This research develops a general method that combines optimization methods and an interior ballistics model to automate the design process for propellent grains. It is a multi-variable constrained optimization problem. The augmented Lagrange multiplier method is used to control the constrained problem while two zero-order methods (Powell's and Hooke-Jeeves) perform the unconstrained minimization. The interior ballistics model IBRGAC, developed at the Interior Ballistics Laboratory, Aberdeen Proving Grounds, Maryland, is used as the objective cost function. To validate the process a representative 120 m tank gun system is used with four propellent combinations. The examples demonstrate that the scheme works and can be used as an effective design tool.

B.S., United States Military Academy, 1978

A THESIS
submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

Department of Mechanical Engineering College of Engineering

KANSAS STATE UNIVERSITY Manhattan, Kansas

$$
90 \quad 08 \quad 20 \quad 015
$$

Chapter Page
I Introduction 1
II Background. 5

1. Optimization and Design 5
2. Ballistics 13
3. Gun Nomenclature 16
III Optimization Method 20
4. Introduction 20
5. General Problem Statement 20
6. Augmented Lagrange Multiplier Method 21
7. Powell's Method 22
8. The Hooke-Jeeves Method 24
9. Description of the Optimization Code 25
IV Interior Ballistics Model 29
10. Introduction. 29
11. Interior Ballistic Cycle 30
12. Projectile Equations of Motion 30
13. Base Pressure Derivation 32
14. Mean Pressure Derivation 34
15. Mean Temperature Derivation. 36
16. Work and Losses 38
17. Propellent and Rate of Burning 41
18. Gun Recoil 43
19. Modeling Approximations 45
20. Description of IBRGAC 46
21. Program Organization 48
V Example Problems 51
22. Introduction 51
23. Baseline Equipment 51
24. Problem Objective Function 53
25. Problem Constraints 56
26. Optimization Initialization 58
27. Example Problems 59
Example Problem 64
Example Problem 2 72
Example Problem 82
Example Problem 4 91
28. Analysis of Results 101
VI Conclusions and Recommendations 106
29. Conclusions 106
30. Recommendations for Further Research 106
References 108
Appendix I - Optimization Code 110
Appendix II - Interior Ballistics Code 128
Appendix III - Input Files and Sample Output. 154

Term:	Definition:	Units:
A	Area	m^{2}
a	Acceleration	$\mathrm{m} / \mathrm{s}^{2}$
b	Covolume	$\mathrm{m}^{3} / \mathrm{kg}$
C	Initial mass of propellent (or igniter)	kg
c_{v}	Specific heat at constant volume	J/Kg-K
c_{p}	Specific heat at constant pressure	$\mathbf{J} / \mathbf{k g}-\mathrm{K}$
${ }^{\text {P }}$	Diameter	m
d	Distance between perforation centers	cm
E	Energy	J
F	Force	N
f	Fraction of work done against bore friction that preheats chamber	none
h	Heat transfer coefficient	watt/ $/ m^{2}-\mathrm{K}$
L	Length of propellent	cm
m	Mass	kg
n	Factor of safety	none
P	Pressure	Pa
$\mathbf{p}_{\mathbf{i}}$	Diameter of inner perforation	cm
po	Diameter of outer perforation	cm
\dot{Q}	Heat Flow	watts
R	Specific gas constant	kJ/kg-K
$\overline{\mathbf{R}}$	Universal Gas Constant	kJ/Kmol-K
r	Linear burning rate	m / s
S	Surface area of partially burned propellent grain	m^{2}
T	Temperature	K
To	Adiabatic flame temperature	K
t	Time	s_{3}
V	Volume	m^{3}
V	Molar volume	$\mathrm{m}^{3} / \mathrm{kmol}$
v	Velocity	m / s
$\mathbf{w}_{\mathbf{i}}$	Distance (web) between inner and outer perforations	cm
W	Distance (web) between outer perforations	cm
\mathbf{W}_{0}	```Distance (web) between outer perforations and outer propellent diameter```	cm
$\overline{\mathbf{X}}$	Design vector (components are numerically subscripted)	none
\mathbf{x}	Projectile travel	m
x	Gas distance from breech	m
Y	Position of projectile base	m
2	Fraction of mass burned	none
α	Burning rate exponent	none
β	Burning rate coefficient	m/s-Pa
$\boldsymbol{\gamma}$	Ratio of specific heats	none

λ	Lagrange multiplier (Except in Chapter IV where it is the Nordheim friction	
	factor.)	none
ρ	density	$\mathrm{kg} / \mathrm{m}^{3}$
${ }^{6} \mathrm{yp}$	Yield point strength	MPa
Subscripts:		
b	base of projectile	
br	breech	
c	chamber	
g	air pressure in front of projectile	
I	igniter propellent	
0	original value	
p	projectile	
rp	recoiling parts of gun	
\mathbf{r}	bore resistance	
t	total of igniter and propellent	
W	chamber wall property	

CHAPTER I

INTRODUCTION

The advancing capabilities of digital computers has allowed numerical optimization to develop into an effective and useful analysis and design tool for the engineer. It is applied successfully to many design problems in various disciplines. Optimization schemes allow the engineer to evaluate a large number of design alternatives in a systematic and efficient manner to find the best design. The approach is used to improve performance and/or decrease cost while meeting the constraints appropriate to the problem.

Interior ballistics is the applied physics required to impart motion to a projectile inside a gun tube. Despite its long history and wide application, active research continues with efforts to build more realistic models of the complicated chemical, thermodynamic, and dynamic processes involved. The classic interior ballistics problem is: given the characteristics of the gun, charge, and projectile determine the muzile velocity of the projectile and the peak pressure in the gun. There is a large knowledge base of both theoretically sound and experimentally proven concepts that make the solution of the interior ballistics problem possible.

The burning of chemical compounds, called propellents,
is an important part of interior ballistics. The combustion processes depend on many factors including the propellent material and its geometry, the rate of burn, propellent packing and packaging, and environmental factors. The resulting gases produce the pressure field that imparts acceleration to the projectile. The design of the propellent grain shape to achieve the desired pressuretime history, given the constraints imposed by the gun system and projectile, is part of the design effort. The purpose is usually to maximize the projectile muzzle velocity.

Presently there are a number of computer based interior ballistic models with a wide range of capabilities. These models allow the interior ballistician to predict the performance of a particular gun, charge, and projectile combination.

Interior ballistics depends on parameters and variables so numerous that a complete initial investigation of them is not practical. To demonstrate that optimization can be successfully applied, a specific gun system is chosen as an example. The example used is the optimum design of the propellent grain geometry for kinetic energy projectiles that are fired from 120 mm tank cannons. The propellent giain is considered improved if there is a net increase in muzale velocity without violating gun constraints. This is done by application of numerical
optimization in conjunction with the interior ballistic model.

The approach taken in this thesis is to use an interior ballistic model, and combine it with an efficient and easy to use optimization method that searches the design space for the maximum muzzle velocity without violating the constraints of the problem.

The optimization method used is a sequential unconstrained minimization technique (SUMT) called the augmented Lagrange multiplier method (ALM). In che version of the $A L M$ used in this thesis the unconstrained minimization is done by Powell's method or the HookeJeeves method. The interior ballistics model used is IBRGAC, developed at the Ballistic Research Laboratory, Aberdeen Proving Grounds, Maryland.

A background section that provides the information necessary for understanding the problem is provided in Chapter 2. This covers optimization, interior ballistics, and gun nomenclature. Chapter 3 details the optimization process and describes the algorithms and computer code used. Chapter 4 outlines the laws, theories, assumptions, and equations used to solve the interior ballistic problem. At the end of the chapter is a description of the interior ballistics code used. Chapter 5 contains the example problems, results, and an analysis of the process. Chapter 6 discusses the conclusions and recommenditions for further
research.
The optimization scheme is not limitcd to the particuiar example considered but has general applicability in interior ballistics, as well as ballistics in general. Although the scope of the problem in this thesis is restricted, the method is not.

This chapter provides the background to understand the contextual scope and contribution of the thesis. It is comprised of three parts. part one covers optimization and engineering design. part two covers ballistics and discusses currently available interior ballistics models. Part three gives a brief background of how gun systems function along with terminology.

1. Optimization and Design.

Optimization is part of human nature. There is no endeavor that man has attempted that he has not tried to improve. Mathematically the problem of finding the extrema of functions, by hand calculation, has a long history (4). The development of the digital computer provided the impetus for the full scale development of numerical optimization. Since Davidon introduced variable-metric methods in 1959 (8) there has been an explosion in the development of optimization schemes, resulting in dozens of reliable, efficient algorithms.

In engineering design, the goal is to produce the "best" design for the desired system or component. The purpose of numerical optimization is to provide a tool to aid the engineer in this task. Engineering problems are
normally not confined to one design variable nor is the design space infinite. This results in multi-variable design problems with constraints. The general form for a nonlinear constrained optimization problem can be stated as (17)

Subject to:
$g_{j}(\bar{x}) \leq 0 \quad j=1, n \ldots \ldots . .$.equality constraints
$h_{k}(\bar{X})=0 \quad k=1,1 \ldots$. equality constraints
x_{i} (lower) $\leq x_{i} \leq x_{i}$ (upper) side constraints $i=1, n$,
where $\bar{x}^{T}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ design variables.
The use of the term "minimize" means that any optimization scheme will locate the minimum function value. If a maximum is desired multiplying the objective function by negative one (-1.0) will convert the problem into an equivalent minimization. The two general approaches to solving this problem are direct methods and sequential unconstrained minimization techniques (SUMT) (Figure 2.1).

Direct methods incorporate information about the constraints directly into the optimization problem. Sequential linear programming (SLP) (17) is one such method where the problem and constraints are first linearized by a Taylor series expansion. The resulting linear problem is solved and the process is repeated until the nonlinear minimum is found. Another approach is the method of

Figure 2.1 Problem Solution Techniques.
feasible directions. From a constraint boundary the gradients of the objective function and any active constraints are determined and a linear approximation of the problem at that point (\bar{X}) is found. A search direction is then calculated that reduces the objective function without violating the active constraints. Constraints are active if the design vector is near the constraint boundary so that any small move in that direction will intersect the constraint or produce an infeasible design. It should be noted that all these direct methods require gradient information for the objective and constraint functions.

The second approach, sUMT was first developed by Fiacco and McCormick (12) and incorporates the constraints into a pseudo-objective function that can be minimized by unconstrained techniques. The general form for the SUMT is

$$
\Phi\left(\bar{X}, r_{p}\right)=F(\bar{X})+r_{p} P(\bar{X})
$$

Here Φ is the pseudo-objective function, $F(\bar{X})$ the original objective function, r_{p} a scalar multiplier that determines the magnitude of the penalty, and $P(\bar{X})$ is a penalty function that is determined from the constraints. The penalty function affects $\Phi\left(\bar{X}, r_{p}\right)$ only when the corresponding constraint is violated. When the pseudoobjective function is minimized, the original constrained objective function is minimized. Three current methods used to solve equation 2.1 are the exterior penalty function, the interior penalty function, and the augmented

Lagrange multiplier (ALM).
The exterior penalty function method creates a $P(\bar{X})$ that penalizes the design only when the constraints are violated. The interior penalty function method penalizes the design as it approaches the constraint boundary from within the feasible region. Constraint violations are not allowed and the initial design vector must start in the feasible region of the parametric space (17).

The ALM is a modification of the Lagrange multiplier method for functions with equality constraints. The inequality constraints are modified into equality constraints and incorporated into the Lagrange multiplier equation, therefore the name augmented Lagrange.

For sump the problem is converted to a sequence of unconstrained minimizations of n-variables. There are three classes of methods used to solve the unconstrained multivariable minimization problem; zero, first, and second order.

Zero order methods use no explicit derivative information to locate the minimum. These methods are best when derivatives cannot be calculated or are difficult to determine, but they do generally require more function evaluations to obtain convergence. Powell's method of conjugate directions is a widely used method of this class (8). The direction vectors $\bar{S}^{\mathbf{i}}$ and $\overline{\mathbf{S}} \mathbf{j}$ are conjugate to each other if

$$
\left(\overline{\mathrm{S}}^{\mathrm{i}}\right)^{\mathrm{T}} \overline{\mathrm{H}}_{\overline{\mathrm{S}}}{ }^{\mathrm{j}} .
$$

where \bar{H}, the Hessian, is the matrix of second derivatives. Powell's method assumes that a quadratic approximation can be made of the objective function and proceeds to build a corresponding approximation of the Hessian. for a quadratic function, a minimum exists when then Hessian is positive definite. This method has produced many variations, most notably by Brent (4). These subsequent variations attempt to improve determination of the search directions. Rosenbrock's method (5) generates orthogonal search directions to improve convergence. The method of Hooke-Jeeves (8) uses the coordinate unit direction vectors as the search directions and uses an acceleration step during the search. Both Rosenbrock and Hooke-Jeeves utilize the direction of the change in the design vector between complete search sets to accelerate the minimization process.

First order methods rely on computed first derivatives to determine search directions and will converge more quickly than zero order methods for most quadratic functions. The method of Fletcher-Reeves (9) generates gradient-based directions that are conjugate to each other. A class of methods know as quasi-Newton methods approximate the inverse of the Hessian matrix and use this approximation for generating the search directions, without actually requiring second derivative calculations (13).

