIR RESISTANCE ...............................
air=iair
z(8)=Y(1 )*pgas*air
el ar=areab*y(8)

c RECOIL ........................................................
z(6)=O.O
if(pbrch. Le.rp(1)/areab) then
go to 21

end if
rforzrp(2)
if(y(3)-trO.ge.tr(2)) then
go to 222

end if
rfor = (tr(2)-(y(3)-trO))/(tr(2)-tr(l))
rfor = rp(2)-rfor*(r (2)-rp(1))

222 z(6) = areab/rcwt*( prch-rfor/areab-resp)
if(y(6).lt.O.O) then
y(6) = 0.0

else

134



z(7) = y(6)
end i f
goto 223

221 trO = y(3)
223 continue

c CALCULATE GAS TEMPERATURE .......................................
,prop fl.O

do 2V&I k,nprop
eprop = eprop+forcp(k)*chwp(k)*frac(k)/(gamap(k)-i.)

231 rprop = rprop+forcp(k)*chwp(k)*frac(k)/(gamap(k)-l.)/tempp(k)
tenergy = etpt+etpr+etgp~ei br+e trc+etht+eiar
tgas = (eprop + forcig*chwi/(gamai-'I.0) - tenergy)/

+ (rprop + forcig*chwi/((gamail1.O)*tempi))

c FIND FREE VOLUME................................................
VI = 0.0
covi 0.0
do 241 k1, nprop

vi chwp(k)*(l..frac(k))/rhop(k)+vl
covl = covl+chwp(k)*covp(k)*frac~k)

241 continue
votg =voigi+areab*(y(2)+y(7)).vl-covl

c CALCULATE MEAN PRESSURE.......................................
rl 0.0
do 251 k=1.nprop

251 ri r1.forcp(k)*chwp(k)*frac(k)/tempp(k)

piiean =tgas/voLg*(rle~forcig*chwi/tempi)
resp =resp+pgas*air

if(igradjeq.2) then
if~iswlne.0) then
go to 253

end if
pbase = pniean
pbrch = pnean
if (pbase.gt.resp+1.0) then
enswfl = 1

go to 257

c USE CHAMBRAGE PRESSURE GRADIENT EQUATION..........................
253 jlzp =bint(l)+(bvoL*pt+areab/2.*pt**2)/areab

j2zp =(bvot+areab*pt)**2/areab**2
j3zp =bint(3)+areab-bint(l)-pt+bvot*pt**2/2.0+areab*pt**3/6.

a2t = -tmpi*areab**2/prwt/vzp**2
atf = l.0-a2t~jlzp
alt = tmpi*areab*(areab*y(1 )**2/vzp+areab*resp/prwt)/vzp**2
bt = -tmpi~y(1 )**2*a reab**2/(2.0*vzp**3)
bata = -alt*jlzp-bt*j2zp
gammna =atf+a2t~j3zp/vzp
deLta = bata+alt~j3zp/vzp+bt~j4zp/vzp

c CALCULATE BASE PRESSURE
pbase = (piean-detta)/gamma

C CALCULATE BREECH PRESSURE
pbrch = aLf~pbase+bata

eLse
c USE LAGRANGE PRESSURE GRADIENT EQUATION ..........................
252 if(iswl.ne.0)go to 256

c CALCULATE BASE PRESSURE .........................................
256 pbase=(Pamean+tmpi*resp/3./prwt)/(1 .+tmpi/3./p-wt)

if( pbase.g t resp+l.) then
i ~swi 1~

c CALCULATE BREECH PESSURE ........................................
pbrch z pbase+tmpi*(pbase-resp)/(2.0*prwt)

end if
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c CALCULATE PROJECTILE ACCELERATICN ....................................
(1) = areab*(pbase-resp)/prwt
if(z(1).Lt.0.O) :-en
go to 257

else
go to 258

end if
257 if(iswl.eq.0) z(1) = 0.0
258 if(y(1).Lt.0.O) y(l) = 0.0

z(2)=y(l)

c GET BURNING RATE .....................................................
do 264 m=1,nprop

z(ibrp+m)=O.O
if(ibo(m).eq.1) then
goto 264

end if
do 262 k1,nbr(m)

if(pmean.gt.pres(m,k)) then
go to 262

end if
go to 263

262 continue
k=nbr(m)

c (eq 5.21 Linear burning rate .........................................
263 z(ibrp+m)=beta(m,k)*(pmean*1.e-6)**atpha(m,k)
264 continue

c 4th order Runge-Kutta integration .....................................
do 21 i=1,nde

ds(i) (z(i)-bs(j)*p(i))*as(j)
y(i) dettat*ds(i)+y(i)
pi) = 3.*ds(i)-ak(j)*z(i)+p(i)

21 continue
11 continue

t = t+deltat

c set max mean pressure ................................................
if(pmaxm.le.pmean) then
pmaxm = pmean
tpmaxm = y(3 )

end if

c set max base pressure ................................................
if(pmaxba. Le.pbase) then

pmaxba = phase

tpmaxba = y(3)
dpmaxba = y(2)

end if

c set max breech pressure ..............................................
if(pmaxbr.le.pbrch) then
pmaxbr = pbrch
tp axbr = y(3)
dpmaxbr = y(2)

end if

if(y(3).ge.ptime) then
ptime = ptime+deltap

c write(O,7)y(3),z(1),y(1),y(2),pmean,pbase,pbrch
c write(6,7)y(3),z(1),y(1),y(2),pmean,pbase,pbrch
c7 format(Ix,7el1.4)

end if

c STOP CRITERIA: time is up or tube Length is met ......................
if(t.gt.tstop.or.y(2).ge.travp) then
go to 200

else
rmveto = y(l)
disto = y(2 )
tmveto = y(3)
goto 19

end if
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c END OF CALCULATION OUTPUT ............................................
200 write(6,311)ty(3)
311 format(Ix, dettat t-, e14.6, I intg t',e14.6)

write(6,312)pmaxm, tpmaxm
312 format(x, IPMAXMEAN Pa ',e14.6,1 time at PMAXMEAN sec 1,e14.6)

write(6,313)pmaxba, tpmaxba
313 format(x,IPMAXBASE Pa ',e14.6,' time it PMAXBASE sec ,e14.6)

wri te(6,314)paxbr, tpmaxbr
314 format(1x,'PMAXBRCH Pa ',e14.6,' time at PMAXBRCN sec ,e14.6)
316 format(lx)

c FX value assignment ..................................................
c it has either met the muzzle veldcity criteria or current proj vet...

if(y(2).le.travp) then
write(6,327)y(1),y(3),y(2)-travp, d

327 format(lx,'proj VELOCITY m/s ',e14.6,' at time sec ',e14.6,
+ tvL diff(-) =1,f10.6,1 d_ [= ,f10.4)

c velocity check ......................................................
fx = -y(1)
go to 319

else
dfract = (travp-disto)/(yC2)-disto)
rmvel = (y(1)-rmveLo)*dfract+rmvelo
tmvel = (y(3)-tmveto)*dfract+tmveLo

c write(6,318)rmvel,tmvel,y(2)-travpI d
c318 format(1x,lmuzzle VELOCITY m/s l,e14.6,1 at time sec ,e4.6,
c + I tvl diff(+) =

I
,flO.6,' pf=',f10.4)

fx = - rmvel
end if

c Energy calculations ..................................................
319 efi = chwi*forcig/(gamai-1.)

efp = 0.0
do 315 i=l,nprop

efp = efp + chwp(i) * forcp(i) / (gamap(i)-1.0)
315 continue

tenerg = efi+efp
write(6,317)tenerg

317 format(Ix,'total initial energy available J = ',e14.6)
tengas = chwi*forcig*tgas/(gamai-1.)/tempi
do 135 i=l,nprop

tengas=(frac(i)*chwp(i)*forcp(i)*tgas/tempp(i)/(gamap(i)-l.))
+ + tengas

write(6,328)i,frac(i)
328 format(, FOR PROPELLANT 1,12,1 MASSFRACT BURNT IS ',e14.6)
135 continue

c variable return ......................................................
CALL VAR OUT(X,NOVAR)
if (frac(1).ge.1.0) burnedup = 1

return
end

c End of fun int.ftn ...................................................
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SUBROUTINE PRFO17(P,P1,D,D1,L,SURF,MASSF,X,NP,U,BAD WEB)

c This subroutine is called from fun int.ftn'. It is a modified
C version of the 'PRF017' found in IBRGAC, from the Interior Ballistics
C Laboratory, Maryland. It has been modified only to ease understanding
C of its operation. It performs the calculations of mass fraction and
Ssurfce frncticn of prope 

1
ct burned 'or zero, one, and seven

C perforation propellent of unequal web.