Davidon-Fletcher-Powell and Broyden-Fletcher-GoldfarbShanno are the two the most common quasi-Newton methods, differing only in the way in which the search directions are updated.
second order methods utilize both first and second derivative information. Newton's method (13) expands the objective function and constraints using a second order Taylor series expansion and solves for the search direction matrix $\overline{\mathbf{S}}$ defined by

$$
\overline{\mathbf{H}} \overline{\mathbf{S}}=-\nabla \overline{\mathbf{F}}
$$

If the function is quadratic, the method will converge in one iteration. Both first and second derivatives must be provided.

The interior ballistic model selected (see section 3) has multiple variables and is constrained. For some propellents there are dependencies that will not allow the model to evaluate certain combinations of parameters, producing holes in the parametric space. The number and combinations of analytical and empirical equations in the model in addition to a different surface area and volume regression equation for each propellent make the evaluation of the first derivatives difficult. These factors make the direct methods, with their dependence on explicit derivative information, less desirable than sump using zero order methods.

Of the sumT methods, the exterior penalty function
method approaches the solution from the infeasible region. If this method is terminated early, it may lead to an infeasible design. The interior penalty function method approaches the solution from the feasible region. However, it may have problems dealing with discontinuities of $\Phi\left(\bar{X}, r_{p}\right)$ at the boundaries because of the way the penalty function is generated. The ALM will approach the solution from either the feasible or infeasible region and will ensure constraint compliance at the solution and therefore is the method of choice for this thesis.

The selected interior ballistic model is time efficient. Since the parametric space is nonlinear and this is a first try at this problem, the choice of zeroorder methods is indicated. Powell's method provides good convergence and uses the idea of conjugate directions without an explicit dependence on derivative information. Hooke-Jeeves with fixed orthogonal search directions combined with an acceleration step is robust.

Optimization methods are tools for assisting the engineer in design and analysis, not for replacing him. Optimization techniques, when properly applied, result in more efficient and economical designs. A more correct description of the optimization process is "design improvement". Despite the best algorithm and applications. few designs are truly the "best designs". Some advantages from including optimization in design are (17):

1. A reduction in design time, especially when one scheme can be applied to numerous problems.
2. A systematic design procedure.
3. A wide variety of design variables and constraints can be handled.

The following disadvantages are also present:

1. Computational time increases as the number of variables increase. This can make the process prohibitively expensive or numerically illconditioned.
2. The process does not have experience to draw on during problem solving.
3. If the analysis is not theoretically precise, the results of the process may be misleading.
4. Ballistics.

Ballistics is the science that deals with the propulsion, flight, and impact of projectiles from guns. Ballistics is organized into three phases. Interior ballistics is the propulsion of the projectile inside the gun system. Exterior ballistics is the flight of the projectile through the atmosphere. Terminal ballistics is the impact and penetration of the projectile into the target. The sequence of events from the ignition of the propellent in the projectile, to departure of the projectile from the stabilizing tube is the interior
ballistic cycle and the subject of this thesis.
Ballistics started as an art not a science. Initially interior ballistics was not differentiated from general ballistics because there was no practical way to measure muzzle velocity or pressure in the gun. All that could be said was that given a certain charge mass, projectile, gun, and angle of elevation a certain range could be obtained (7).

Prior to valid theoretical models and the ability to solve them, the practical approach was to solve the problem experimentally. For example, LeDuc (11) fit a hyperbolic curve to experimental data and generated ballistic tables. Some analytical models existed, but their solution was not practical for day to day use. A vorkable form of the analytical solution did not come until Charbonnier in 1908 (11). Numerous assumptions and simplifications were necessary, since accurate measurement of the pressuretime curve was still not possible.

The development of a reliable piezoelectric gauge around 1935 provided the means to accurately record the pressure-time events in the gun and provided the impetus to connect interior ballistics to the physics and chemistry. The central problem was still the same but more questions could be asked, and answered, by combining theoretical models and empirical data.

The development of the digital computer caused a
change in ballistic modeling. Before the digital computer, closed-form solutions to the governing differential equations or tabular and data curve fitting were predominant. Most notable of the latter were the ballistic tables of Bennet (11) in 1921, some of which are still in use today. The first uses of digital computers were to solve the governing differential equations. In 1962 Baer and Frankle (2) introduced the first direct numerical solution of the ordinary differential equations of interior ballistics on a case by case basis. The solution of the one dimensional (1-D) partial differential equations began in the late 1960's. The first 1-D code was developed by Baer, and subsequently numerous $1-\mathrm{D}$ models have been developed, most notably NOVA (16). The modeling of flame speading phenomena, two phase flow, the condensed propellent and products of combustion are examples of work to improve the simulation of the events in the gun. These are active research efforts(11).

One of the most widely used interior ballistics models today is called IBHVG2 (Interior Ballistics of High Velocity Guns, version 2) (1). It was derived from the Baer-Frankle methodology and includes elements of MPRGUN (Multipurpose Gun Code) (2). It is a lumped parameter model in that it assumes the reaction chamber is well mixed and represented by the rate of burning. The results from IBHVG2 correspond with experimental data and there is a
high degree of reliability in the model. Projectile Design and simulation PRODAS (6) is a model in use that takes projectile design through all three ballistic phases. It uses IBHVG2 as its interior ballistics model. Another lumped parameter model, IBRGAC (Interior Ballistics Model, Robbins-Gough-Anderson, Chambrage) (15), is derived from the NATO technical cooperative program (TTCP), model IBRGA. It is used both as a design tool and to verify predicted results from other codes. Its primary advantages are that it is a straightforward code, not expensive to run, and based on an accepted international model. For these reasons this code is selected as the interior ballistic model to be used in this research.
3. Gun Nomenclature.

The typical gun system consists of a fire control system, a cannon (Figure 2.2), and a round of ammunition (Figure 2.3). The fire control system salculates the exterior ballistic solution for the flight of the projectile. It applies the correction to the elevation and deflection of the gun tube prior to firing.

The cannon is a tube that is closed at one end for firing. The barrel provides a guide and support for the projectile as it is accelerated by the impulse of the p.opellent gases during the interior ballistic cycle. The breech is opened to allow the projectile to be loaded and is closed for firing. In front of the breech is the

Figure 2.2 Typical Tank Gun Nomenclature (11).

Figure 2.3 Typical Kinetic Energy Tank Round.
reaction chamber that usually has a greater diameter than the remainder of the barrel. It holds the propellent and it is here that ignition and the initial pressure bildd-up occurs. At the front end of the reaction chamber is an area whose walls taper down to the barrel diameter. This area is called the shoulder. Forward of the shoulder the gun barrel has a uniform diameter, called the gun bore, which continues to the muzzle.

There are two ways to stabilize the projectile in flight. The first way is to impart spin to the projectile as it is traveling down the gun tube. To do this the gun barrel is rifled. Parallel grooves are cut into the barrel that twist down the tube. The rotating band that translates the twist of the rifling to projectile spin is part of the case cap assembly. It is engraved by the rifling as the projectile travels down the tube. The other method is to fin stabilize the projectile. This is done by attaching a boom and fins to the projectile. Normally a smooth bore gun is used and the rotating band seals the propellent gases behind the projectile. In both cases the pressure behind the projectile must overcome the resistance from the rotating band/gun tube interface.

The base of the round is the cartridge case. It holds the propellent and ingiter and is designed to fit snugly in the reaction chamber. The part of the round that travels to the target is either a chemical energy or kinetic energy
projectile. The remainder of the round is called the case cap assembly. It consists of the parts necessary to secure and stabilize the projectile in the gun tube. It is discarded by aerodynamic drag after the projectile leaves the gun.

A chemical energy projectile has an explosive charge that detonates upon impact. All the energy needed at impact is provided by this charge. The terminal velocity is not critical. A kinetic energy projectile does not contain any explosive charge. Its destructive force is dependent upon its kinetic energy at impact. The kinetic energy is given as

$$
K E=\frac{1}{2} \mathrm{MV}^{2}
$$

where M is the mass of the projectile and V is the velocity at impact. It is essential that kinetic energy projectiles have high velocity and mass.

CHAPTER III

OPTIMIZATION METHOD

1. Introduction.

This chapter develops the specific optimization methods and computer code that will be applied in Chapter v to the interior ballistic problem. The code is set up to accept the physical variables for ballistics that are explained in Chapter IV.
2. General Problem Statement.

The nonlinear constrained optimization problem is stated as

subject to:
$g_{j}(\bar{X}) \leq 0 \quad j=1, m \ldots \ldots . . .$. inequality constraints
$h_{k}(\bar{X})=0 \quad k=1,1 \ldots e q u a l i t y$ constraints
x_{i} (lower) $\leq x_{i} \leq x_{i}$ (upper) side constraints $i=1, n$.

Here the design variables are viewed as the vector \bar{X} given 23

$$
\bar{x}^{T}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}
$$

where the superscript T means transpose.
3. Augmented Lagrange Multiplier Methnd.

The material in the background section of Chapter II justified the choice of the augmented Lagrange multiplier
(ALM) method for solving the constrained interior ballistics problem.

The ALM includes all constraint conditions in the optimization scheme. This is done by generating a pseudoobjective function that combines the objective function with the equality and inequality constraints as in Equation 3.1. Side constraints are included in the inequality constraint set. The pseudo-objective function is then minimized as an unconstrained function of the n design variables and ($m+1$) Lagrange multipliers. Minimizing the new objective function results in the minimum of the original cost function with all constraints satisfied. The form of the general Augmented Lagrangian is (17)
$A\left(\bar{X}, \lambda, r_{p}\right)=F(\bar{X})+\sum_{j=1}^{m}\left[\lambda_{j} \psi_{j}+r_{p} \psi_{j}{ }^{2}\right]+\sum_{k=1}^{l}\left\{\lambda_{k+m^{\prime}} h_{k}(\bar{X})+r_{p}\left[h_{k}(\bar{X})\right]^{2}\right\}, 3.1$ where

$$
\psi_{j}=\max \left[g_{j}(\bar{x}),-\lambda_{j} / 2 r_{p}\right]
$$

Here $F(\bar{X})$ is the function to be minimized, $h(\bar{X})$ the equality constraints and $g(\bar{X})$ the inequality constraints. The λ 's are the Lagrange multipliers. They are a measure of the magnitude of the constraint violation and are updated between iteration as follows:

$$
\begin{array}{lll}
\lambda_{j}^{p+1}=\lambda_{j}^{p}+2 r_{p}\left\{\operatorname { m a x } \left[g_{j}(\bar{x}),-\lambda_{\left.\left.j / 2 r_{p}\right]\right\},}^{p}\right.\right. & j=1, m & 3.3 \\
\lambda_{k+m}^{p+1}=\lambda_{k+m}^{p}=2 r_{p} h_{k}(\bar{x}) . & k=1,1 & 3.4
\end{array}
$$

The r_{p} is a scaling factor that weights each constraint. It is updated by a constant multiplying factor

$$
r_{p}=\gamma r_{p}
$$

An upper limit $r_{\text {pmax }}$ is also established so that r_{p} does not increase indefinitely.

Given the initial conditions, Equation 3.1 is minimized. If a solution is found, the algorithm is exited. If not, the λ 's and r_{p} are updated by Equation 3.3, 3.4, and 3.5, and the process continues (Figure 3.1).

The ALM is considered successful when the change in the $\lambda \prime s$, the change in the original objective function, and the change in the constraint functions are within specified tolerances between consecutive iterations. $A\left(\bar{X}, \lambda, r_{p}\right)$ is minimized by a suitable unconstrained minimization method.

As discussed earlier, the zero order methods selected are Powell's and Hooke-Jeeves. These approaches solve the problem by function evaluations alone and do not use gradient information to locate the minimum.
4. Powell's Method.

Powell's is one of the most popular and reliable of the zero order methods (8). It performs $n+1$ line searches per iteration. The method assumes quadratic behavior of the function and generates directions that are conjugate to an approximation of the Hessian matrix. The matrix \bar{H} is initialized as an nxn identity matrix. The columns are initially set to have the coordinate directions as the directions. After each set of searches along all current directions, the search directions $\overline{\mathbf{s}}^{\mathbf{i}}$ are updated by

Figure 3.1 ALM Method Algorithm (17).

$$
\overline{\mathbf{S}}^{i}=a_{i} \overline{\mathbf{S}}^{\mathbf{i}}, \quad \mathbf{i = 1 , n}, \quad 3.6
$$

where a_{i} is the scalar multiplier determining the amount of change in \bar{X} for the $i t h$ direction. After n searches, a new direction s^{n+1} is generated by connecting the initial \bar{x} with the current \bar{X} and the $n+1$ search is performed (17). If the process has not converged the search directions are reassigned as

$$
\overline{\mathbf{s}}^{\mathbf{i}}=\overline{\mathbf{s}}^{\mathrm{i}+1} . \quad i=1, n
$$

and become the new set of search directions.
In each direction, Powell's method uses a uniform grid search to determine an interval within which a local minimum exists. Either a three point quadratic approximation or the Golden sections method is used to locate the minimum within the given interval. Although a quadratic approximation is less expensive in terms of function evaluations, it is less robust than the Golden sections method. The convergence criteria is the change in the design vector, within a specified tolerance, from iteration to iteration.
5. The Hooke-Jeeves Method.

Hooke-Jeeves uses the coordinate directions as exploratory search directions. Hook-Jeeves searches in discrete steps for each direction. After a complete set of exploratory searches, a scalar multiplier accelerates the search in the direction indicated by $\Delta \bar{x}$. If the objective
function value is not improved after the acceleration step, the method returns to the previous \bar{x}, reduces the search increment and continues. It may require more function evaluations since Hooke-Jeeves always makes use of the coordinate directions, regardless of the behavior of the function. However, it is less likely to fail through numerical ill-conditioning. Convergence is achieved when the search increment is reduced to a value that is less than a predetermined tolerance.
6. Description of the Optimization Code.

The optimization code is written by the author in FORTRAN 77. The code is designed as a series of shells. The outer shell contains the ALM subroutines. In the next shell are the one dimensional unconstrained minimization subroutines. In the inner most shell are the objective and constraint function subroutines. A copy of the code is included in Appendix I. A short description of the code follows.

There is one master header file, 'declarations.ins.f'. This file contains the variable declarations, parameters, and common block definitions for the outer two shells. It is appended to the beginning of each subroutine and includes common and passed variables. Each subroutine declares local variables as needed. The main program is called 'optimum.ftn'. It controls the process and calls the subroutines that monitor
the optimization. All user interaction is done in 'optimum'. From this program the following subroutines are called.

1. read_data: This subroutine reads the interior ballistics code input records and assigns the initial values to the design vector.
2. powell: It drives Powell's method and keeps track of search directions and convergence criteria.
3. hook_jeeves: This is the Hooke-Jeeves algorithm and controls the search and convergence criteria.
4. check_print: This program prints out the current ALM iteration values and other diagnostic information.
5. tol_test: This performs the ALM convergence test of the equality, inequality and original objective function convergence criteria.
6. update: Here the updates of r_{p} and the $\lambda^{\prime} s$ for the ALM pseudo-objective function by Equation 3.3, 3.4, 3.5 are performed.
7. printit: This subroutine prints the final objective function value and the final design vector.

The second shell is the unconstrained minimization shell that contains the method of Powell and Hooke-Jeeves. The Hooke-Jeeves subroutine is self contained and calls no other subroutines. The subroutine 'powell' calls the
subroutine 'search' and this subroutine calls the following subprograms.
8. ugrid_1d: The uniform grid search algorithm isolates the interval where the minimum is located by conducting a one dimensional unconstrained line search of uniform step sizes until such an interval is found.
9. gold: The Golden Sections interval reducer locates the minimum in the interval found by 'ugrid_1d' through the use of an iterative reduction of the interval. This reduction is done with the use of the Golden Section's ratio of 6.18 and 3.82.
10. quad: This quadratic approximation subroutine uses gaussian elimination to solve the system of equations generated by the interval sent from 'ugrid_1d'. It assumes quadratic behavior in the interval.

Both methods call the subroutine funx.ftn'. It performs the transformation of the objective function and the constraint functions to the ALM pseudo-objective function, Equation 3.1. Subroutine 'funx' calls the following two subprograms. The first, 'fun_con.ftn', is a user supplied subroutine that contains all of the equality and inequality constraints and evaluates them for each function call. The second, 'fun_int.ftn' is the modified version of IBRGAC described in chapter IV and found in

Appendix II.
The user is responsible for providing the input data as required by the interior ballistics code, the constraint subroutines, and the subroutines that allow the transfer of the variables from the optimization code to the interior ballistics code. They are 'var_in.ftn', 'var_out.ftn', and part of 'read_data.ftn'. The user must also specify in 'optimum.ftn' the number of variables, equality constraints, inequality constraints, and tolerances.

INTERIOR BALLISTICS

1. Introduction.

The first part of this chapter presents the conservation equations and empirical relationships used in a lumped parameter model to solve the interior ballistics problem. It is primarily drawn from three sources; the IBRGAC User's Manual (15), the IBVGH2 User's Manual (1), and the derivation by Krier and Adams (11). Many of the equations in these sources are repeated from previous work that will not be cited here. The sequence of events during the interior ballistic cycle are described in section 2. Section 3 defines the projectile equations of motion as a function of time and their dependence on projectile base pressure. The base pressure's relation to mean pressure in the tube and the rate of propellent gas generation is derived in Section 4. In Section 5, mean gas pressure and its dependence on mean gas temperature and rate of propellent gas generation is derived. Section 6 defines the mean temperature and its relationship to the rate of gas generation and losses to the system, which are detailed in Section 7. Section 8 derives the rate of gas generation and discusses propellent properties. In section 9 the gun recoil equations of motion are derived. Finally, Section 10 lists the modeling approximations used in the previous
sections.
The second part of the chapter describes the IBRGAC code and its organization (Sections 11 and 12).
2. Interior Ballistic Cycle.

The interior ballistic cycle starts at propellent ignition. After the propellent is ignited, pressure and heat rapdily increase inside the chamber from the generation of combustion gases (Figure 4.1). Projectile motion begins after this pressure has overcome the resistance caused by the initiation of engraving the projectile's rotating band by the bore. pressure increases until the rate of volume increase overcomes the rate of propellent gas generation. Acceleration continues as long as there is a pressure differential across the projectile. The interior ballistic cycle ends when the projectile leaves the gun tube.
3. Projectile Equations of Motion.

A gun is a simple heat engine in which chemical energy of the propellent is transformed into kinetic energy of the projectile and heat (16). Newton's Second Law is

$$
a=\frac{F}{m}, \quad 4.1
$$

where at time t projectile acceleration equals the net force generated by propellent combustion divided by effective mass. The projectile maintains a constant inbore mass. The integral of acceleration with respect to

Figure 4.1 Interior Ballistic Cycle (11).
time yields velocity while a subsequent integration gives the distance the projectile has travelled (travel).

Newton's Second Law for this problem is

$$
a_{p}=\frac{A_{b}}{m_{p}}\left(P_{b}-P_{r}-P_{g}\right)
$$

where a_{p} is projectile acceleration, A_{b} projectile base area, P_{b} the pressure at the projectile base, P_{r} the bore resistance to friction and engraving (as an equivalent pressure), P_{g} the pressure of the air in the tube ahead of the projectile, and m_{p} the projectile mass. The solution for projectile velocity as a function of time is obtained by determining the pressures in the parenthesis of Equation 4.2 as functions of time and integrating. $P_{r}(t)$ is interpolated from tabular resistance pressure data and $P_{g}(t)$ is given as a constant average value. The remaining parameter to be found is the base pressure $P_{b}(t)$.

Projectile travel, in the ground based coordinate system, is the sum of projectile displacement and the recoiling gun displacement. Summing the integrals with respect to time of projectile velocity and gun recoil velocity (Equation 4.34) gives travel as

$$
\mathbf{x}=\int_{0}^{t} \mathbf{v}_{\mathbf{p}} d t+\int_{0}^{c} \mathbf{v}_{\mathbf{r}} d t
$$

4. Base Pressure Derivation.

From initial projectile movement (initial volume is chamber volume minus the volume occupied by propellex.t) until the projectile leaves the gun tube, the volume occupied by the combustion gases is constantly
increasing. As the available volume and quantity of gases increases during propellent consumption, the gases are accelerating down the tube. This is caused by the difference in pressure from the breech to projectile base. A solution for the distribution of pressure, density, and gas velocity in the gun during firing is obtained by the Lagrange pressure gradient approximation. It states that "the velocity of the gas at any instant increases linearly with distance along the bore, from zero at the breech to the full shot velocity at the base of the projectile" (7).

The approximations made in this model are: the chamber is a cylindrical extension of the bore with the same total volume, the entire charge may at any time be treated as gaseous and gas density is uniformly distributed in the gun tube at any time. If the distance from the breech is x and y is the position of the base of the projectile, the gas velocity v_{g} can be expressed as

$$
\mathrm{v}_{g}=\frac{x}{y} \frac{d y}{d t}
$$

The all gaseous propellent charge assumption means that density is

$$
\rho=\frac{c_{t}}{A_{b} y},
$$

where C_{t} is the initial mass of propellent and igniter. Uniformly distributed gas density means $\frac{\partial \rho}{\partial x}=0$. When $x=y$ the gas velocity v_{g} equals projectile velocity v_{p}.

Therefore, Newton's First Law can be written as

$$
\frac{d^{2} y}{d t^{2}}=\frac{A_{b}}{m_{p}}\left(P_{b}-P_{r}-P_{g}\right)
$$

where previous definitions apply. Integrating the equation of motion for the gas using the previous three equations gives the pressure $P(x)$ as a function of distance as

$$
P(x)=P_{b}+\frac{C t}{2 m_{p}}\left(1-\frac{x^{2}}{y^{2}}\right)\left(P_{b}-P_{r}-P_{g}\right)
$$

The mean pressure P_{m}, between the breech and projectile base, can then be determined as

$$
P_{m}=\frac{1}{y} \int_{0}^{y} P d x=P_{b}+\frac{C t}{3 m_{p}}\left(P_{b}-P_{r}-P_{g}\right) .
$$

Solving for the base pressure P_{b} gives

$$
P_{b}(t)=\left[P_{m}(t)+\frac{c_{t}\left(P_{r}+P_{g}\right)}{3 m_{p}}\right] /\left[1+\frac{C t}{3 m_{p}}\right]
$$

To determine the base pressure $P_{b}(t)$, the mean pressure $P_{m}(t)$ must be determined.
5. Mean Pressure Derivation.

Van der Waals' equation of state is (16)

$$
\left(P+a / V^{2}\right)(V-B)=\bar{R} T
$$

Here \bar{R} is the universal gas constant, V is the molar volume of gas, the term a / V^{2} is the increase in pressure due to intermolecular attractions, and B is the decrease in free volume due to the finite v (lume of the molecules. This means the available free volume for the gas to move about is less than the free chamber volume. At low pressure and
densities these volumes are nearly identical. At high pressure and densities the free volume difference is noticeable.

As temperature and pressure increase in the gun, the effect of intermolecular attractions decreases causing the a / V^{2} term in Equation 4.7 to become negligible. Van der Waals' equation is reduced to

$$
P(V-B)=\bar{R} T . \quad 4.8
$$

To use the preceding equation with the mass and volume of gas, \bar{R} is substituted in Equation 4.8 by the relation

$$
\bar{R}=R(V m / v), \quad 4.9
$$

where R is the specific gas constant, m the mass, and v the volume of gas. This form of Van der Waals' equation, after simplification, is known as the Noble-Abel equation

$$
P(V-m b)=m R T .
$$

In Equation 4.10 the covolume b is defined as the van der Waals, constant B divided by the molecular weight of the gas. Using mean values of the pressure P_{m} and temperature T_{m}, over the temperature range, Equation 4.10 is

$$
P_{m}\left(V-\sum_{i} m_{i} b_{i}-m_{I} b_{I}\right)=\left(\sum_{i} m_{i} R_{i}+m_{I} R_{I}\right) T_{m}
$$

The subscript I is the igniter and for multiple propellents the subscript i indicates the $i t h(i=1, n)$ propellent. Substituting for the specific gas constant R in the above equation with the propellent force F, defined as

$$
\mathrm{F}=\mathrm{RT}_{0^{\prime}}
$$

with T_{0} being the adiabatic flame temperature of the
product gases, the mean pressure P_{m} can be stated as

$$
P_{m}=T_{m}\left[\sum_{i} \frac{F_{i} m_{i}}{T_{O i}}+\frac{F_{I} m_{I}}{T_{O I}}\right] /\left(V-\sum_{i} m_{i} b_{i}-m_{I} b_{I}\right)
$$

At time t, the mean pressure is calculated from Equation 4.13a for values of the mass of gas present, or

$$
P_{m}(t)=T_{m}(t)\left[\sum_{i} \frac{F_{i} m_{i}(t)}{T_{O i}}+\frac{F_{I} m_{I}}{T_{O I}}\right] /\left(V(t)-\sum_{i} m_{i}(t) b_{i}-m_{I} b_{I}\right) \cdot 4.13 b
$$

The mass of gas present $m_{i}(t)$ at time t is equal to the fraction of propellent mass burned $z_{i}(t)$, Equation 4.31, multiplied by the original propellent mass c_{i} or

$$
P_{m}(t)=T_{m}(t)\left[\sum_{i} \frac{F_{i} c_{i} z_{i}(t) F_{I} m_{I}}{T_{O i}}+\frac{T_{O I}}{T_{O}}\right] /\left(V(t)-\sum_{i} c_{i} z_{i}(t) b_{i}-m_{I} b_{I}\right) .4 .13 c
$$

The volume available for the gases at time t is

$$
v(t)=v_{c}+A_{b} x(t)-v_{r}(t)
$$

where $x(t)$ is projectile travel, A_{b} is area of the projectile base, and V_{c} is initial chamber volume. The total volume of unburnt propellent $V_{r}(t)$ is calculated from the fraction of mass burned by

$$
v_{r}(t)=\sum_{i} \frac{C i}{\rho_{i}}\left(1-z_{i}(t)\right)
$$

The gas density is ρ. To determine the mean pressure $P_{m}(t)$ in Equation $4.13 c$, the mean temperature $T_{m}(t)$ must be known.
6. Mean Temperature Derivation.