C The following definitions apply ......................................
C P = OUTER PERF DIA
C P1 = INNER PERF DIA
C D = OUTER DIA
C Dl = DISTANCE BETWEEN PERF CENTERS
C L = GRAIN LENGTH
C NP = NUMBLR OF PERFS
C SURF = OUTPUT SURFP.CE AREA
C MASSF = OUTPUT MASS FRACTION OF PROPELLANT BURNER
C W = WEB BETWEEN OUTER PERFS
C WO = OUTER WEB
C WI = WEB BETWEEN OUTER AND INNER PERFS
C W4 = MINIMUM WEB
C BAD-WEB = UNACCEPTABLE WE3B FLAG TO ENSURE FUNCTION VALUE
C IS WEIGHTED
C X = DISTANCE THE PROPELLENT IS BURNED INTO SURFACE
C U = ORIGINAL VOLUME OF PROPELLENT GRAIN
C A = ORIGINAL SURFACE AREA OF 7 PERF PROPELLENT
C

INTEGER*2 NP
REAL*4 pifor,dlsq,pl2xsq,twopi,tm2x,plsq,pp2x,pi,dm2xsq,dlsq3,
" d2sq3, pp2xsq,plp2x,surf,a,d,twox,p,u,v,w,x,y,z,al,a2,a3,a4,a5,
+ blb2,b3,b4 b5,dsq,sqrt3,dl,fl,f2,f3,ll,12,13,hafpi,psq,pl,sO,
" sls2,vO,vl,v2,wO,xsq,wl,w4,xl,x2,massf,l,badweb,dm2x

DATA PI,SQRT3/3.14159,1.732051/
DATA HAFPI,PIFOR,TWOPI/1.570796,.785398,6.283185/

BAD WEB = 0.0
DSQ = D*D
PSG = P*P

IF (NP.EQ.D) THEN
C ZERO PERF CALCULATIONS START HERE (CALC ORIGINAL VOLUME) ..............

u = dsq*t*pi/4.
IF (d-2*x.gt.O.O) THEN
twox = X+X
xsq = x*x
MASSF= TWOX*(DSQ+2.*L*D-4.*X*D'TWOX*L+4.,XSQ)/(DSQ*L)
SURF = PI*(DSQ/2.'4.*D*X-TWOX*L+D*L+6.*XSQ)

C PROPELLENT IS ALL BURNED UP ..........................................
ELSE

MASSF = 1.0
SURF = 0.0

END IF
RETURN

ELSE IF (NP.EQ.1) THEN
C ONE PERF CALCULATIONS START HERE (CALC ORIGINAL VOLUME) ...............

u = dsq*l*pi/4.'psq*l*pi/4.
IF (d'p-4.*x.gt.O.O) THEN

twox = X+X
MASSF = TWOX*(DSQ+Z.*L*D-4.*X*D-PSQ+2.*P*L-4.*P*X)

+ /(DSQ*L'PSQ*L)
SURF = PI*(DSQ/2.-4.*D*X-4.*X*P+O*L+P*L-PSQ/2.)

C PROPELLENT IS ALL BURNED UP ..........................................
ELSE
MASSF = 1.0
SURF = 0.0

END IF
RETURN
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ELSE IF (NP.EQ.7) THEN
C SEVEN PERF PROPELLENT ACCEPTABLE DIMENSIONS CHECK ...................
C OUTER PERFORATION MIDPOINT BtU RNED THROUGH BY INNER PERF CHECK ....

IF(P1.GT.(P+Dl*(SQRT,3-1))) THEN
bad web =(P+Dl*(SORT3-1))-Pl

C OUTER PERFORATION MIDPOINT BURNED THROUGH BY OUTER DIAMETER CHECK....
ELSE IF (D.LT.Dl1'(SC.RT3+1.)-P) THEN

BADWEB =D-(D1*(SORT3+1.)-P)
END IF

C WEB DIMENSION CALCULATIONS .........................................
W = D1-P
WO =(D-P-2.*Dl)/2.
Wi = (2.*Dl-P-Pl)/2.

C WEB BETWEEN OUTER PERF CHECK .......................................
IF (W.LT.O) THEN
bad web = w

C OUTER WEB CEHECK....................................................
ELSE IF (WO.LT.O.) THEN
bad-web = wO

C INNER WEB CHECK....................................................
ELSE IF(Wl.LT.O.) THEN
bad web = wl

END IT

C UNACCPETABLE GRANULATION CHECK .....................................
IF (BAD WEB.LT.O.O) GOTO 60

P150 = Pl*Pl
DlSQ Dl*Dl
DlSQ3 =Dl*SORT3
D2SQ3 = DlSQ*SQRT3
Xl (P1SO-PSQ+4.*DlSQ-2.*Pl*DlSQ3)/4./(DlSQ3+P-P1)
X2 (4.*O1SQ+D*0..*ODDSQ3.PSQ)/4,/(.D1sO3.P+D)
A =PI*L*(D+Pl+6.*P)+HAFPI*(DSQ-PlSQ-6.*PSO)
U =PI*L/4.*(DSQ-PISO-6.*PSO)
W4 =AMIN1(W,WO,Wl)
MASSF = 0.0
TWOX = X+X
XSQ = X*X
PlP2x= Pl+TWOX
PP2X = P+TWOX
DM2X =0-TWOX
LM2X =L-TWOX
P12XSQ = PlP2X*P1P2X
PP2XSQ = PP2X*PP2X
DM2XSQ = 0I42X*OM2X

C SEVEN PERF CALCULATIONS START HERE .................................
C IF LENGTH IS NOT ALL BURNED UP .....................................

IF (LM2X.GT.O) THEN
SO = PI*LM2X*(D+Pl+6.*P+12.*X),HAFPI*(DM2X*OM2X

+ -P1P2X*PIP2X-6.*PP2X*PP2X)
VO = PIFOR*LM2X*(DM2X*DM2X-PlP2X*Plp2x-6.*PP2X*PP2X)

C SEE IF SMALLEST WEB IS BURNED THROUGH ..............................
IF (X.GT.W4/2.) THEN

C IF SO CHECK THE WEBS, ONE BY ONE ...................................
C FIRST CHECK INNER WEB..............................................

IF (X.GT.Wl/2.) THEN
C IT IS BURNED UP....................................................

Z = (2.*O1+P+Pl+4.*X)/4.
B3 = ((Pl-P)*(Pl+P+4.*X)+4.*DlSQ)/4./Dl/P1P2X
A3 = ATAN(SORTCI.-B3*83)/B3)
84 = ((P-P1)*CP4P1+4.*X)+4.*DlSQ)/4./D1,PP2X
A4 = ATAN(SORT(l.-B4*B4),B4)
F2 = A3/4.*Pl2XSQ+A4/4.*PP2XSQ-SORT(Z*(Z-Dl)*(2.*Z-P-TWOX)

+ *(2.*Z.Pl.TWOX))
L2 = LM2X*(A4*PPZX+A3*PlP2X)

ELSE
F2 0.0
L2 = 0.0
A3 = 0.0
A4 = 0.0

END IF
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C NEXT CHECK WEB BETWEEN OUTER PERFORATIONS ............................
IF (X.GT.W/2.) THEN

B5 =Dl/PP2X
A5 =ATAN(SORTCK--85*B5)/B5)
F3 = (A5*PP2XSC.D I SORT (PP2X SO D SO))/2.
L3 =2.*A5*LM2X'PP2X

ELSE
F3 = 0.0
L3 = 0.0
A5 = 0.0

END IF

C NEXT CHECK OUTER WEB...............................................
IF (X.GT.WO/2.) THEN
Y = (2.*Di+P+D)/4.
BI = ((D+P)*(D-P-4.*X)-4.*DlSQ)/4./Dl/PP2X
Al =ATAN(SCRT(l.-Bl*Bl)/Bl)
IF (Al.LE.O.) Al =PI+Al
82 =(CD+P)*(D-P-4.*X)+4.*DlSo)/4./Dl/DM2X
A2 =ATAN(SORT~l..82*82)/B2)
Fl = Al,4.*PP2XSQ.A2/4.*DM2XSO+SORT(Y-(Y-Dl)*(2.-Y-P-TWOX)

+ *(2.*Y.D+T'.OX))
Li LM2X*(Al*PP2X+A2*DM2X)

ELSE
Fl =0.
Li 0.
Al =0.
A2 = 0.

END IF

C ALL THREE WEBS HAVE BEEN CHECKED ...................................
C DETERMINE SLIVERING EQUATIONS ......................................