From the First Law of Thermodynamics, the energy balance in the gun tube can be stated as: the initial
energy of the gases is equal to the internal energy of the gases plus any losses. Losses include work done by and heat transfered from the system and are discussed in the next section. Using average values of specific heats over the temperature range, the initial energy of the gases is

$$
E_{1}=\sum_{i} m_{i} c_{v i} T_{O i}+m_{I} c_{V I} T_{O I}
$$

where m_{i} is mass, $c_{v i}$ specific heat (at constant volume), and $T_{o i}$ adiabatic flame temperature of the propellent product gases. The same definitions apply for the igniter. The internal energy of the gases in terms of the mean temperature T_{m} is

$$
E_{2}=\left[\sum_{i} m_{i} c_{v i}+m_{I} c_{v I}\right] T_{m}
$$

Equation 4.17 and 4.18 are used in the energy balance statement. The specific heat c_{v} is first expressed as

$$
c_{v}=F /\left[(\gamma-1) T_{0}\right],
$$

where γ is the ratio of specific heats, and the results are solved for mean temperature T_{m} to obtain

$$
T_{m}=\frac{\left[\sum_{i} \frac{F_{i} m_{i}}{\left(\gamma_{i}^{-1)}\right.}+\frac{F_{I} m_{I}}{\left(\gamma_{I}-1\right)}-L \quad\right]}{\left[\underset{i}{\sum} \frac{F_{i} m_{i}}{\left(\gamma_{i}-1\right)} T_{O i}+\frac{{ }^{F_{I}} m_{I}}{\left(\gamma_{I}-1\right)} T_{O I}\right]}
$$

At time t, the mean temperature is calculated from Equation 4.19a as

$$
T_{m}(t)=\frac{\left[\sum_{i} \frac{F_{i} m_{i}(t)}{\left(\gamma_{i}-1\right)}+\frac{F_{I} m_{I}}{\left.i \gamma_{I}-1\right)}-L(t)\right]}{\left[\sum_{i} \frac{F_{i} m_{i}(t)}{\left(\gamma_{i}-1\right)} T_{o i}+\frac{F_{I} m_{I}}{\left(\gamma_{I}-1\right)} T_{O I}\right]} .
$$

Again $m_{i}(t)$, the mass of the gas present at time t, is calculated from the fraction of propellent mass burned $z_{i}(t)$, Equation 4.31, multiplied by the original propellent mass C_{i} or

$$
T_{m}(t)=\frac{\left[\sum_{i} \frac{F_{i} C_{i} z_{i}(t)}{\left(\gamma_{i}-1\right)}+\frac{F_{I^{m}}}{\left(\gamma_{I}-1\right)}-L(t)\right]}{\left[\sum_{i} \frac{F_{i} C_{i} z_{i}(t)}{\left(\gamma_{i}{ }^{-1)}\right.} T_{o i}+\frac{{ }^{F_{I} m_{I}}}{\left(\gamma_{I}-1\right)} T_{O I}\right]} .
$$

For both the mean pressure and temperature, the derivation of the fraction of mass burned $z_{i}(t)$ is in Section 8.
7. Work and Losses.

In the previous section there is loss $L(t)$ due to work performed and heat transferred from the system. There are three general classes of loss. The first is work done to the projectile and gun. They are; loss to projectile translation and rotation and recoil of the gun. The second is work lost to the propellents and resistances. They are; energy losses to propellent gas and unburned propellent motion, bore resistance due to engraving and friction and air resistance in front of the projectile. The third is heat transfer to the chamber wall. All these can be written as follows:

$$
L(t)=E_{p t}+E_{p r}+E_{r p}+E_{p}+E_{b r}+E_{c}+E_{h} . \quad 4.20
$$

These losses and the relevant equations are listed in Table 4.1.

Type of Energy Loss
Equation
projectile translation projectile rotation recoil of the gun
propellent gas and unburnt propellent motion
bore resistance due to engraving and friction
loss to air resistance
heat transfer to the chamber $E_{h}=\int_{0}^{t} \dot{\mathbf{q}} \mathrm{dt}$
walls and gun barrel
$E_{p t}=\frac{1}{2} m_{p} v_{p}{ }^{2}$
$E_{p r}=\frac{\pi}{4} m_{p} V_{p}{ }^{2} T w^{2}$
$\mathrm{E}_{\mathrm{IP}}=\frac{1}{2} \mathrm{~m}_{I p} \boldsymbol{V}_{I P}{ }^{2}$
$\mathbf{E}_{\mathbf{b r}}=\mathbf{A}_{\mathbf{b}} \int_{0}^{t} \mathbf{P}_{\mathbf{r}} \mathbf{V}_{\mathbf{p}} \mathbf{d t}$
$\mathbf{E}_{\mathbf{C}}=\mathbf{A}_{\mathbf{b}} \int_{0}^{t_{\mathbf{g}}} \mathbf{p}_{\mathbf{p}} \mathbf{d t}$
$\mathrm{E}_{\mathrm{p}}=\frac{1}{2} \mathrm{~A}_{\mathrm{b}} \int_{0}^{V_{g}^{2}} \mathrm{dx}^{2}=\frac{1}{6} C_{t} \mathrm{~V}_{\mathrm{p}}^{2}$

For energy loss to projectile rotation $E_{p r}$, Tw is the twist of rifling in turns per caliber. More precisely, Tw is the ratio of complete revolutions to bore diameter for the rifled grooves down the length of the gun tube.

Energy due to heat transfer to the internal chamber walls and gun barrel by convection E_{h} is assumed to be proportional to the difference of the mean temperature of the system and average temperature of the wall. At time t, this heat loss can be stated as

$$
E_{\mathbf{h}}=\int_{0}^{t} \dot{\mathbf{Q}} d t, \quad 4.21
$$

where

$$
\dot{Q}(t)=A_{w}(t) h\left(T_{m}(t)-T_{w}(t)\right), \quad 4.22
$$

and $T_{w}(t)$ is the temperature of the chamber wall. The exposed chamber wall area A_{w} is

$$
A_{w}(t)=\frac{V o}{A_{b}} \pi D_{b}+2 A_{b}+\pi D_{b} \times(t),
$$

where D_{b} is bore diameter, V_{0} initial chamber volume, and the heat transfer coefficient is given by

$$
h=\lambda \bar{c}_{p} \bar{\rho}^{\rho} \bar{v}_{g}+h_{0}
$$

Here $\bar{c}_{p}, \bar{\rho}$, and \bar{v}_{g} are mean values for the previously defined symbols and h_{0} is a natural convective term which allows heat transfer if the projectile is not moving. The Nordheim friction factor λ is empirically derived from gun tube experimentation and found to be

$$
\lambda=\left[13.2+4 \log 10\left[100 . c D_{b}\right]\right]^{-2} .
$$

The chamber wall temperature T_{w} in Equation 4.22 is derived from an energy balance that says
heat transfer + work $=\Delta$ internal energy.
The heat transfer is E_{h} and work is given by $E_{b r}$ multiplied by an empirical factor f, the fraction of work done against bore friction that preneats the chamber. The change in internal energy of the chamber wall is

$$
\Delta=T_{w} c_{p w^{\prime}} m_{w}-T_{c} c_{p w} m_{w}
$$

where the w subscript indicates the chamber wall properties for specific heat (at constant pressure) and mass of the chamber wall. The initial chamber wall temperature is T_{C}. placing the above terms into the conservation equation and substituting mass with density and volume yields

$$
E_{h}+f E_{b r}=c_{p w} \rho_{w} A_{w} D_{w}\left(T_{w}-T_{c}\right)
$$

Here D_{w} is the chamber wall thickness. In terms of the chamber wall temperature T_{w}, Equation 4.27 is

$$
T_{w}=\frac{E h+f E b r}{C_{p w} \rho_{w} A_{w} D_{w}}+T_{c}
$$

and can be placed into Equation 4.22 for $T_{w}(t)$ at time t.
8. Propellent and Rate of Burning.

Propellents are composed of compounds that ignite and burn quickly, producing large quantities of gas rapidly. Conventional propellents are primarily nitrocellulose and their basic geometric unit is the grain.

The burning rate of the propellent is the rate at which the surface of the propellent regresses. The empirical equation is the steady state burning law (7)

$$
r=\beta P_{m}^{\alpha}
$$

where β is the burning rate coefficient and α is the burning rate exponent. The unit of r is meter per second. Experimental burning rate data are fitted to the equation to determine the coefficients, which are functions of propellent temperature.

The burning of the propellent grains produces the pressures necessary to overcome the initial resistive forces and accelerate the projectile down the gun tube. The model states that grains burn uniformly and without deformation. At constant pressure the mass of the combustion gases produced is proportional to the surface area exposed. As burning continues, the rate of mass produced depends on the surface area as a function of time. The equations for the recession of the exposed surface area for propellents are determined from geometric analysis of the grain.

The mass fraction burning rate \dot{z} is the rate at which the propellent mass is being consumed and therefore the rate gas is generated. The relationship is

$$
\dot{z}_{i}=s_{i} r_{i} / v_{g i}, \quad 4.30
$$

where s_{i} is the remaining propellent grain surface area, r_{i} is the linear burning rate from Equation 4.29 and $V_{g i}$ is the initial grain volume. Integrating equation 4.30 yields the fraction of mass burned at time t as

$$
z_{i}=\int_{0}^{t} \dot{z}_{i} d t
$$

The physical configuration of the grains within the
chamber (packing) has an effect on the rate of burning and the resultant chamber pressure. This effect is not considered within the scope of this research.

There are three types of propellent grain geometry: regressive, neutral, and progressive. Regressive burning grains reduce their surface area during burning. Neutral burning grains maintain a constant surface area until consumed. Progressive burning grains increase in surface area as they burn. For progressive burning grains, once the grain has burned a certain distance the perforations intrude upon each other and burning becomes regressive. An example of each type is depicted in Figure 4.2.

Another factor in propellent performance is the density of loading. It is the weight of the propellent in the chamber, divided by the volume of the chamber available to the propellent. The loading density is a measure of how much propellent is present and therefore how many moles of gas will be generated. An increase in the density of loading will generally increase pressure in the chamber.
9. Gun Recoil.

Recoil is the rearward movement of the gun in the ground reference frame during firing. Recoil is caused by reaction to the forward motion of the projectile and propellent gases. Recoil systems are āusigned to absorb this energy so that the gun will remain stable during

Figure 4.2 Typical propellent Grain Burning Types.
firing. The equation of motion from Newton's Second Law is

$$
a_{r p}=\frac{A b}{m_{r p}}\left(P_{b r}-\frac{R P}{A_{b}}-P_{r}\right)
$$

Here $P_{b r}$ is the breech pressure, $R P$ is the resistive force to recoil motion, and the subscript rp means recoiling parts. The acceleration of the recoiling parts is zero until the pressure at the breech is greater than the combined resistive forces to recoil motion and barrel resistance. Integration of $a_{r p}$ gives the corresponding velocity $v_{r p}$ as

$$
v_{r p}=\int_{0}^{c} a_{r p} d t
$$

10. Modeling Approximations.

Modeling the interior ballistic cycle uses the following conditions:

1. The propellent gas mixture is described by the Noble-Abel equation of state. This means that the gases are well mixed and no solid or liquid phases exists.
2. The propellent gas flow is taken to be onedimensional, inviscid, and compressible.
3. The steady state burning rate law can be used to describe the recession of the rate of the propellent grains.
4. The base of the projectile is fuat and perpendicular to the direction of travel.
5. Propellent grains are all the same size and
configuration for a given propellent load. For perforated propellerts, all holes are placed in the grain symmetrically.
6. All propellent is ignited simultaneously and uniformly. The igniter is consumed by $t=0$.
7. All exposed burning surfaces recede at the same rate and perpendicular to the surface. That is, the grains shrink uniformly without deformation.
8. Decomposition of a unit mass of propellent will always liberate the same amount of energy, which heats product gases to the same temperatures.
9. The main constituents of i.he propellent sas mixture do not suffer further chemical or physical reactions.
10. Description of IBRGAC.

IBRGAC is a lumped parameter interior ballistics code written in FORTRAN. It was developed in 1987 at the Ballistic Research Laboratory, Aberdeen Proving Ground. Maryland and validated by experimental data.

IBRGAC uses the Lagrange and chambrage method for the breech to base pressure gradient. The chambrage gradient equation takes into account the narrowing of the front of the chamber to calculate the pressure gradient in the gun tube. It is demonstrated in the User's Marial that both methods result in comparable projectile performance predictions. The Lagrange method is used exclusively in
this research for consistency.
The user provides a input file organized into 9 records that are defined as follows.

1. Record 1; Gun system data and pressure gradient calculation selection flag.
2. Record 1a; If the chambrage gradient is selected, this record is read and contains chamber dimension data.
3. Record 2; Projectile mass, air resistance flag, and f, the fraction of work done against bore friction that preheats the chamber, data.
4. Record 3; Barrel resistance point data.
5. Record 4; Recoil data.
6. Record 5; Heat transfer data.
7. Record 6; Igniter data.
8. Record 7; propellent data (up to 10 propellents).
9. Record 8; Propellent burning rate point data (for each propellent used).
10. Record 9; Time increment data.

The data are read from the input file and printed in the output file. All input data are required to be in the MRS system. The example problem input files are in Appendix III.

The model uses 4 th order Runge-Kutta integration to calculate projectile velocity and travel, projectile resistance energy, system heat loss, recoil velocity and
travel, and energy loss to air resistance. The time rate of change of mass and surface area of propellent are determined from the linear burning rate.

The algorithm continues until either the projectile has left the tube or the stop time has been reached. The program will terminate for detected errors in input and output records or unacceptable grain dimensions. If time expires before the projectile has exited the tube, current projectile velocity rather than muzze velocity is displayed. For each time step, elapsed time, acceleration, velocity, travel, breech and mean and base pressures are calculated. Once the program is complete, initial and residual propellent gas energy and all losses from Section 7 are calculated for the cycle.
12. Program Organization.