IF (X.LE.W/2.) THEN
SURF = S0+12.*CFl4F2+F3)-6.*(Ll+L2+L3)
V = VO+6.*(Fl+F2+F3)*LM2X
GO TO 850

END IF

IF (X.LT.X1) THEN
5, 3.*D2SQ3..PI*PP2XSQ.HAFPI*Pl2XSQ+6*F3+12.*F2
Si Sl+Lm2X*(2.*Cpi-3.*A5-3.*A4)*PP2X+(PI-6.*A3)*PiP2X)
VI = LM2X/2.*(3.*D2SQ3.PI*PP2XSO-HAFPI*Pl2XS6.'~F3

+ +12.*F2)
ELSE
Sl = 0.0
V= 0.0

END IF

IF (X.LT.X2) THEN
S2 -HAFPI*DM2XSQ-3.*D2SQ3-TWOPI*PP2XSQ+12.*Fl+6.*F3

S2 =S2+LM2X*((PI-6.*A2)*DM2X+2.*(TWOPI.3.*Ai.3.*A5)
+ *PP2X)

V2 =Lm2x/2.*(HAFPI*DM2XSQ-3.*D2SQ3.TWOPI*PP2XSO+12.
+ *Fl+6.*F3)

ELSE
S2 =0.0
V2 =0.0

END IF

SURF = Sl+S2
V = Vl+V2

C THE PROPELLENT HAS NO WEB VIOLATIONS ...............................
ELSE
MASSF = -TWOX/L/CDSO.PlSQ-6.*PSO)
MASSF = MASSF*(24.*XSO+(24.*P+4.*Pi+4.*D.12.*L)*X+PISQ

+ +6.*PSO.2.*L*D-2.*Pl*L.12.*L*P-DSO)
SURF =SO
RETURN

END IF
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C THE PROPELLENT HAS BEEN ALL BURNED up ..............................
ELSE

SURF =0.0
V = 0.0

END IF

850 MASSF 1 l.-V/U
RETURN

C THE NUMBER OF PERFORATIONS DOES NOT EQUAL 0,1 RO 7..........
ELSE

60 WRITE(6,90)
90 FORMAT(1X, 'UNACCEPTABLE GRANULATION')

END IF

RETURN
END

c end of prfO17...................................................
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SUBROUTINE READ DATA(X,NOVAR)

c Thi5 subroutine is called by 'ot"r.f; nd reads the inout
c records for 'fun int.ftn'. It saves all records into Is Iprefixed
C variables. At t~e end of this subroutine the initat desTgn vector is
C assigned. See lintbaLL.inz..fl for variable definitions.

%INCLUDE 'intball.ins.fl

INTEGER*2 NOVAR

c Input ........ i....... .................................... *..........'
c input data fi e, and open file..

write(*, 15)
15 format('Enter name of data input file (10 characters max):,)

read(*,10)bdfi Le
10 format(alO)

open(unit=2,err=30, fi te~bdfi le, status= 'old, , iostatios)
rewind 2

c Outout data file, and open file.
wri te(*,25)

25 format('Enter name of data output file (10 characters max):')
read(*,10)outfi I
open(unit=6,err=30,file=outfi I)
write(6, 16)bdfi Le

c Read Record 1 ........................................
16 format( The data input file is ',a10,/)

readC2, *, end=20, err=30)scham, s_grve, s_a Land,sg Lr, stwst,
+stravp,sigrad

c Using chambrage gradient equation ..................................
if (s igrad.gt.1) then

wri te(6,47,err*30)
47 format~lx, I Using chambrage pressure gradient')

c Read and echo print Record la (for chambrage only) ...................
reac1(2,*,enc1=20,err=3O) s nchtscdtl)shialI

* !=1,s nchpts) -htshitIcda()

write(6,153,err=30) Cs chdist(l),s chdiam(1),hl?,s nchpts)
53 format(///,, chambeF distance cm chamber diameter cm',/

* (5x,e14.6,5x,e14.6))

c convert units......................................................
do 54 I11 nchpts
s chdist(I) =0.01*s chdist(I)

54 s-chdiam~l) =0.01*s-chdiam([)

c calculate chamber integrals and volume .............................
if (s nchpts.gt.5) then
s nEhpts =5
write(6,44,err=30)

44 format(1x,luse first 5 points')
end if

c set bore to largest distance ........................................
bore = s-chdiam(s-nchpts)

if(s chdist(l).ne.0.0) then
wrTte(6,45, err=3O)

45 format(lx,l # points ? 1)
end if
s chdist(l) =0.0

c intiaiization.....................................................
bl = 0.0
b2 =0.0
b3 = 0.0
b4 = 0.0

c setting the initial number of integration points ....................
points =25.0

56 points = points + points

c setting the ste p size .........................................
step = schdiist(s-nchpts)/piints
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c increment through breech/bore distance ...............
zz =0.0

c initialize the bint's..............................................
bint(1) =0.0
bint(3) =0.0
bint(4) =0.0
bvo[ 0.0

cradius of the start of current interval .............................
r2 0.5*s chdiam( 1)
k 1

int(points+0.5)

c going through the breech/bore travel ................................
do 57 1=l,j

z= zz~step

c if at last interval .................................................
if (k.eq.snchpts-1) go to 46

c looking for current interval in breech/bore .........................
do 58 I1=k,s nchpts-1

ir (zz.gt.s-Chdist(I1).ancI. zz.Lt.s-chdist(11+1)) go to 59
58 continue

11 = s nchpts-1
59 k =iCT

c diam is first the ratio of the distance into the interval ............
46 diam = (zz-s chdist (k))/(s chdist(k+1)-s-chdist(k))

c diem is then the diameter of the current Location in the interval.
diam = s chdiam(k)+diam*(s-chdiam(k+l)-s-chdiam(k))

c raduis at current Location .........................................
rl = 0.5*diam

c intermediate area of selected interval & step Location .............
area = pi*(rl+r2)**2/4.

c the current net volume of the chamber ....................
bvot = bvol~step*<pi/3.0)*(rl**2.rl*r2+r2**2).........

c calculating the current J(1), J(3), & J(4) values through numerical
c integration........................................................

bint(l) =bint(l) + step * bvol area
bint(3) =bint(3) + step * area *bint(1)
bint(4) =bint(4) 4step * bvoL**2 / Farea

c set old radius to current radius ...................................
57 r2 =rl

c determing if convergence has been reached ...........................
temp = abs(1.0-bl/bint(l))
if(abs(1.0-b3/bint(3)).gt temp) then
temp = abs(1.0-b3/bint(i))

end if
if(abs(1.0-b4/bint(4)).gt.temp) then
temp, = abs(1.0-b4/birt(4))

end if

c if converged set values and exit ...................................
if(temp.le.O.0O1) then
go to 41

else
bl = bint(1)
b3 = bint(3)
b4 = bint(4)

c or go back and close interval and try again ........................
go to 56

end if
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c convert units and save......................................... .
41 s chain = bvoLl.e6

s chmLen =s chdist(snchpts)
s-bint(l) =bTnt~l)
s bint(3) = bint(3)
s-bint(4) =bint(4)
s bvoL = bvoL
s-bore =bore

c Use LaGrange Pressure Gradient...................................
else

write( 6, 55)
55 format(1x,' Using Lagrange pressure gradient,)

end if

write(6,40 Ierr=30) s cham,s grve, 5 aland, sgLr,s twst,stravp
40 format~lx,' chamber v olume -cm'3',e14.6,/'- groove diam cm '

+el4.6,/' land diam cm ',e14.6,I/I groove/land ratio ',el
+4.6,/, twist turns/caLiber I ei4.6,/' projectile travel cm',e14.
+6/)

c convert units...................................................
s-cham =s -cham * 1.0e-6
sgrve =s-grve * 1.0e-2
s aLand = s aland * 1.0e-2
s-travp = s-travp * 1.0e-2

c Read and echo print Record 2.....................................
read(2,*,end=20,err=30) sprwt,s_iair 's_htfr,s pgas
write(6,50,err=30) sprwt,siai rshtfr,s-pgas

50 format(1x,' projectile mass kgl,el4.6,/' switch to calculate en
+ergy Lost to air resistance J',i3,/' fraction of work against bor
+e used to heat the tube',e14.6/1x,' gas pressure Pa',5x 0e4.6)

c Read and echo print Record 3.....................................
read(2,*,end=20,err=30) snpts,(sbr(i),s trav(i), i=l,s-npts)
write(6,60,err=30) s npts,(s br(i),s-trav(i),i=I s npts)

60 format~lx,' number barreT resistance pointsli2,/' bore resistan
+ce MPa - travel cr'/(6x,e14.6,3x,e14.6))

write(6,65)
65 format(lx)

c convert units...................................................
do 62 i1l,snrpts
s br(i) =s br(i) *l.0e6
strav(i) =s-trav(i) *1.e2

62 continue

c Read and echo print Record 4.....................................
read(2,*,end=2D,err=30) s-rcwt,s nrp,(s rp(i),s tr~i),i=l,s nrp)

70 write(6,70,err=30) s rcwt,s nrp,(s rp(i),s-tr(i),Ii=1 'S-nrp)
70format~lx,' mass of recoiling pirts Vg',5x,eT4.6,/, num~er of
+recoil point pairs',6xi2,/' recoil force N',' recoil time sec
+,/,(lx,e14. 3x,e04.6))
w rite(6,65)

c Read and echo print Record 5.....................................
read(2,*,end=20,err=30) s ho,s tshl,s cshl,s twal,s hl,s rhocs
wr ite 6,75,err=30) s-ho,s-tshl,s-cshl,s-twal,s-hl,s-rhocs

75 format~lx.1 free convective heat transfer coefficient w/cm'2 KI
+,e14.6,/' chamber wall thickness cm',27x,e14.6,/' heat capacity
+of steel of chamber wait Jig K',8x,el4.6,/' initial temperature o
+f chamber watt K',15x,el4.6,/' heat loss coefficient',31x,e14.6,/
+1 density of chamber wall steel g/cm'3',16x,e14.6,//)

c convert units...................................................
s ho = s ho /1.0e-4
s tshl = s tshl *1.0e-2
s cshl =s-cshL *1.0e+3
s-rhocs = s-rhocs *1.0e.3/l.e6

c Read and echo print Record 6.....................................
read(2,*,endI=20,err=30) s forcig,s covi,s tempi,s chwi,s gamai
write(6,85,err=30) s-forcig s-covi 's tenpi,s -chwis Sgamai

85 format~lx I impetus of i~niter propelltant J/g',1Ix,e14.6,i' covo
+liume of igniter cm**3/gin,25x,el4.6,/I adiabatic flame temperature
+ of igniter propellant K 14 .6,/' initial mass of igniter kg',?
+6x,el4.6,1, ratio of specific heats for igniter',17x,e14.6//)
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convert units ........................................................
s_forcig = s forcig*l.e+3
s covi = s-covi*1.e-6/1.e-3

c Read and echo print Record 7 .........................................
read(2,*,end=20,err=30) s nprop,(s forcp(i),s_tempp(i),s covp(i),

+ s chwp(i),s rhop(i),s gaap(i),s nperfs(i),s-gtenp(i),s-pdpi(i),
+ s-pdpo(i),s-gdiap(i),s dbpcp(i),=1,s nprop)
write(6,95,err=30) (i, forcp(i),s tempp(i),s covp(i),s chwp(i),

+ s rhop(i),s gamap(i),s perfs(i),s-gLenp(i),s-pdpi(i),s-pdpo(i),
" s~gdiap(i),dbpcp(i),T=l,s_nprop)

95 format((' FOR PROPELLENT NUMBER',i2,/' impetus of propellant J/g
+',27x,e14.6,/' adiabatic temperature of propellant K',16xe14.6,/'
+ covoltume of propellant cm**3/g1,23x,e14.6/' initial mass of pro
+petlant kg',24x,e14.6/' density of propellant g/cm**3 ,24x,e14.6/
+' ratio of specific heats for propellant',15x,e14.6/' number of
+perforations of propelLant',1x, i2/' Length of propellant grain c
+m',24x,e14.6/' diameter of inner perforation in propellant grains
+ cm',e14.6/' diameter of outer perforation of propellant grains c
+m',e14.6/' outside diameter of propellant grain cm,,14x,e14.6/'
+distance between perf centers cm',21x,e14.6)//)

c convert units ........................................................
do 96 i=1,s nprop
s forcp(i = s forcp(i) *1.0e+3
s-covp(i) = s-covp(i) *1.0e-6/1.0e-3
s-rhop(i) = s-rhop(i) *1.0e-3/1.0e-6
sg enp(i) = s-glenp(i) *0.01
spdpi(i) = s-pdpi(i) *0.01
sjdpo(i) = s-pdpo(i) *0.01
sgdiap(i) = s-gdiap(i) *0.01
sdbpcp(i) = s-dbpcp(i) *0.01

96 continue

c Read and echo print Record 8 .........................................
do 97 j=l,s nprop

read(2,*,end=20,err=30) s nbr(j),(s atpha(,i),s beta(j,i),
+ s.pres(j,i),il,s nbr(j1)

write(6,11,err=30)- s nbr(j),(s alpha(j,i),s beta(j,i),
+ sJpres(j,i),i=,s nbr(j )

110 format(lx,' no. of Burning rate points',i2/3x,' exponent',5x,'
+ coefficient',17x ' pressureI/5x,'-i,16x,Icm/sec-MPa**aiI,12x,'
+ APa,,/(Ix,e14.6,Sx,e14.6,15x,e14.6))

c convert units ........................................................
do 112 i=1,s nbr(j)
s beta(j,il = s beta(i,i)*1.e-2

112 spres(j,i) = s pres(ji)*1.e6
97 continue

write(6,65)

c Read and echo print Record 9 .........................................
read(2,*,end=20,err=30) s deLtat,s deltap,s tstop
write(6 120,err=30) s-deltat,s-deltap,s tstop

120 format(kx'time increment - msec',e1Z.6/2x,'print increment
+ msec,,e14.6/2x,,time to stop calculation msec,,e14.6)

c convert units ........................................................
s dettat = s deLtat *0.001
s -dettap = s deltap *0.001
S-tstop = S tstop *0.001

c Design vector assigned here, each is problem specific ................
c Format is: x(1) = s-glenp(1) etc.
c... .. .... ....... ............ .................. .... ...............

129 write(0,130)
130 format(lxl END INPUT DATA ')

return

20 write(*,140)
140 format(lx,'end of file encounter')

return

30 write(*,150)
150 format(lx,'read or write error')

return
end

c end of data read .....................................................
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SUBROUT INE RESE DATA

c This subroutine resets the variables for and is called by
c 'fun int.ftn'. it transfers all initial values from their Is
c prefTxed variable to the variable that is used in the calling-
c subroutine. See lintbaLl.ins.f' for variable definitions.

%INCLUDE 'intbatt.ins.fl

c Record Initialization ...........................................
c Record 1 ............................

chain = ichai
grve = sgrve
aland =s aLand
gLr = s gLr
twst =S-twst
travp = s travp
ig rad = s-igrad

c Record la ......................................................
do 10 i=l,s nchpts
chdist(i) = s chdist(i)

10 chdiarn(i) = s-chdiam(i)
nchpts =snchpts

c Record 2 .......................................................
prwt =sprwt
htfr = s htfr
pgas =s pgas
iair =s iair

c Record 3 .......................................................
do 30 i=1,s npts

br(i) = s br(i)
30 trav(i) = s-trav(i)

npts =S-npts

c Record 4 .......................................................
do 40 i=l,s-nrp

rp(i) = s rp(i)
40 tr(i) =s tr(i)

rcwt = s rc;;t
nrp =s-nrp

c Record 5 .......................................................
ho =s ho
tshl s-tsht
cshl= s cshL
twatl s twat
h( s-ht
rhocs =s-rhocs

c Record 6 .......................................................
forcig =s forcig
covi =s covi
temnpi =s tempi
chwi =s-chwi
gainai =s-gamai

c Record 7 .......................................................
do 70 i=1,s nprop

forcp(i) s forcp(i)
teinpp(i) =s:tempp(i)
covp(i) =S covp(i)
chwp(i) s-chwp(i)
rhop(i) =srhop(i)

gamap(i) s sgamap(i)
nperfs(i)= s nperfs(i)
gtenp(i) = s glenp(i)
pdpi(i) = spdpi ( i)
pdpo(i) = s-pdpo(i)
gdiap(i ) = s gdiap(i)

70 dbpcp(i ) = sdbpcp(i)
nprop =snprop
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c Record 8 .............................................................
do 80 i=1,10

nbr(i) = s nbr(i)
do 80 j=1,TO

alpha(i,j) = s alpha(ij)
beta(i, j) = sbeta(i,j)

80 pres(ij) = s_pres(ij)

c Record 9 .............................................................
deltat = s deltat
dettap = s-dettap
tstop = s-tstop

c LaGrange Chamber Volume resets... ...................................
bint(1) s bint(1)
bint(3) = s-bint(3)
bint(4) = s-bint(4)

bvot = s bvot
chmlen = s-chmten
bore = s-bore

c End of Record resets .................................................
c Local use initialization .............................................