The code has been reorganized into a main program and six subprograms. This was done to allow integration with the optimization code. A complete listing of each file is in Appendix II. There is one master header file 'intball.ins.f'. This file possesses the variable declarations, parameters and common block definitions. It is appended to each subroutine. Each subroutine declares local variables. A description of each file follows:

1. fun_int: This is the main program and performs the interior ballistic calculations with the exception
of surface area and volume rate of change calculations done in 'prfol7' and the loading density in 'mass_check'. It is called by subprogram 'funx' from the optimization program (see Chapter III). All subroutines are called by 'fun_int' except 'read_data'.
2. read_data; This subroutine is called by the optimization code. The input file values are assigned to a backup set of variables and the initial design vector is created.
3. reset_data; The subroutine resets all local variables used in 'fun_int' from their values and sets the working variables to their initial values for each iteration.
4. var_in; This subprogram is modified by the user and assigns the values from the design vector $\overline{\mathbf{x}}$ to the respective working variables in 'fun_int'.
5. mass_check; This subroutine determines the density of loading and maximum propellent charge for each problem. The actual propellent volume is calculated and compared to the maximum charge volume. It can be quickly modified to accept any factor for maximum propellent load.
6. prfoi7: This subprogram determines the acceptability of the propellent dimensions and calculates the mass fraction and surface fraction
of propellent burned.
7. var_out; This subroutine returns the respective working variables to the design vector after each iteration.
8. Introduction.

The purpose of this chapter is to specify the equipment used in the example problems, state the problems solved, and critique the results. section 2 describes the hardware used in the example problems and includes the specifications of the gun, projectile, and propellent. In section 3 the optimization objective function for the interior ballistics problem is stated, while section 4 develops the constraints by category. section 5 explains the parameters initialized in the optimization scheme. The selected example problems, their purpose, organization, input, and output are in section 6. The analysis of the results is in section 7 .
2. Baseline Equipment.

The gun, projectile, and propellents are described in this section. The gun system is representative of the current tank main gun.

The cannon is 4.57 meters long with a 120 mm bore diameter. The chamber is 54.0 cm long and 15.4 cm in diameter. In the forward 8.0 cm of the chamber its diameter constricts to 12.7 cm , then reduces to 12.0 cm at the barrel. The chamber volume is $9832 \mathrm{~cm}^{3}$. The gun is
smooth bore with no twist.
The design factor of safety n for gun tube strength is 1.15 (19). The yield point strengths σ_{Yp} of the gun, as a function of distance down the bore, are:

$\sigma_{\mathrm{YP}}(\mathrm{MPa})$	Bore Location (m)
696.0	$0.00 \leq \mathrm{x}_{\mathrm{p}} \leq 1.50$
276.0	$\mathrm{x}_{\mathrm{p}}=4.00$
171.0	$\mathrm{x}_{\mathrm{p}}=4.57$

Here x_{p} indicates the projectile's location in the gun tube. The von Mises-Hencky failure criteria (18) is used to determine the maximum pressure $P_{\max }$ for the gun as

$$
P_{\max }=\sigma_{\mathrm{Yp} / 1.732 \star \mathrm{n}} .
$$

From 1.50 meters to the muzzle, a $1 s t$ order least squares fit provides the distance-pressure functions ($P_{\max }$ in MPa , x_{p} in meters)

$$
\begin{array}{lll}
P_{\max }\left(x_{p}\right)=346.0, & 0.00 \leq x_{p} \leq 1.50 & 5.2 \\
P_{\max }\left(x_{p}\right)=479.8-83.20 * x_{p}, & 1.50<x_{p} \leq 4.00 & 5.3 \\
P_{\max }\left(x_{p}\right)=502.9-91.23 * x_{p}, & 4.00<x_{p} \leq 4.57 & 5.4
\end{array}
$$

The pressure $P_{\text {max }}$ is used as the upper limit on breech and base pressure. Breech pressure is checked against Equation 5.2. This pressure occurs at $x_{p}=0.0$ for the entire cycle. Base pressure is checked against all three equations as a function of x_{p}. This pressure occurs at x_{p} throughout the cycle.

The kinetic energy projectile weighs 9.796 kg , including the case cap assembly. It is fin stabilized and
does not require applied spin. The projectile base is assumed to be a flat disk perpendicular to direction of travel.

There are two propellent compounds and three propellent grain geometries. The two compounds resemble the M6 and M8 military propellents. Their thermodynamic properties are listed in Table 5.1. All three grain geometries are cylindrical (cord) propellents with zero, one, and seven perforations. Figure 5.1 shows their critical dimensions. The seven perforation propellent must have the outer perforations (p_{0}) equally spaced about the center. The three webs (w, w_{i}, w_{o}) need not be equal and are determined from the input dimensions L, D, P_{i}, P_{o}, and d.
3. Problem Objective Function.

The objective is to maximize projectile velocity for the given conditions, without violating constraints. The objective function is the projectile velocity equation (the time integral of Equation 4.2), including all required ancillary equations discussed in Chapter IV. All function evaluations will be multiplied by negative one (-1.0) to make the objective (maximum velocity) and formulation (function minimization) compatible.
4. Problem Constraints.

The constraints fall into three categories; dimension,

Propellent	Ampetus Flame Temperature	Covolume	Density Specific Heats		
J / g	0_{K}	$\mathrm{cm}^{3} / \mathrm{g}$	$\mathrm{g} / \mathrm{cm}^{3}$	none	
Sample (M6) 1135.99	3141	.9755	1.6605	1.23	
M8	1168.90	3768	.9550	1.2119	1.62

Table 5.1 Propellent Thermodynamic Properties (15 and 16).

Figure 5.1 Example Propellent Geometries.
mass, and pressure. Constraints include both general and specific criteria and need not directly involve design variables. The constraints are developed for each component of the problem, then as each example problem is developed a specific constraint set is developed from this general set.

The size constraints for the propellent grains include non-negative values for all sizes and mass, in the form

$$
x_{1} \geq 0,
$$

or

$$
g_{1}(\bar{x})=-x_{1}
$$

For the given chamber size a practical limit of 6.0 cm is put on grain length. This allows propellent grain to lay in the reaction chamber and extend no farther than from chamber wall to ingiter probe in the center of the chamber. The form of this constraint is

$$
\mathrm{L} \leq 6.0,
$$

or

$$
g_{2}(\bar{x})=\frac{L}{.06}-1.0 .
$$

Equation 5.6 is normalized so the constraint magnitudes will be comparable to each other. After normalization, the constraints are multiplied by scaling factors to ensure that they are of sufficient magnitude to affect the objective function. For the zero perforation propellent (see Figure 5.1 for propellent dimensions) constraints are:

1) 3 non-negative constraints (L, D, mass).
2) L \geq D.

The one perforation propellent diameter D must be greater that the diameter of the inner perforation p_{i}, giving

1) 4 non-negative constraints (L, D, p_{i}, mass),
2) L \geq, and
3) $D>p_{i}$.

For the seven perforation propellent there are three other size constraints. The first is that the propellent diameter must be greater that the sum of the inner p_{i} and two outer p_{0} perforations. The second is that the distance between the perforation centers d must be greater than the sum of the inner and outer perforation radius. Finally, two adjacent outer perforations and the inner perforation form an equilateral triangle. The outer perforation p_{0} must be less than one side of the triangle d. This leads to:

1) 6 non-negative constraints ($L, D, p_{0}, p_{i}, d, m a s s$),
2) $L \geq \mathrm{D}$,
3) $D>p_{i}+2 * p_{0}$,
4) $d>p_{i} / 2+p_{o} / 2$,
5) $P_{0}>d$.

The mass constraint for propellents says that propellent volume must be less than chamber volume. This is determined by comparing the total volume occupied for all propellents to initial chamber volume V_{c} or

$$
\sum_{i} \frac{m_{i}}{\rho_{i}} \leq v_{C}
$$

No reduction factor is included to account for volume lost due to packing. Equation 5.7 is the only non-negative mass related constraint, regardless of the number of propellents.

Maximum pressure constraints are both equality and inequality constraints. The maximum pressure in the gun will occur at the breech. This pressure is key to projectile performance. To keep pressure at maximum without exceeding $P_{\max }$ the breech pressure is constrained to equal $P_{\max }$ so that

$$
P_{b r}=P_{\max }
$$

or

$$
\begin{equation*}
h_{1}(\bar{x})=\frac{P_{\max }}{P_{b r}}-1.0 \tag{9}
\end{equation*}
$$

The constraint is normalized. The base pressure constraint is an inequality constraint utilizing Equation 5.2, 5.3, and 5.4. In this form

$$
485.3-86.8 * x_{p} \geq P_{b}(M P a),
$$

where x_{p} is checked to determine which equation to use.
5. Optimization Initialization.

The values used for the tolerances and multipliers that are required for the optimization method are developed in this section. The multiplier r_{p} is initialized at 100.0. This is to ensure the constraints affect the objective function value as quickly as possible. The rp update factor γ is set at 2 to provide a geometric increase for the magnitude of r_{p} per iteration. The
maximum multiplier value $r_{p m a x}$ is set at 10^{8} to provide a reasonable upper limit for r_{p}. All Lagrange multipliers λ 's are initially set to 1.0 to provide a neutral start point. The update formulas will determine final λ values.

From Chapter II the convergence criteria for the ALM is set at .2. This is appropriate for the magnitude of the velocity (10^{4}) and the λ 's of the scaled and normalized constraint values. The tolerance sent to the line searches is . 0001 . This ensures that the search is not more precise than the grain manufacturing tolerance, .007 cm (19). This value is not inconsistent since ail input values are converte to meters in the interior ballistics code so that .0001 is equivalent to a .01 tolerance for centimeter values.
6. Example Problems.

The optimized and automated design process proposed must be able to accomplish several tasks. This process must attain, at least, the performance level of current design methods. It must achieve a practical optimum design regardaess of the relative size of the parametric space. It also must be flexible, work for various combinations of variables, and be easy to use. The example problems are designed to answer these questions.

In Appendix D of the IBRGAC User's Manual there is a seven perforation propellent "optimized" under current
design techniques for a maximum breech pressure of 346 MPa . This design was performed by holding all variables constant and varying only the propellent inner web. The model was executed once for each each web increment and the mass was incremented manually until 346 MPa was attained.

The first example problem addresses the questions of whether the proposed method can attain comparable projectile performance compared to current design methods and does the current method attain an optimum design? The optimization process is started from the current best design for the seven perforation propellent and from a random point in the parametric space. These results will indicate the optimization process performance against the current design procedures and provide a measure of the ability of the process to search the same parametric space from different points to achieve an optimum.

The second example problem examines whether the process continues to work for a slightly more complex parametric space. Two propellents of differing geometries are used i.e. one and seven perforation. this example problem has two parts. In Part 1 an optimum design is determined from the initial propellent geometry. In Part 2 the optimization is restarted from the final design of part 1 to determine if the process has converged at the optimum design in the parametric space.

The third example problem again addresses the question
of the optimization process performance in a larger parametric space. Three propellents are used; zero, one, and seven perforation.

The fourth example continues to examine the optimization process performance, in a different parametric space. In this example, two seven-perforation propellents with different thermodynamic properties are used. As in Example 2 a second optimization iteration is performed starting from the first iteration's final design. This checks the optimization performance of a different point in a different space than Example 2.

All four examples will address the question of the optimization method's flexibility and ease of use. The first three will also allow a comparison of the effects of a gradually increasing parametric space on the optimization process and projectile performance.

The input files for each example problem and a sample output file are listed in Appendix III. The output file demonstrates the format and calculated results available from IBRGAC.

Each example is organized into the following parts: problem statement, initial and final design table, initial and final performance table, constraint set, ALM iteration history, pressure-time, and pressure-travel charts.

The problem statement covers the conditi.ns of the problem and its objective. Also in the problem statement
is the identification of figure and table numbers appropriate to the problem and the specification of the design vector $\overline{\mathrm{X}}$ for the example. Numerically subscripted components of the design vector indicate propellent type in multiple propellent examples. The number of constraints for the problem is also stated.

The initial and final design table shows the original specifications for the propellents used for the example and compares them to the final values obtained by the optimization process. The initial and final performance table compares the velocity and maximum pressures of the initial and final designs. This allows a comparison of the change in performance resulting from the optimization.

The constraint set is taken directly from the subroutine used in the code. This allows all of the constraints in their actual format to be exanined. An explanation of each constraint is included in the subroutine comments. The constraint set is generated from Section 4 derivations for different propellent types. All example problems have the pressure (Equation 5.9 and 5.10) and mass (Equation 5.7) constraints included.

The ALM history shows the performance of the optimization method for each example. The number of ALM iterations, the number of function calls, the objective function value (FCOST), and the Lagrange pseudo-objective function value (ALM) are measures of the optimization
method's performance. This allows a comparison of the relative performance of the method in various parametric spaces.

The pressure-time and pressure-travel profiles for the initial and final designs allows a graphic portrayal of the performance of the propellent design and a time history of the projectile's velocity. The pressure-time curve indicates the impulse for the propellent while the pressure-travel curves gives the work performed. An increase in the area under either curve indicates an increase in projectile velocity.

The last figure of each example is a breech pressure comparison graph. It show the difference between the initial and final breech pressure as pressure-travel profiles. This graphically displays the change in work performed on the projectile from initial to final design.

Each example problem and its results are listed in order and are analyzed in Section 7.

Example 1: This example contains two parts. First, the process is started from the "optimized" design from Appendix D of the IBRGAC User's Manual. This is done to check the performance of the optimization scheme against the current design method, as described earlier in this section. second, the same propellent is used but started at a different point. This is done to compare the optimum design attained from two distinct starting points in the same parametric space. The initial and final design results are given in Table 5.1.1. The initial and final performance values of the optimization are in Table 5.1.2. The set of constraints are stated in Table 5.1.3. The ALM iteration history for Example la is given in Figure 5.1.1. The pressure-time and pressure-travel profiles for Example 1a are Figures 5.1.2 and 5.1.3. The pressure differential curve is Figure 5.1.4.