rl = 0.0
r2 = 0.0
areab = 0.0
tmpi = 0.0
i mbda 0.0
pmaxm = 00
pmaxbr = 0.0
pmaxba = 0.0
tpaxm = 0.0
tpmaxbr = 0.0
tpmaxba = 0.0
tpmax = 0.0
air = 0.0
do 100 i=1,4

as(i) = 0.0
bs(i) = 0.0

100 ak(i) = 0.0
vpO = 0.0
trO = 0.0
tcw = 0.0
volgi = 0.0
pmean = 0.0
vog = 0.0
watlt = 0.0
ptime = 0.0
do 110 i=1,20

z(i) = 0.0
y(i) = C
ds(i)= •

110 p(i) = 0.u

points = 0
ibrp = 0
nde = 0
iswl = 0
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resp = 0.0
eLpt = 0.0
etpr = 0.0
pt = 0.0
vzp = 0.0
j4zp = 0.0
etgpm = 0.0
eLbr = 0.0
elrc = 0.0
areaw = 0.0
avcp = 0.0
avc = 0.0
avden = 0.0
z18 = 0.0
z19 = 0.0
avvel = 0.0
htns = 0.0
elht = 0.0
elar = 0.0
rfor = 0.0
eprop = 0.0
rprop = 0.0
tenergy = 0.0
tgas = 0.0
pt = 0.0
vl = 0.0
covl = 0.0
pbase = 0.0
pbrch = 0.0
jlzp = 0.0
j2zp = 0.0
j3zp = 0.0
a2t = 0.0
aLf = 0.0
alt = 0.0
bt = 0.0
bata = 0.0
gamma = 0.0
deLta = 0.0
t =0.0
rmvelo = 0.0
tmveto = 0.0
disto = 0.0
dfract = 0.0
efi = 0.0
efp = 0.0
tenerg = 0.0
tengas = 0.0
do 120 i=1,10

frac(i) = 0.0
surf(i) = 0.0

120 ibo(i) = 0.0

RETURN
ENO

C end of reset values ..................................................
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subroutine mass check

C THIS SUBROUTINE DETERMINES THE LOADING DENSITY AND CHECKS THE MAXMIMUM
C MASS ALLOWED FOR MULTIPLE PROPELLENTS

%INCLUDE 'intbal.ins.fl

REAL*4 vol grain(10),vot idea L(10),m~s grain(10),nu.mrin1)
+ vol~prop(10),masjrop(10),totarmas prop _gan1,

intrinsic sqrt

c check for propellent type.........................................
do 100 i=l,nprop

c for 0 perf propel lent ............................................
if (nperfs(i).eq.O) then

c determine 1 grain volume, actual & ideal...........................
vol grain(i) =pi*gLenp(i)*(gdiap(i)**2)/4.
vol-ideat(i) =pj*gLenp(i)*(gdiap(i)**2)/4.

c determine The mass of 1 grain of propellent........................
mas grain(i) =rhop(i)*voL grain(i)

c determine The number of grains of-propettent present................
num Igrain(i) =chwp(i)/mas grain(i)

c determine the pure volume of propellent present...... ..............
vol prop(i) =vol ideaL(i)*num grain(i)

c determine The mass of the-propeLLent..............................
masprop(i) = mas grain(i)*num grain(i)

c for 1 perf propellent ............................................
else if (nperfs(i).eq.1) then

vol grain( i) =pi*gLenp(i )*(gdiap( i)**2-pdpj ( i)2/
vol ideal(i) =pi*gLenp(i)*(gdiap(i)**2)/4.
mas grain(i) =rhop(i)*voL grain(i)
numgrain( i) =chwp(i)/masgrain(i)
vol prop(i) =vol, ideaL(i)*num -graini)
masp rop(i) =masg9ra in( i )*numgra in( i

c for 7 perf propellent ............................................
else if (nperfs(i).eq.7) then
vol-grain(i) =pi *g Lenp( i)(gd iap( i*2 -pdp i( i)2 -pdpo ( i)2)

+ /4.0
vol ideal~i) =pi*gLenp~i)*(gdiap(i)**2)/4.
mas grain(i) =rhop(i)*vol grain(i)
num grain( i) =chwp(i)/mas~grain(i)
vol-prop(i) =vol ideaL(iY*num grainci)
mas prop(i) = mas-graini)*numngrain(i)

end iT
100 continue

c the total volume the propellents occupy if ideally packed & mass ....
total -masyprop = 0.0
total vol prop = 0.0
do 200 i=T,nprop

total mas prop = total mas prob + chwp(i)
200 total voilyrop = total vol-prop + vol prop(i)
c the chaiber volume (m-3) ana Loiding density (g/cm'3).............

chain vol = chain
d-l = (total mas...prop*1000.0)/Cchani vol*le6)

return
end

c end of check mass ..............................................
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SUBROUTINE VAR IN(x,novar,fx)

c Example 1 variable conversion for Interior Ballistics Calculation

%INCLUDE 'intbatt.ins.f'

INTEGER*2 NOVAR
REAL*4 X(NOVAR),FX

c Negative dimension check. To ensure no negative values are sent...
do 15 I=1,novar

15 if (x(i).Le.O.O) fx = fx + xWi)
if (fx.lt.O) then

fx = -1000.0*fx
return

end if

c variable assignment ................................................
c 7 perforation propellent

gLenp(1) = x(1)
pdpi(1) = x(2)
pdpo(1) = x(3)
gdiap(1) = x(4)
dbpcp(1) = x(5)
chwp(1) = x(6)

return
end

c END OF VAR IN ......................................................

SUBROUTINE VAR OUT(x,novar)

c Example 1 variable return for Interior Ballistics Calculation

%INCLUDE Uintball.ins.f'

INTEGER*2 NOVAR
REAL*4 X(NOVAR)

c variable return ...................................................
c perf = 7 ..........................................................

x(1) = glenp(1)
x(2) = pdpi(1)
x(3) = pdpo(1)
x(4) = gdiap(1)
x(5) = dbpcp(1)
x(6) = chwp(1)

RETURN
END

c END OF VAR OUT ....................................................
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SUBROUTINE VAR IN(x,novar,fx)

c Example 2. This subroutine is catlled from 'fun_ int.ftn' and sends
c the design vector from the minimization process-into the variables
c used in the interior ballistics code.

%INCLUDE 'intba[L.ins.f'

INTEGER*2 NOVAR
REAL*4 X(NOVAR),FX

c Negative dimension value check ....................................
do 15 1=1,novar

15 if Mxi).le.O.O) fx =fx + x(i)
if (fx.1t.O) then

fx = -1000.O*fx
return

end if

c variable assignment..............................................
c 7 perforation propellent

g~enpcl) = x(l)
pdpi(l) =x(2)
pdpo(l) = x(3)
gdiap(l) =x(4)
dbpcp(1) = x(5)
chwp(1) = x(9)

c 1 perforation propel lent
gtenp(2) = x(6)
pdpi(2) = W()
gdiap(2) = x(8)
chwp(2) = x(10)

etujn
end

c END OF VAR IN....................................................

SUBROUTINE VAR OUT~x Inovar,fx)

c Example 2. This subroutine is cal led from 'fun_- int.ftn' and returns
c the variables used in the interior ballistics code back into the
c design vector format for the minimization process.

%INCLUDE 'intbaLL.ins.fl

INTEGER*2 NOVAR
REAL*4 X(NOVAR)

c variable return..................................................
c perf = 7

x(l) = glenp(l)
x(2) =pdpi(1)
x(3) = pdpo(1)
x(4) =gdiap(l)
x(5) = dbpcp(l)
x(9) = chwp(1)

c perf = 1
x(6) = gLenp(2)
W() = pdpi(2)
x(8) =gdiap(2)
x(10)= chwp(2)

RETURN
END

c END OF VAR OUT...................................................
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SUBROUTINE VAR IN(x,novarfx)

c Example 3. This subroutine is called frnm 'fun int.ftn' and sends
c the design vector from the minimization process-into the variables
c used in the interior ballistics code.

%INCLUDE 'intbalL.ins.f'

INTEGER*2 NOVAR
REAL*4 X(NOVAR),FX

c Negative dimension value check ......................................
do 15 I=i,novar

15 if (x(i).te.O.O) fx = fx + x(i)
if (fx.lt.O) then

fx = -1000.O*fx
return

end if

c variable assignment .................................................
c 0 perforation propellent

glenp(i) = x(1)
gdiap(i) = x(2)
chwp(l) = xcii)

c 1 perforation propellent
gLenp(2) = x(3)
pdpi(2) = x(4)
gdiap(2) = x(5)
chwp(2) = x(12)

c 7 perforation propellent
glenp(3) = x(6)
pdpi(3) = x(7)
pdpo(3) = x(8)
gdiap(3) = x(9)
dbpcp(3) = x(10)
chwp(3) = x(13)

return
end

c end of var in .......................................................

SUBROUTINE VAR OUT(x,novar)

c Example 3. This subroutine is called from 'fun int.ftn' and returns
c the variables used in the interior ballistics code back into the
c design vector format for the minimization process.

%INCLUDE 'intball.ins.f'

INTEGER*2 NOVAR
REAL*4 X(NOVAR)

c design vector reassignment ..........................................
c perf = 0 ............................................................

x(1) = gtenp(l)
x(2) = gdiap(i)
x(ii) = chwp(1)

c perf = I ............................................................
x(3) = gLenp(2)
x(4) pdpi(2)
x(5) = gdiap(2)
x(12) = chwp(2)

c perf = 7 ............................................................
x(6) = gtenp(3)
x(W) = pdpi(3)
x(8) = pdpo(3)
x(9) = gdiap(3)
x0O) = dbpcp(3)
x(13) = chwp(3)

RETURN
END

c End of var out ......................................................
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SUBROUTINE VAR IN(x,novar,fx)

c Example 4. This subroutine is called from fun int.ftn' and sends
c the design vector from the minimization process-into the variables
c used in the interior ballistics code.

%INCLUDE 'intball.ins.f'

INTEGER*2 NOVAR
REAL*4 X(NOVAR),FX

c Negative dimension value check......................................
do 15 1=1,novar

15 if (x(i).le.O.O) fx = fx + x(i)
if (fx.Lt.O) then

fx = -100.O*fx
return

end if

c variable assignment ................................................
c 7 perforation propellent

glenp(1) = x(1)
pdpi(1) = x(2)
pdpo(1) = x(3)
gdiap(1) = x(4)
dbpcp(1) = x(5)

chwp(1) = x(11)
c M8 7 perforation propellent

glenp(2) = x(6)
pdpi(2) = x()
pdpo(2) = x(8)
gdiap(2) x(9)
dbpcp(2) = x(10)
chwp(2) = x(12)

return
end

c END OF VAR IN ......................................................

SUBROUTINE VAR OUT(x,novar,fx)

c Example 4. This subroutine is called from 'fun int.ftn' and returns

c the variables used in the interior ballistics code back into the

c design vector format for the minimization process.

%INCLUOE ,intball.ins.f'

INTEGER*2 NOVAR
REAL*4 X(NOVAR)

c variable return ....................................................
c perf = 7

x(1) = glenp(1)
x(2) = pdpi(1)
x(3) = ppo(1)
x(4) = gdiap(1)
x(5) = dbpcp(1)
x(11) chwp(1)

c M8 perf = 7
x(6) = glenp(2)
x(7) = pdpi(2)
x(8) = pdpo(2)
x(9) = gdiap(2)
x(1) = dbpcp(2)
x(12) = chwp(2)

RETURN
END

c END OF VAR OUT .....................................................
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APPENDIX III

INPUT FILES AND SAMPLE OUTPUT

This appendix contains a copy of the input file for

each example and a example copy of the interior ballistic

output file. A format guide is included after the input

files to describe each entry. Each line in the input file

corresponds to a record input.
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Input file for problem la. 7-perforation prooellent, sample

9832.2384 12.7 12.7 1.0 0.0 457.2 1
9.796 0 0.0 0.0

5 0.0 0.0 0.0 .6 0.0 1.3 0.0 300. 0. 457.
1.e20 2 3.0e+4 0.0 8.0e+5 0.2
.001135 .01143 .46028 273. 1. 7.8612
84.5535 .9755 294. .004712 1.4

1 1135.99 3141. .9755 8.7 1.6605 1.23 7 3.175 .0508 .0508 1.0721 .2807
1 1.0 .1105187 689.476

.005 .05 30.

Input file for problem lb. 7-perforation propellent, sample
9832.2384 12.7 12.7 1.0 0.0 457.2 1
9.796 0 0.0 0.0

5 0.0 0.0 0.0 .6 0.0 1.3 0.0 300. C. 457.
1.e20 2 3.0e+4 0.0 8.0e+5 0.2
.001135 .01143 .46028 273. 1. 7.8612
84.5535 .9755 294. .004712 1.4

1 1135.99 3141. .9755 8.9 1.6605 1.23 7 4.00 .02 .04 2.0000 .400
1 1.0 .1105187 689.47A

.005 .05 30.

Input file for problem 2. 7-perforation propellent, sample
1-perforation propellent, sample

9832.2384 12.7 12.7 1.0 0.0 457.2 1
9.796 0 0.0 0.0

5 0.0 0.0 0.0 .6 0.0 1.3 0.0 300. 0. 457.
1.e20 2 3.0e+4 0.0 8.0e+5 0.2
.001135 .01143 .46028 273. 1. 7.8612
84.5535 .9755 204. .004712 1.4

2 1135.99 3141. .9155 4.35 1,6605 1.23 7 3.175 .0508 .0508 1.0721 .2807
1135.99 3141. .9755 4.35 1.6605 1.23 1 3.175 .0000 .0508 1.0721 .0000

1 1.0 .1105187 689.476
1 1.0 .1105187 689.476

.005 .05 30.

input file for problem 2. 0-perforation propellent, sample

1-perforation propellent, sample
7-perforation propellent, sample

9832.2384 12.7 12.7 1.0 0.0 457.2 1
9.796 0 0.0 0.0

5 0.0 0.0 0.0 .6 0.0 1.3 0.0 300. 0. 457.
1.e20 2 3.0e+4 0.0 8.0e+5 0.2
.001135 .01143 .46028 273. 1. 7.8612
84.5535 .9755 294. .004712 1.4

3 1135.99 3141. .9755 3.00 1.6605 1.23 0 3.175 .0000 .0000 1.0721 .0000
1135.99 3141. .9755 3.00 1.6605 1.23 1 3.175 .0000 .0508 1.0721 .0000
1135.99 3141. .9755 3.00 1.6605 1.23 7 3.175 .0508 .0508 1.0721 .2807

1 1.0 .1105187 689.476
1 1.0 .1105187 689.476
1 1.0 .1105187 689.476

.005 .05 30.

Input file for problem 4. 7-perforation propellent, sample
7-perforation propellent, M8

9832.2384 12.7 12.7 1.0 0.0 457.2 1
9.796 0 0.0 0.0

5 0.0 0.0 0.0 .6 0.0 1.3 0.0 300. 0. 457.
1.e20 2 3.0e+4 0.0 8.0e+5 0.2
.001135 .01143 .46028 273. 1. 7.8612
84.5535 .9755 294. .004712 1.4

2 1135.99 3141. .9755 4.35 1.6605 1.23 7 3.175 .0508 .0508 1.0721 .2807
1168.90 3768. .9550 4.35 1.2119 1.62 7 3.175 .0508 .0508 1.0721 .2807

1 1.0 .1105187 689.476
1 1.0 .1105187 689.476

.005 .05 30.
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c Format for input files. Each Line in file is 1 record. Record la is read
c only if IGRAD = 2 in Record 1.
c Record 1 .................................................................
c CHAM REAL*4 CHAMBER VOLUME cm3
c GRVE REAL*4 GROOVE DIAMETER cm
c ALAND REAL*4 LAND DIAMETER cm
c GLR REAL*4 GROOVE/LAND RATIO none
c TWST REAL*4 TWIST turns/caliber
c TRAVP REAL*4 PROJECTILE TRAVEL cm
c IGRAD INTEGER*2 GRADIENT FLAG none
c 1 = Lagrange, 2 = Chambrage
c Record la ....................................................................
c NCHPTS INTEGER*2 NUMBER POINTS TO DESCRIBE CHAMBER none
c For 1=1,nchp ts
c CHDIST(I) REAL*4 INITIAL DISTANCE FROM BREECH cm
c CHDI.6M(I) REAL*4 DIAMETER AT CHDIST(I) cm
c Record 2 .....................................................................
c PWRT REAL*4 PROJECTILE MASS kg
c IAIR INTEGER*2 CALCULATE ENERGY LOST TO AIR
c RESISTANCE FLAG (C = yes) none
c HTFR REAL*4 FRACTION OF WORK DONE AGAINST
c BORE TO HEAT TUBE none
c PGAS REAL*4 GAS PRESSURE IN FRONT OF PROJECTILE Pa
c Record 3 .....................................................................
c NPTS INTEGER*2 NUMBER OF BARREL RESISTANCE POINTS none
c For I=1,npts
c BR(I) REAL*4 BORE RESISTANCE MPa
c TRAV(I) REAL*4 TRAVEL cm
c Record 4 ........................... ....................... ..............
c RCWT REAL*4 MASS OF RECIOLING PARTS kg
c NRP INTEGER*2 NUMBER OF RECOIL PAIR POINTS none
c For 1=1,nrp
c RP(I) REAL*4 RECOIL FORCE N
c TR(I) REAL*4 RECOIL TIME s
c Record 5 ........................ ........................................
c HO REAL*4 FREE CONVECTION HEAT TRANSFER
c COEFFICIENT w/cm'2-k
c TSHL REAL*4 CHAMBER WALL THICKNESS cm
c CSHL REAL*4 HEAT CAPACITY OF STEEL OF CHAMBER WALL J/g-k
c TWAL REAL*4 INITIAL TEMPERATURE OF CHAMBER WALL k
c HL REAL*4 HEAT LOSS COEFFICIENT none
c RCHOS REAL*4 DENSITY OF CHAMBER WALL STEEL g/cm'3
c Record 6 .....................................................................
c FORCIG REAL*4 IMPETUS OF IGNITER PROPELLENT J/g
c COVI REAL*4 COVOLUME OF IGNITER cm'3/g
c TEMPI REAL*4 ADIABATIC FLAME TEMP OF IGNITER k
c CHWI REAL*4 INITIAL MASS OF IGNITER kg
c GAMAI REAL*4 RATIO OF SPECIFIC HEAT FOR IGNITER none
c Record 7 ................................................................
c NPROP INTEGER*2 NUMBER OF PROPELLENT TYPES none
c For 1=1,nprop
c FORCP(I) REAL*4 IMPETUS OF PROPELLENT J/g
c TEMPP(I) REAL*4 ADIABATIC TEMPERATURE OF PROPELLENT k
c COVP(I) REAL*4 COVOLUME OF PROPELLENT cm'3/g
c CHWP(I) REAL*4 INITIAL MASS OF PROPELLENT kg
c RHOP(I) REAL*4 DENSITY OF PROPELLENT g/cm^3
c GAMAP(I) REAL*4 RATIO OF SPECIFIC HEATS, PROPELLENT none
c NPERFS(I) INTEGER*2 NUMBER OF PERFORATIONS ON PROPELLENT none
c GLENP(I) REAL*4 LENGTH OF PROPELLENT GRAIN cm
c PDPI(I) REAL*4 DIAMETER OF INNER PERFORATIONS
c IN PROPELLENT GRAIN cm
c PDPO(I) REAL*4 DIAMETER OF OUTER PERFORATIONS
c IN PROPELLENT GRAIN cm
c GDIAP(I) REAL*4 OUTSIDE DIAMETER OF PROPELLENT GRAIN cm
c DBPCP(I) REAL*4 DISIANCE BETWEEN PERFORATION CENTERS cm
c Record 8 .....................................................................
c For J=1,nprop
c NBR(J) INTEGER*2 NUMBER OF BURNING POINTS none
c For 1=1,nbr(j)