The parametric space for this problem consists of six variables, the five critical dimensions for the seven perforation propellent used and its mass. The design vector \bar{X} for Example 1 is

x_{1}	$=$	L,
x_{2}	=	P_{i},
x_{3}	=	P_{0},
X_{4}	$=$	D,
X_{5}	$=$	d,
X_{6}	=	mass.

The propellent dimension terms are defined at the beginning of the thesis. There is one equality constraint and 13 inequality constraints.

Example 1 a Propellent 1

Example 1b propellent 1

Final Values

Type
No. Perf
Mass (kg)
Sample
Sample
Example 1a Propellent 1

Dimensions (cm)

L	3.225	4.370
D	.987	1.040
Pi $_{\text {i }}$.0108	.0100
P $_{0}$.0208	.0400
d	.2507	.2700

Type
No. Perf
Mass (kg)
Dimensions (cm)

L	3.175	4.000
D	1.702	2.000
\mathbf{p}_{i}	.0508	.0200
po $_{0}$.0508	.0400
d	.2807	.4000

d
Sample
7
8.70
8.90

7
8.91
8.94

Table 5.1.1 Initial/Final Propellent Values.

Example 1a

> Initial Final

| Projectile Velocity (m/s) | 1398 | 1408 |
| :--- | ---: | ---: | ---: |
| Max Breech Pressure (MPa) | 346 | 345 |
| Max Base Pressure (MPa) | 240 | 237 |

Example 1b
Initial Final

| Projectile Velocity (m/s) | 573 | 1407 |
| :--- | ---: | ---: | ---: |
| Max Breech Pressure (MPa) | 64 | 345 |
| Max Base Pressure (MPa) | 44 | 237 |

Table 5.1.2 Initial/Final Performance Values.


```
Number OF DESIGN VARIABLES
NUMBER OF DESIGN VARIABLES 
NUMBER OF INEQUALITY CONSTRAINTS: 13
YOU HAVE SELECTED POWELLS METHOD
AT ITERATION NUMBER 1 AND CALL NUMBER 48
CURRENT FCOST = -1545.046
CURRENT ALM = -1499.489
AT ITERATION NUMBER 2 AND CALL NUMBER }7
CURRENT FCOST = -1501.847
CURRENT ALM = -1451.523
at iteration number 3 ano call number 110
CURRENT FCOST = -1450.726
CURRENT ALM = -1409.354
AT ITERATION NUMBER 4 AND CALL NUMBER 162 CURRENT FCOST \(=-1394.435\)
CURRENT ALM \(=-1401.103\)
AT ITERATION NUMBER 5 AND CALL NUMBER 213 CURRENT FCOST \(=-1415.718\)
CURRENT ALM \(=-1405.178\)
AT ITERATION NUMBER 6 AND CALL NUMBER 248 CURRENT FCOST \(=-1408.722\)
CURRENT ALM \(=-1405.803\)
AT ITERATION NUMBER 7 AND CALL NUMBER 300 CURRENT FCOST \(=-1409.944\)
CURRENT ALM \(=-1407.968\)
AT ITERATION NUMBER 8 AND CALL NUMBER 335
CURRENT FCOST \(=-1404.827\)
CURRENT ALM \(=-1407.929\)
AT ITERATION NUMBER 9 AND CALL NUMBER 389
CURRENT FCOST \(=-1409.682\)
CURRENT ALM \(=-1408.929\)
AT ITERATION NUMBER 10 AND CALL NUMBER 443 CURRENT FCOST \(=-1408.634\)
CURRENT ALM \(=-1408.958\)
AT ITERATION NUMBER 11 AND CALL NUMBER 480 CURRENT FCOST \(=-1408.864\)
CURRENT ALM \(=-1408.933\)
AT ITERATION NUMBER 12 AND CALL NUMBER 517
CURRENT FCOST \(=-1409.094\)
CURRENT ALM \(=-1408.939\)
AT ITERATION NUMBER 13 AND CALL NUMBER 554 CURRENT FCOST \(=-1408.864\)
CURRENT ALM \(=-1408.946\)
AT ITERATION NUMBER 14 AND CALL NUMBER 573
CURRENT FCOST \(=-1408.864\)
CURRENT ALM \(=-1408.884\)
THE FINAL FUNCTION VALUE IS (m/s): 1408.864
THE 6 VARIABLE VALUES ARE ( \(\mathrm{cm} \& \mathrm{gm}\) ):
\(X(1)=3.22500\)
\(x(2)=0.01080\)
\(x(3)=0.02080\)
\(X(4)=0.98709\)
\(\begin{array}{lr}X(5) & = \\ X(6) & = \\ & 0.25072\end{array}\)
THE TOTAL YUMBER OF FUNCTION CALLS WAS : 573
THE FINAL ALM FUNCTION VALUE WAS : -1408.884
```

Figure 5.1.1 Example la ALM Iteration History.

Pressure-Time Profile Example la, Initial

Pressure-Time Profile
Example la, Optimized

| — Base Pressure | - Brch Pressure | ….... | Pressure Limlt |
| :--- | :--- | :--- | :--- | :--- |
| Velocity | $*$ | $\dot{M a x}$ Veloclty | |

Table 5.1.2 Example la Pressure-Time Profiles.

Pressure-Travel Profile Example la, Initial

Pressure-Travel Profile
Example la, Optimized

Figure 5.1.3 Example 1a Pressure-Travel Profiles.

Breech Pressure Differential

 Example la

Figure 5.1.4 Example la Breech Pressure Differential.

Example 2: This example expands the parametric space of the first problem to include both a one and a seven perforation propellent. This gradual increase allows analysis of the optimization method in steps. A second optimization is started from the final design of the first optimization. This will check the ability of the optimization process in finding the best design. The initial and final design results are given in Table 5.2.1. The initial and final performance values of the optimization are in Table 5.2.2. The set of constraints are stated in Table 5.2.3. The ALM iteration histories for both parts of Example 2 are given in Figure 5.2.1 and 5.2.2. The pressure-time and pressure-travel profiles for Example 2 are Figure 5.2.3 and 5.2.4. The pressure differential curve is Figure 5.2.5.

The parametric space for this problem consists ten variables, the five critical dimensions for the seven perforation propellent, the three critical dimensions of the one perforation propellent, and their masses. The design vector \bar{X} for Example 2 is

$$
\begin{aligned}
& \begin{array}{l}
x_{1}=L_{1}{ }^{\prime} \\
x_{2}=p_{11},
\end{array} \\
& x_{3}=P_{0_{1}}{ }^{\prime} \\
& x_{4}=D_{1} \\
& x_{5}=d_{1}^{\prime \prime} \\
& x_{6}=L_{2} \text {, } \\
& x_{7}=P_{i 2}{ }^{\prime} \\
& x_{8}=D_{2} \text {, } \\
& \mathrm{X}_{9}=\text { mass }_{1} \text {. } \\
& \mathbf{x}_{10}=\operatorname{mass}_{2} \text {. }
\end{aligned}
$$

The propellent dimension terms are defined at the beginning
of the thesis. The subscript 1 indicates the seven
perforation and the 2 indicates the one perforation
propellent. There is one equality constraint and 19
inequality constraints.

Initial Values	Propellent	Example 1	2 Propellent 2
Type	Sample		Sample
No. Perf	7		1
Mass (kg)	4.35		4.35
Dimensions (cm)			
L	3.175		3.175
D	1.702		1.702
P_{i}	. 0508		. 0508
Po	. 0508		--
d	. 2807		--
Final Values	Propellent	Example 1	${ }^{2} \text { Propellent } 1$
Type	Sample		Sample
No. Perf	7		1
Mass (kg)	4.22		3.85
Dimensions (cm)			
L	5.560		5.240
D	. 8321		. 4946
P_{i}	. 0183		. 0000
Po	. 0008		-
d	. 2182		---

Table 5.2.1 Initial/Final Propellent Values.

Example 2

Initial Intermediate Final

Projectile Velocity (m/s)	1104	1397	1430
Max Breech Pressure (MPa)	211	346	340
Max Base Pressure (MPa)	142	236	235

Table 5.2.2 Initial/Final Performance Values.

```
        SUBROUTINE FUN CON(X,NOVAR)
C THIS IS TUE GONSTRAIMT SET FOR EXAMPLE 2
%INCLUDE 'declarations.ins.f
            COMMON/limits/dpmaxba,_dpmaxbr,pmaxbr,pmaxba,d_l, rotal_vol_prop,
                cham vol
REAL*4 X(NOV̄AR),dpmaxba,dpmaxbr,pmaxbr,pmaxba,d_l,pmax,cham_vol
                    total_vol_prop
C FOR }7\mathrm{ PERF PROPELLENT
c fg1 is the prop grain length .GT. O constraint
    fg2 is the inner perf diam.GT. 0 constraint
    fg3 is the outer perf diam .GT. O constraint
    fg4 is the prop grain diam .GT. 0 constraint
    fg5 is the dist between perf centers .GT. O constraint
    fg6 is the prop diam .GT. (inner+outer perf diams) constraint
    c fg7 is the dist between perf centers. GT. (inner + outer radius) constraint
    fg8 is the length.GT. diameter constraint
fgg is the max length for the cord 6cm.
c fg10 is the equilateral triangle requirement
    FG(1) = 1000**-x(1))
    FG(2) = 1000*(-x(2))
    FG(3) = 1000*(-x(3))
    FG(4) = 1000* (-x(4))
    FG(5) = 1000*(-x(5))
    FG(6) = 100*(2*x(3)/x(4)+x(2)/x(4)-1.0)
    FG(7) = 100*(.5*x(3)/x(5)+.5*x(2)/x(5)-1.0)
    FG(8) = 100*(x(4) - x(1))
    FG(8) = 100*(x(4)/x(1) - 1.0)
    FG(9) = 100*(x(1)/.06-1.0)
    FG(10)= 100*(x(5)/x(3)-i.0)
C FOR I PERF PROPELLENTS IS
c fg11 is the .gt. zero for length
fg12 is the .gt. zero for cerforation
fg13 is the .gt. zero for diameter
fg14 is the max diameter constraint
fg15 is the perf size must be less than the diameter
c fg16 is that the length cannot be less than the diameter
c fgit is the max length for the cord 6cm.
    FG(11) = 1000.*(-x(6))
    FG(12) = 1000.*(-x(7))
    FG(13) = 1000.*(-x(8))
    FG(14) = 100.*(x(8)/.04 - 1.0)
    FG(15) = 100.*(x(7)/x(8)-9.0)
    FG(16) = 100.*(x(8)/x(6) - 1.0)
    FG(17) = 100.*(x(6)/.06-1.0)
c Determine acceptable pressures
c fhl is the max base pressure constraint
c fg18 is the max brch pressure constraint
    max = 3.46e8
    FH(1)= pmaxbr/pmax - 1.0
    if (dpmaxba.gt.1.5.and.dpmaxba.le.4.0) then
        pmax = -8.320e7*dpmaxba + 4.708e8
    else if (dpmaxba;gt.4.0.and.dpmaxba.le.4.57) then
        mmax = -9.123e7* dpmaxba + 5.029e8
    else if (dpmaxba.gt.4.57) then
        pmax = .86e8
    end if
    FG(18)= 5*(pmaxba/pmax - 1.0)
C MASS CONSTRAINT
    FG(19)= 100*(totai_vol_prop/cham_vol:i.0)
    RETURN
    END
```

Table 5.2.3 Example 2 Constraint Set.