ALPHA(J,I) REAL*4 EXPONENT none
c BETA(J,I) REAL*4 COEFFICIENT cm/s-MPa
c PRESS(J,I) REAL*4 PRESSURE MPa
c Record 9 .....................................................................
c DELTAT REAL*4 TIME INCREMENT (STEP) ms
c DELTAP REAL*4 PRINT INCREMENT ms
c TSTOP REAL*4 STOP TIME FOR CALCULATIONS ms
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The data input file is p3final.in

Using Lagrange pressure gradient
chamber volume cm'3 0.983224E+04
groove diam cm 0.127000E+02
land diam cm 0.127000E+02
groove/Land ratio 0.100000E+01
twist turns/caliber O.OOOOOOE+O0
projectile travel cm 0.457200E+03

projectile mass kg 0.979600E+01
switch to calculate energy Lost to air resistance J 0
fraction of work aoainst bore used to heat the tube O.O00000E+00
gas pressure Pa 0.OOOOOOE+O0
number barrel resistance points 5
bore resistance MPa - travel cm

O.O00000E+00 0.00000E+00
0.OOOOOOE+00 0.600000E+00
O.O00000E+00 0.130000E+01
0.000000E+00 0.300000E+03
O.OOOOOCE+00 0.457000E+03

mass of recoiling parts kg 0.100000E+21
number of recoil point pairs 2
recoil force N recoil time sec
0.300000E+05 O.O00000E+00
0.800000E+06 0.200000E+00

Tree convective heat transfer coefficient w/cm-2 K 0.113500E-02
chamber wall thickness cm 0.114300E-01
heat capacity of steel of chamber wall J/g K 0.460280E+00
initial temperature of chamber wall K 0.273000E+03
heat Loss coefficient 0.100000E+01
density of chamber wall steel g/cm-3 0.786120E+01

impetus of igniter propellant J/g 0.845535E+02
covolume of igniter cm**3/g 0.975500E+00
adiabatic flame temperature of igniter propellant K 0.294000E+03
initial mass of igniter kg 0.471200E-02
ratio of specific heats for igniter 0.140000E+01

FOR PROPELLENT NUMBER 1
impetus of propellant J/g 0.113599E+04
adiabatic temperature of propellant K 0.314100E+04
covolume of propellant cm**3/g 0.975500E+00
initial mass of propellant kg 0.992000E+00
density of propellant g/cm**3 0.166050E+01
ratio of specific heats for propellant 0.12300',E+01
number of perforations of propellant 0
length of propellant grain cm 0.249350E+01
diameter of inner perforation in propellant grains cm O.O00000E+00
diameter of outer perforation of propellant grains cm O.O00000E+00
outside diameter of propellant grain cm 0.128500E+01
distance between perf centers cm O.OOOOOOE+00

FOR PROPELLENT NUMBER 2
impetus of propellant J/g 0.113599E+04
adiabatic temperature of propellant K 0.314100E+04
covolume of propellant cm**3/g 0.975500E+00
initial mass of propellant kg 0.362600E+01
density of propellant g/cm**3 0.166050E+01
ratio of specific heats for propellant 0.123000E+01
number of perforations of propellant 1
length of propellant grain cm 0.594250E+01
diameter of inner perforation in propellant grains cm 0.000000E+00
diameter of outer perforation of propellant grains cm O.O00000E+00
outside diameter of propellant grain cm 0.579800E+00
distance between perf centers cm O.O00000E+00



FOR PROPELLENT NUMBER 3
impetus of propeLLant J/g 0.113599E+04
adiabatic temperature of propeltant K 0.314100E+04
covolume of propeLLant cm**3/g 0.975500E+00
initiaL mass of propeLLant kg 0.413000E+01
density of propeLLant g/cm**3 0.166050E+01
ratio of specific heats for propelLant 0.123000E+01
number of perforations of propeLLant 7
Length of propelLant grain cm 0.599600E+01
diameter of inner perforation in propeLLant grains cm 0.180000E-02
diameter of outer perforation of propellant grains cm 0.180000E-02
outside diameter of propeLLant grain cm O.861300E+0O
distance between perf centers cm 0.217000E+00

no. of burning rate points 1
exponent coefficient pressure

cm/sec-MPa**ai MPa

0.100000E+01 0.110519E+00 0.689476E+03
no. of burning rate points I

exponent coefficient pressure
cm/sec-MPa**ai MPa

0.100000E+01 0.110519E+00 0.689476E+03
no. of burning rate points 1

exponent coefficient pressure
cm/sec-MPa**ai MPa

0.100000E+01 0.110519E+00 0.689476E+03

time increment msec 0.500000E-02
print increment msec 0.500000E-01
time to stop caLcuLation msec 0.300000E+02
area bore m'2 0.126677E-01 pressure from ign pa 0.873844E+05
volume of unburnt prop m"3 0.526829E-02 init cham voL-cov ign m 3 O.982764E-02