NUMBER OF DESIGN VARIABLES : 10
 NUMBER OF EQUALITY CONSTRAINTS 10 1

$$
\begin{aligned}
& \text { NUMBER OF EQUALITY CONSTRAINTS : } 1 \\
& \text { NUMEER OF INEQUALITY CONSTRAINTS : } 19
\end{aligned}
$$

you have selected hooke-jeeves

$$
\begin{aligned}
& \text { SEARCH DELTA }=1.0000000 \mathrm{E} \cdot 04 \\
& \text { ACCEL FACTOR }=2.500000
\end{aligned}
$$

at Iteration number 1 and call number 80 CURRENT FCOST $=-1329.755$ CURRENT ALM $=-1329.787$
at iteration number 2 and call number 160 CURRENT FCOST $=-1466.381$ CURRENT ALM $=-1423.137$
at Iteration number 3 and call number 241
CURRENT FCOST $=-1354.288$
CURRENT ALM $=-1346.637$
at iteration number 4 and call number 352
CURRENT FCOST $=\cdot 1389.058$
CURRENT ALM $=-1360.571$
at iteration number 5 and call number 435
CURRENT FCOST = - 1353.227
CURRENT ALM $=-1365.933$
at iteration number 6 and call number 489 CURRENT FCOST = -1381.153
CURRENT ALM $=-1373.239$
at iteration number 7 and call number 575 CURRENT FCOST $=-1373.145$
CURRENT ALM $=-1371.509$
at iteration number 8 and call number 662 CURRENT FCOST $=-1378.692$
CURRENT ALM $=\cdot 1380.083$
at Iteration number 9 and call number 779 CURRENT FCOST $=-1395.569$
CURRENT ALM $=-1393.360$
at iteration number 10 and call number 836
CURRENT FCOST $=-1391.755$
CURRENT ALM $=-1393.354$
The final function value is (m/s): 1391.755
the 10 Variable values are ($\mathrm{m} \& \mathrm{~kg}$):
$x(1)=0.031200$
$x(2)=0.000183$
$x(3)=0.000458$
$x(4)=0.009546$
$x(5)=0.002532$
$x(6)=0.027800$
$x(7)=0.000058$
$x(8)=0.006571$
$x(9)=4.360002$
$x(10)=4.144999$
THE TOTAL NUMBER OF FUNCTION CALLS WAS: 836
THE FINAL ALM FUNCTION VALUE WAS: -1393.354

Figure 5.2.1 Example 2, Part 1 ALM Iteration History.

```
NUMBER OF DESIGN VARIABLES (
NUMBER OF EQUALITY CONSTRAINTS: : 
NUMBER OF INEQUALITY CONSTRAINTS: 19
YOU HAVE sELECTED POWELlS mETHUD
AT ITERATION NUMBER 1 AND CALL NUMBER 81
CURRENT FCOST = . 1564.146
CURRENT ALM = -1528.375
AT ITERATION NUMBER 2 AND CALL NUMBER 134
CURRENT FCOST = -1548.266
CURRENT ALM = -1465.383
AT ITERATION NUMBER 3 ANO CALL NUMBER }21
CURRENT FCOST = -1447.220
CURRENT ALM = -1404.940
AT ITERATION NUMBER 4 AND CALL NUMBER }27
CURRENT FCOST = -1418.827
CURRENT ALM = -1399.732
AT ITERATION NUMBER 5 AND CALL NUMBER }33
CURRENT FCOST = -1403.700
CURRENT ALM = -1401.875
AT ITERATION NUMBER 6 AND CALL NUMBER 447 CURRENT FCOST \(=-1421.262\)
CURRENT ALM \(=-1420.808\)
AT ITERATION NUMBER 7 AND CALL NUMBER 616 CURRENT FCOST \(=-1427.592\)
CURRENT ALM \(=-1428.370\)
AT ITERATION NUMBER 8 AND CALL NUMBER 790 CURRENT FCOST \(=-1430.584\)
CURRENT ALM \(=-1429.993\)
AT ITERATION NUMBER 9 AND CALL NUMBER 935
CURRENT FCOST \(=-1430.577\)
CURRENT ALM \(=-1430.759\)
AT ITERATION NUMBER 10 AND CALL NUMBER 1024 CURRENT FCOST \(=-1430.334\)
CURRENT ALM \(=-1430.790\)
THE FINAL FUNCTION VALUE IS ( \(\mathrm{m} / \mathrm{s}\) ) : 1430.334
THE 10 VARIABLE VALUES ARE ( \(\mathrm{m} \& \mathrm{~kg}\) ):
\(X(1)=0.055600\)
\(x(2)=0.000183\)
\(x(3)=0.000008\)
\(x(4)=0.008321\)
\(x(5)=0.002182\)
\(x(6)=0.052400\)
\(x(7)=0.000000\)
\(x(8)=0.004946\)
\(x(9)=4.217497\)
\(x(10)=3.849896\)
THE TOTAL NUMBER OF FUNCTION CALLS WAS : 1024 THE FINAL ALM FUNCTION VALUE WAS : 1430.790
```

Figure 5.2.2 Example 2, Part 2 ALM Iteration History.

Pressure-Time Profile

Example 2, Initial

Pressure-Time Profile
Example 2, Optimized

Figure 5.2.3 Example 2 Pressure-Time Profiles.

Pressure-Travel Profile Example 2, Initial

Pressure-Trovel Profile Example 2, Optimized

Figure 5.2.4 Example 2 Pressure-Travel profiles.

Breech Pressure Differential

 Example 2

Figure 5.2.5 Example 2 Breech Pressure Differential.

Example 3: This example further expands the parametric space of the first and second problem to include a zero, one, and seven perforation propellent. This final increase further examines the performance of the optimization method in an even larger parametric space. The initial and final design results are given in Table 5.3.1. The initial and final performance values of the optimization are in Table 5.3.2. The set of constraints are stated in Table 5.3.3. The ALM iteration history for Example 3 is given in Figure 5.3.1. The pressure-time and pressure-travel profiles for Example 3 are Figure 5.3.2 and 5.3.3. The pressure differential curve is Figure 5.3.4.

The parametric space for this problem consists thirteen variables, the two critical dimensions for the zero perforation propellent, the three critical dimensions of the one perforation propellent, the five critical dimensions for the seven perforation propellent, and their masses. The design vector $\overline{\mathrm{X}}$ for Example 3 is

The propellent dimension terms are defined at the beginning
of the thesis. The subscript 1 indicates the zero perforation, the 2 indicates the one perforation propellent, and the 3 indicates the seven perforation propellent. There is one equality constraint and 25 inequality constraints.

Initial Values	Propellent 1	Example 3 Propellent 2	Propellent 3
Type	Sample	Sample	Sample
No. Perf	0	1	7
Mass (kg)	3.00	3.00	3.00
Dimensions (cm)			
L	3.175	3.175	3.175
D	1.702	1.702	1.702
P_{i}	-	. 0508	. 0508
P_{0}	---	---	. 0508
d	--	---	. 2807
Final Values	Propellent 1	Example 3 Propellent 2	Propellent 3
Type	Sample	Sample	Sample
No. Perf	0	1	7
Mass (kg)	. 99	3.63	4.13
Dimensions (cm)			
L	2.494	5.943	5.996
D	1.285	. 580	5.996
p_{i}	---	. 0000	. 0018
Po	---	---	. 0018
d	---	---	. 2170

Table 5.3.1 Initial/Final Prcpellent Values.

Example 3

	Initial	Final
Projectile Velocity (m/s)	1049	1368
Max Breech Pressure (MPa)	218	346
Max Base Pressure	(MPa)	149

Table 5.3.2 Initial/Final Performance Values.


```
NUMBER OF DESIGN VARIABLES : 13
NUMGER OF EQUALITY CONSTRAINTS: 1
NUMBER OF EQUALITY CONSTRAINTS: 25
yOU HAVE SElECTED HOOKE-JEEVES
```



```
AT ITERATION NUMBER 1 AND CALL NUMBER 101
CURRENT FCOST = -1491.33?.
CURRENT ALM =-1461.602
AT ITERATION NUMBER 2 AND CALL NUMBER 167
CURRENT ECOST = -1467.293
CURRENT ALM = -1404.639
AT ITERATION NUMBER 3 AND CALL NUMBER 236 CURRENT FCOST \(=-1417.090\)
CURRENT ALM \(=-1361.723\)
AT ITERATION NUMBER 4 AND CALL NUMBER 306 CURRENT FCOST \(=-1366.709\)
CURRENT ALM \(=-1355.552\)
AT ITERATION NUMBER 5 AND CALL NUMBER 375
CURRENT FCOST \(=-1361.439\)
CURRENT ALM \(=-1357.584\)
AT ITERATION NUMBER 6 AND CALL NUMBER 519 CURRENT FCOST \(=-1364.183\)
CURRENT ALM \(=-1365.158\)
AT ITERATION NUMBER 7 AND CALL NUMBER 664
CURRENT FCOST \(=-1365.460\)
CURRENT ALM \(=-1366.705\)
AT ITERATION NUMBER 8 AND CALL NUMBER 777
CURRENT FCOST \(=-1367.985\)
CURRENT ALM \(=-1367.011\)
AT ITERATION NUMBER 9 AND CALL NUMBER 853
\(\begin{array}{ll}\text { CURRENT FCOST } & =-1367.394 \\ \text { CURRENT ALM } & =-1366.895\end{array}\)
CURRENT ALM \(=-1366.895\)
AT ITERATION NUMBER 10 AND CALL NUMBER 930 CURRENT FCOST \(=-1366.816\)
CURRENT ALM \(=-1366.905\)
AT ITERATION NUMBER 11 AND CALL NUMBER 1121
CURRENT FCOST \(=-1367.399\)
CURRENT ALM \(=-1367.278\)
AT ITERATION NUMBER 12 AND CALL NUMBER 1316
CURRENT FCOST \(=-1367.478\)
CURRENT ALM \(=-1367.605\)
AT ITERATION NUMBER 13 AND CALL NUMBER \(1: 3\)
CURRENT FCOST \(=-1367.565\)
CURRENT ALM \(=-1367.590\)
THE FINAL FUNCTION VALUE IS (m/s): 1367.565
THE 13 VARIABLE VALUES ARE ( \(\mathrm{m} \& \mathrm{~kg}\) ):
\(X(1)=0.024935\)
\(x(2)=0.012850\)
\(x(3)=0.059425\)
\(x(4)=0.000000\)
\(x(5)=0.005798\)
\(x(6)=0.059960\)
\(x(7)=0.000018\)
\(x(8)=0.000018\)
\(x(9)=0.008613\)
\(x(10)=0.002171\)
\(x(11)=0.992000\)
\(x(12)=3.625999\)
\(x(13)=4.130000\)
THE TOTAL NUMBER OF FUNCTION CALLS WAS : 1394
THE FINAL ALM FUNCTION VA:UE WAS : -1367.590
Figure 5.3.1 Example 3 ALM Iteration History.
```

Pressure-Time Profile Example 3, Initial

Pressure-Time Profile
 Example 3, Opti:nized

—— Base Pressure	- Breh Pressure Pressure Limit	
- Velocity	$*$	Max Velocity	

Figure 5.3.2 Example 3 Pressure-Time E+ofiles.

Pressure-Travel Profile Example 3, Initial

Pressure-Travel Profile Example 3, Optimized

Figure 5.3.3 Example 3 Pressure-Travel Profiles.

Breech Pressure Differential Example 3

Figure 5.3.4 Example 3 Breech Pressure Differential.

Example 4: This example demonstrates the optimization of two propellents with different thermodynamic characteristics. Two seven perforations propellents are used. This allows the comparison of the optimization method in a different parametric space. Just like the second example, a second optimization is started from the final design of the first optimization. This checks the ability of the optimization process in finding the best design. The initial and final design results are given in Table 5.4.1. The initial and final performance values of the optimization are in Table 5.4.2. The set of constraints are stated in Table 5.4.3. The ALM iteration histories for both parts of Example 4 are given in Figure 5.4.1 and 5.4.2. The pressure-time and pressure-travel profiles for Example 4 are Figure 5.4.3 and 5.4.4. The pressure differential curve is Figure 5.4.5.

The parametric space for this problem consists twelve variables, the five critical dimensions for the first seven perforation propellent, the five critical dimensions for the second seven perforation propellent, and their masses. The design vector \bar{X} for Example 4 is

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{x}_{1}=\mathrm{L}_{1}, \\
\mathrm{x}_{2}=\mathrm{P}_{\mathbf{1}_{1}}
\end{array} \\
& \begin{array}{l}
\mathbf{x}_{2}=\mathrm{p}_{\text {i1 }} \\
\mathbf{x}_{3},
\end{array} \\
& x_{3}=P_{01}^{\prime \prime} \\
& \begin{array}{l}
x_{4}=D_{1}^{\prime \prime} \\
x_{5}=d_{1}^{\prime \prime}
\end{array} \\
& x_{6}=L_{2}{ }^{\prime} \\
& x_{7}=P_{i 2}{ }^{\prime} \\
& x_{8}=P_{02}{ }^{\prime} \\
& \begin{array}{l}
\mathbf{x}_{9}=\mathrm{D}_{2}, \\
\mathbf{x}_{10}=\mathrm{d}_{2},
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& x_{11}=\operatorname{mass}_{1} \\
& x_{12}=\operatorname{mass}_{2}
\end{aligned}
$$

The propellent dimension terms are defined at the beginning of the thesis. The subscript 1 indicates the first seven perforation propellent and the 2 indicates the second seven perforation propellent. There is one equality constraint and 24 inequality constraints.

Initial Values	Propellent ${ }^{\text {Example }}$	4 Propellent 2
Type	Sample	M8
No. Perf	7	7
Mass (kg)	4.35	4.35
Dimensions (cm)		
L	3.175	3.175
D	1.702	1.702
P_{i}	. 0508	. 0508
P_{0}	. 0508	. 0508
d	. 2807	. 2807
Final Values	```Example propellent 1```	$4 \text { Propellent } 2$
Type	Sample	M8
No. Perf	7	7
Mass (kg)	5.37	3.20
Dimensions (cm)		
L	3.576	3.548
D	. 9821	1.002
P_{i}	. 0800	. 0383
P_{0}	. 0400	. 0508
d	. 2607	. 2707

Table 5.4.1 Initial/Final Propellent Values.