time acc veL dis mpress pbase pbrch
0.1050E-03 0.1111E+03 0.1036E-01 0.5216E-06 0.1115E+06 0.8590E+05 0.1243E+06
0.2500E-03 0.1540E+03 0.2943E-01 0.3331E-05 0.1546E+06 0.1191E+06 0.1723E+06
0.4050E-03 0.2154E+03 0.5783E-01 0.9970E-05 0.2162E+06 0.1666E+06 0.2410E+06
0.5550E-03 0.2933E+03 0.9573E-01 0.2134E-04 0.2943E+06 0.2268E+06 0.3281E+06
0.7000E-03 0.3891E+03 0.1449E+00 0.3862E-04 0.3905E+06 0.3009E+06 0.4353E+06
0.8500E-03 0.5129E+03 0.2122E+00 0.6518E-04 0.5148E+06 0.3966E+06 0.5738E+06
0.1000E-02 0.6661E+03 0.3003E+00 0.1033E-03 0.6685E+06 0.5151E+06 0.7452E+06
0.1150E-02 0.8538E+03 0.4138E+00 0.1565E-03 0.8569E+06 0.6603E+06 0.9552E+06
0.1300E-02 0.1083E+04 0.5585E+00 0.2290E-03 0.1087E+07 0.8375E+06 0.1212E+07
0.1450E-02 0.1363E+04 0.7412E+00 0.3260E-03 0.1368E+07 0.1054E+07 0.1525E+07
0.1600E-02 0.1704E+04 0.9704E+00 0.4537E-03 0.1710E+07 0.1318E+07 0.1907E+07
0.1750E-02 0.2122E+04 0.1256E+01 0.6199E-03 0.2130E+07 0.1641E+07 0.2374E+07
0.1900E-02 0.2633E+04 0.1612E+01 0.8341E-03 0.2643E+07 0.2037E+07 0.2946E+07
0.2050E-02 0.3261E+04 0.2052E+01 0.1108E-02 0.3273E+07 0.2522E+07 0.3648E+07
0.2200E-02 0.4031E+04 0.2597E+01 0.1455E-02 0.4046E+07 0.3117E+07 0.4510E+07
0.2355E-02 0.5012E+04 0.3295E+01 0.1910E-02 0.5030E+07 0.3876E+07 0.5607E+07
0.2505E-02 0.6181E+04 0.4132E+01 0.2464E-02 0.6203E+07 0.4779E+07 0.6915E+07
0.2655E-02 0.7614E+04 0.5163E+01 0.3159E-02 0.7642E+07 0.5888E+07 0.8519E+07
0.2805E-02 0.9371E+04 0.6432E+01 0.4025E-02 0.9405E+07 0.7247E+07 0.1048E+08
0.2955E-02 0.1152E+05 0.7994E+01 0.5103E-02 0.1156E+08 0.8909E+07 0.1289E+08
0.3105E-02 0.1415E+05 0.9912E+01 0.6441E-02 0.1420E+08 0.1094E+08 0.1583E+08
0.3255E-02 0.1735E+05 0.1227E 02 0.8098E-02 0.1741E+08 0.1342E+08 0.1941E+08
0.3405E-02 0.2124E+05 0.1515E+02 0.1015E-01 0.2131E+08 0.1642E+08 0.2376E+08
0.3555E-02 0.2594E+05 0.1868E+02 0.1268E-01 0.2604E+08 0.2006E+08 0.2903E+08
0.3705E-02 0.3162E+05 0.2298E+02 0.1579E-01 0.3173E+08 0.2445E+08 0.3537E+08
0.3855E-02 0.3842E+05 0.2822E+02 0.1962E-01 0.3856E+08 0.2971E+08 0.4298E+08
0.4005E-02 0.4651E+05 0.3457E+02 0.2431E-01 0.4668E+08 0.3597E+08 0.5204E+08
0.4155E-02 0.5608E+05 0.4225E+02 0.3006E-01 0.5628E+08 0.4336E+08 0.6274E+08
0.4305E-02 0.6727E+05 0.5148E+02 0.3706E-01 0.6751E+08 0.5202E+08 0.7526E+08
0.4455E-02 0.8021E+05 0.6251E+02 0.4559E-01 0.8050E+08 0.6202E+08 0.8973E+08
0.4605E-02 0.9497E+05 0.7563E+02 0.5592E-01 0.9532E+08 0.7344E+08 0.1063E+09
0.4755E-02 0.1116E+06 0.9110E+02 0.6840E-01 0.1120E+09 0.8627E+08 0.1248E+09
0.4905E-02 0.1298E+06 0.1092E+03 0.8338E-01 0.1303E+09 0.1004E+09 0.1453E+09
0.5050E-02 0.1489E+06 0.1294E+03 0.1006E+00 0.1495E+09 0.1152E+09 0.1666E+09
0.5200E-02 0.1697E+06 0.1533E+03 0.1218E+00 0.1703E+09 0.1312E+09 0.1898E+09
0.5350E-02 0.1910E+06 0.1803E+03 0.1468E+00 0.1917E+09 0.1477E+09 0.2137E+09
0.5500E-02 0.2122E+06 0.2106E+03 0.1761E+00 0.2130E+09 0.1641E+09 0.2374E+09
0.5650E-02 0.2326E+06 0.2439E+03 0.2101E+00 0.2334E+09 0.1799E+09 0.2602E+09
0.5800E-02 0.2515E+06 0.2803E+03 0.2494E+00 0.2524E+09 0.1945E+09 0.2814E+09
0.5950E-02 0.2682E+06 0.3193E+03 0.2943E+00 0.2692E+09 0.2074E+09 0.3001E+09
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0.6100E-02 0.2823E+06 0.3606E+03 0.3453E+00 0.2834E+09 0.2183E+09 0.3159E+09
0.6250E-02 0.2935E+06 0.4038E+03 0.4026E+00 0.2946E+09 0.2270E+09 0.3284E+09
0.64OOE-02 0.3016E+06 0.4485E 03 0.4665E+00 0.3027E+09 0.2332E+09 0.3374E+09
0.6550E-02 0.3067E+06 0.4942E+03 0.5372E+00 0.3078E+09 0.2372E+09 0.3432E+09
0.6700E-02 0.3090E+06 0.5404E+03 0.6148E+00 0.3102E+09 0.2390E+09 0.3457E+09
0.6850E-02 0.3089E+06 0.5867E+03 0.6993E+00 0.3100E+09 0.2388E 09 0.3455E+09
0.7000E-02 0.3066E+06 0.6329E+03 0.7908E+00 0.3077E+09 0.2371E+09 0.3430E+09
0.7150E-02 0.3025E+06 0.6786E+03 0.8892E+00 0.3036E+09 0.2339E+09 0.3384E+09
0.7300E-02 0.2970E+06 0.7236E+03 0.9943E+00 0.2981E+09 0.2297E+09 0.3323E+09
0.7450E-02 0.2905E+06 0.7677E+03 0.1106E+01 0.2916E+09 0.2247E+09 0.3250E+09
0.7600E-02 0.2832E+06 0.8107E+03 0.1225E+01 0.2843E+09 0.2190E 09 0.3169E*09
0.7750E-02 0.2754E+06 0.8526E+03 0.1349E+01 0.2764E+09 0.2130E+09 0.3081E+09
0.7900E-02 0.2673E+06 0.8933E+03 Od1480E+01 0.2683E+09 0.2067E+09 0.2990E+09
0.8050E-02 0.2590E+06 0.9328E+03 0.1617E+01 0.2600E+09 0.2003E+09 0.2898E+09
0.8200E-02 0.2505E+06 0.9710E+03 0.1760E+01 0.2514E+09 0.1937E+09 0.2802E+09
0.8350E-02 0.2395E+06 0.1008E+04 0.1909E+01 0.2403E+09 0.1852E+09 0.2679E+09
0.8500E-02 0.2274E+06 0.1043E+04 0.2062E+01 0.2282E+09 0.1759E+09 0.2544E+09
0.8650E-02 0.2152E+06 0.1076E+04 0.2221E+01 0.2160E+09 0.1664E+09 0.2408E+09
0.8800E-02 0.2033E+06 0.1107E+04 0.2385E+01 0.2040E+09 0.1572E+09 0.2274E+09
0.8950E-02 0.1918E+06 0.1137E+04 0.2553E+01 0.1925E+09 0.1483E+09 0.2146E+09
0.9105E-02 0.1807E+06 0.1166E+04 0.2732E+01 0.1813E+09 0.1397E+09 0.2021E+09
0.9255E-02 0.1706E+06 0.1192E+04 0.2909E+01 0.1712E+09 0.1319E+09 0.1909E+09
0.9405E-02 0.1612E+06 0.1217E+04 0.3090E+01 0.1618E+09 0.1247E+09 0.1804E+09
0.9555E-02 0.1525E+06 0.1241E+04 0.3274E+01 0.1531E+09 0.1179E+09 0.1706E+09
0.9705E-02 0.1444E+06 0.1263E+04 0.3462E+01 0.1450E+09 0.1117E+09 0.1616E+09
0.9855E-02 0.1369E+06 0.1284E+04 0.3653E+01 0.1374E+09 0.1059E+09 0.1532E+09
0.I000E-01 0.1299E+06 0.1304E+04 0.3847E+01 0.1304E+09 0.1005E+09 0.1454E+09
0.1015E-01 0.1225E+06 0.1323E+04 0.4044E+01 0.1230E+09 0.9475E+08 0.1371E+09
0.1030E-01 0.1156E+06 0.1341E+04 0.4244E+01 0.1160E+09 0.8939E+08 0.1293E+09
0.1045E-O1 0.1093E+06 0.1358E+04 0.4446E+01 0.1097E+09 0.8449E+08 0.1222E+09

deLtat time 0.105500E-01 intg time 0.105498E-O1
PMAXMEAN Pa 0.310367E+09 time at PMAXMEAN sec 0.676509E-02
PMAXBASE Pa 0.239143E+09 time at PMAXBASE sec 0.676509E-02
PMAXBRCH Pa 0.345980E+09 time at PMAXBRCH sec 0.676509E-02
MuzzLe VELOCITY (m/s) 0.136756E+04 at time sec 0.105473E-01

TotaL InitiaL Energy AvaiLable J = 0.432081E+08
FOR PROPELLANT 1 MASSFRACT BURNT = 0.487515E+00
FOR PROPELLANT 2 MASSFRACT BURNT = 0.100000E+01
FOR PROPELLANT 3 MASSFRACT BURNT = 0.100000E+01
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