Example 4

Initial Intermediate Final

Projectile Velocity (m/s)	1341	1391	1395
Max Breech Pressure (MPa)	325	346	345
Max Base Pressure (MPa)	226	234	234

Table 5.4.2 Initial/Final Performance Values.

```
C***********************************************************************
    SUBROUTINE FUN CON(X,NOVAR)
```



```
THIS IS THE CONSTRAINT SET FOR EXAMPLE 4 FH = 1 FG = 24
%INCLUDE 'declarations.ins.f'
                            COMMON/limits/dpmaxba, वpmaxbr , pmaxbr, pmaxba,d_i, cotal_vol_prop,
EEAL cham vo
+ REAL*4 X(NOVAR),dpmaxba,dpmaxbr, pmaxbr,pmaxba,d_l,pmax,cham_vol,
FOR SAMPLE }7\mathrm{ PERF PROPELLENT
fgl is the prop grain length .GT. O constraint
fg2 is the inner perf diam .GT. 0 constraint
fg3 is the outer perf diam .GT. O constraint
fg4 is the prop grain diam .GT. O constraint
fg5 is the dist between perf centers .GT. O constraint
fg6 is the mass .GT. O constraint
fg7 is the prop diam .GT. (innertouter perf diams) constraint
fg8 is the dist between perf centers .GT. (inner + outer radius) constraint
fg9 is the length .GT. diameter constraint
fg10 is the max length for the cord 6cm
fg19 is the equilateral triangle requirement
    FG(1) = 1000*(x(1))
    G(2) = 1000* (-x(2))
    FG(3) = 1000*(-x(3))
    FG(4) = 1000*(-x(4))
    FG(5) = 1000*(-x(5))
    FG(6) = 100*(-x(11))
    FG(7) = 100*(2*x(3)/x(4) + x(2)/x(4) - 1.0)
    FG(8) = 100*(.5*x(3)/x(5) +.5*x(2)/x(5)-1.0)
    FG(9) = 100*(x(4)/x(1)-1.0)
    FG(10)= 100* (x(1)/.06 - 1.0)
    FG(11)= 100*(x(5)/x(3) - 1.0)
C FOR M8 }7\mathrm{ PERF PROPELLENTS IS
c fg12 is the prop grain length GT. O constraint
c fg13 is the inner perf diam .GT. O constraint
fg14 is the outer perf diam .GT. 0 constraint
fg15 is the prop grain diam .GT. 0 constraint
fg16 is the dist between perf centers .GT. O constraint
fg17 is the mass .GT. 0 constraint
fg18 is the prop diam .GT. (inner+outer perf diams) constraint
fg19 is the dist between perf centers .GT. (inner + outer radius) constraint
fg20 is the length.GT. diameter constraint
fg21 is the max length for the cord 6cm.
fg22 is the equilateral triangle requirement
fg23 is the max base pressure constraint
fh1 is the max brch pressure constraint
    FG(12)= 1000*(-x(6))
    FG(13)= 1000*(-x(7))
    FG(14)= 1000*(\cdotx(8))
    FG(15)= 1000*(-x(9))
    FG(16)= 1000*( }x(10)
    FG(17)= 100*(-x(12))
    FG(18)= 100*(2*x(8)/x(9) + x(7)/x(9) - 1.0)
    FG(19)= 100*(.5*x(8)/x(10) +. 5*x(7)/x(10) - 1.0)
    FG(20)= 100*(x(9)/x(6)-1.0)
    FG(21)= 100*(x(6)//.06-1.0)
    FG(22)= 100*(x(10)/x(8) - 1.0)
c Determine acceptable pressures
    max = 3.46e8
    FH(1)= pmaxbr/pmax - 1.0
    if (dpmaxba.gt.1.5.and.dpmaxba.(e.4.0) then
    pmax = -8.320e7*dpmaxba + 4.708e8
    else if (dpmaxba.gt.4.0.and.dpmaxba.le.4.57) then
        pmax = -9.123e7#dpmaxba + 5.029e8
    else if (dpmaxba.gt.4.57) then
        pmax = .86e8
        cmax
    FG(23)= 5*(pmaxba/pmax - 1.0)
    FG(24)= 100*(total_vol_prop/cham_vol - 1.0)
    RETURN
    END
Table 5.4.3 Example 4 Constraint Set.
```

```
NUMBER OF DESIGN VARIABLES : 12
NUMBER OF EQUALITY CONSTRAINTS: :
NUMBER OF INEQUALITY CONSTRAINTS: 24
YOU HAVE SELECTED HOOKE-JEEVES
    SEARCH DELTA = $.00000000E-04
    ACCEL FACTOR = 2.500000
AT ITERATION NUMBER 1 AND CALL NUMBER }9
CURRENT FCOST = -1519.152
CURRENT ALM = -1487.421
AT ITERATION NUMBER 2 AND CALL NUMBER 155
CURRENT FCOST = -1480.552
CURRENT ALM = -1419.600
AT ITERATION NUMBER 3 AND CALL NUMGER 217
CURRENT FCOST = -1423.870
CURRENT ALM =-1374.297
AT :TERATION NUMBER 4 AND CALL NUMBER }27
CURRENT FCOST = -1371.400
CURRENT ALM =-1359.452
AT ITERATION NUMBER 5 AND CALL NUMBER 38:
CURRENT FCOST = -1367.596
CURRENT ALM = -1365.239
AT ITERATION NUMBER 6 ANO CALL NUMBER 483
CURRENT FCOST = -1365.586
CURRENT ALM =-1367.228
AT ITERATION NUMBER 7 ANO CALL NUMBER 620
CURRENT FCOST \(=-1368.504\)
CURRENT ALM \(=-1368.291\)
At ITERATION NUMBER 8 AND CALL NUMBER 827
CURRENT FCOST \(=-1377.971\)
CURRENT ALM \(=-1378.822\)
AT ITERATION NUMBER 9 AND CALL NUMBER 1039
CURRENT FCOST \(=-1392.342\)
CURRENT ALM \(=-1391.591\)
AT ITERATION NUMBER 10 AND CALL NUMBER 1144
CURRENT FCOST \(=-1391.594\)
CURRENT ALM \(=-1391.761\)
THE FINAL FUNCTION VALUE IS (m/s): 1391.594 THE 12 VARIABLE VALUES ARE ( \(\mathrm{m} \& \mathrm{~kg}\) ):
\(X(1)=0.035075\)
\(x(2)=0.000233\)
\(x(3)=0.000458\)
\(x(4)=0.009871\)
\(x(5)=0.002607\)
\(x(6)=0.034775\)
\(x(7)=0.000983\)
\(x(8)=0.000458\)
\(X(9)=0.010621\)
\(X(10)=0.002857\)
\(x(11)=5.323147\)
\(x(12)=3.254370\)
THE TOTAL NUMBER OF FUNCTION CALLS WAS : 1144 THE FINAL ALM FUNCTION VALUE WAS : -1391.761
```

Figure 5.4.1 Example 4, Part 1 ALM Iteration History.

NUMBES. OF DESIGN VARIABLES
 NUMBER OF EQUALITY CONSTRAINTS
 NUMEER OF INEQUALITY CONSTRAINTS: 13

you have selected powells method
at ITERATION NUMBER 1 AND CALL NUMBER 95
CURRENT FCOST $=-1542.902$
PREVIOUS FCOST $=1.0000000 \mathrm{E}-06$
CURRENT ALM $=-1501.385$
PREVIOUS ALM $=1.0000000 \mathrm{E}-06$
AT ITERATION NUMBER 2 AND CALL NUMBER 158
CURRENT FCOST $=-1502.262$
PREVIOUS FCOST $=-1542.902$
CURRENT ALM $=-1442.825$
PREVIOUS ALM $=-1501.385$
AT [TERATION NUMBER 3 AND CALL NUMBER 222
CURRENT FCOST $=-1443.458$
PREVIOUS FCOST $=-1502.262$
CURRENT ALM $=-1402.508$
PREVIOUS ALM $=-1442.825$
AT ITERATION NJMBER 4 AND CALL NUMBER 291
CURRENT FCOST $=-1407.329$
PREVIOUS FCOST $=-1443.458$
CURRENT ALM $=-1394.635$
PREVIOUS ALM $=-1402.508$
AT ITERATION NUMBER 5 AND CALL NUMBER 362 CURRENT FCOST $=-1394.807$
PREVIOUS FCOST $=-1407.329$
CURRENT ALM $=-1393.702$
PREVIOUS ALM $=-1394.635$
AT ITERATION NUMBER 6 AND CALL NUMBER 467
CURRENT FCOST $=-1395.328$
PREVIOUS FCOST $=-1394.807$
CURRENT ALM $=-1395.892$
PREVIOUS ALM $=-1393.702$
AT ITERATION NUMBER 7 AND CALL NUMBER 535
CURRENT FCOST $=-1395.332$
PREVIOUS FCOST $=-1395.328$
CURRENT ALM $=-1396.150$
PREVIOUS AL.H $=-1395.892$
THE FINAL FUNCTION VALUE IS (m/s): 1395.332
THE 12 VARIABLE VALUES ARE (m \& kg):
$x(1)=0.0357 \leq 0$
$x(2)=0.000083$
$x(3)=0.000408$
$x(4)=0.009821$
$x(5)=0.002607$
$x(6)=0.035480$
$x(7)=0.000383$
$x(8)=0.000508$
$x(9)=0.010021$
$x(10)=0.002707$
$x(11)=5.368001$
$x(12)=3.204000$
THE TOTAL NUMBER OF FUNCTION CALLS WAS : 535
THE FINAL ALM FUNCTION VALUE WAS : - 1396.150

Figure 5.4.2 Example 4, Part 2 ALM Iteration History.

Pressure-Time Frofile Example 4, Initial

Pressure-Time Profile
Example 4, Optimized

Figure 5.4.3 Example 4 Pressure-Time Profiles.

Pressure-Travel Profile

 Example 4, Initial

Pressure-Travel Profile Example 4, Optimized

Figure 5.4.4 Example 4 Pressure-Travel Profiles.

Breech Pressure Differential Example 4

Figure 5.3.5 Example 4 Breech Pressure Differential.
7. Analysis.

The analysis is divided into two parts. The first part is an individual examination of each example problem and the second part is an overall analysis of the trends the example problems indicate.

Both optimizations in Example 1 intialized at the current design and a random point in the parametric space, attain identical projectile performance of $1408 \mathrm{~m} / \mathrm{s}$ without violating constraints. This indicates that the process is insensitive to the starting points. An analysis of the differences in the grain dimensions between Example la and 1b show that the primary difference is in the outer perforation diameter p_{0} and the grain length L. The relationship between the two values in the region is, for constant velocity, an increase in po results in a concurrent decrease in L. This results in similar initial grain surface areas, resulting in comparable projectile velocities. There is also a . 7 percent increase in projectile velocity from the current design. This indicates that the process is comparable to current design methods.

In Example 2 the projectile velocity is improved from a non-optimum starting point in the parametric space. Again no constraints are violated. The second optimization improves the projectile velocity from 1397 to $1430 \mathrm{~m} / \mathrm{s}$, a difference of 2.7 percent. The optimum is therefore nearly
attained in the first optimization. Examination of the one perforation propellent, propellent 2, shows that the process eliminated the single perforation p_{i} during optimization. This demonstrates that the process can simplify geometries to improve performance This example demonstrates that the method continues to perform for larger parametric spaces.

The third example resulted in improved projectile performance from a non-optimum point in the parametric space. The velocity, $1368 \mathrm{~m} / \mathrm{s}$, is the lowest of the four examples and is a 2.1 percent decrease from Example 1. Since the same propellent thermodynamics are used and identical geometries are present, a closer value could be expected. Analysis of the differences in the problem statements show that the mass constraints prohibited the attainment of the higher velocities reached in Example 1 or 2. When a propellent mass (for a multiple propellent problem) is the active design variable, it is incremented to locate a local optimum. For each change in the active propellent mass, there is no corresponding change for any other propellent mass in the problem. This prohibits a propellent from total elimination by reduction of its mass to zero. Despite this, Example 3 does demonstrate continued performance of the optimization method in a larger parametric space.

Example 4 also improves projectile performance within
the constraints. The velocity attained in the first optimization, $1391 \mathrm{~m} / \mathrm{s}$ is only improved by .30 percent in the second optimization to $1395 \mathrm{~m} / \mathrm{s}$. This indicates that in this new parametric space the optimum is nearly attained. The similarity to the previously optimized projectile velocities is due to the relative closeness of the two propellents used, M6 and M8 (see Table 5.1). The question, can the method perform in a different parametric space, is still answered since the propellents are different.

In each example the projectile velocity is improved within the given constraint conditions. Example 1 demonstrates that the scheme will approach the optimum from reasonable starting points and that it matches well with curient design techniques. Table 5.2 compares optimized velocities and net improvements.

In Examples 2, 3 , and 4 the scheme continues to perform for multiple grains and types of propellents. In Examples 2 and 4 the second optimization provides small improvement indicating that the optimum is nearly attained. This demonstrates the method will locate the optimum in most cases with built in tolerances.

In Example 2 the inner perforation was reduced to zero, showing that the propellent geometry can be simplified if performance is improved. However the mass constraint prohibits elimination of a propellent, through

Example	$\begin{gathered} \text { Inital } \\ \text { velocity } \end{gathered}$	$\begin{aligned} & \text { Final } \\ & \text { velocity } \end{aligned}$	Percent Change	2nd Itr Change
	m / s	m / s	\%	\%
1 a	1398	1408	+. 7	n/a
2	1104	1430	+29.5	+2.4
3	1049	1368	+23.3	n / a
4	1341	1395	+3.9	+. 39
	Figure	2 Perform	Synopsi	
Example	No. of Function	lls Nari:		
1 a	573	6	Powell	w/ Golden
2(itr 1)	836	10	Hook-	
(itr 2)	1024	10	Powell	w/ Golden
3	1394	13	Hook-J	
4(itr 1)	1144	12	Hook-J	
(itr 2)	535	12	Powell	w/ Quadra

Figure 5.3 Optimization Method Comparison.
the reduction of mass to zero, in multiple propellent problems.

The higher dimensioned parametric space appears to be well behaved as can be seen by the optimization method performance and resultant velocities. Hook-Jeeves and Powell's performed equally, neither showing a distinct advantage. Powell's method used with the three point quadratic approximation (Example 4, Optimzation 2) does converge in less function calls. However, if this method is used near an unfeasible region in the parametric space this advantage will be offset. Table 5.3 compares optimization performance by example.

The questions from Section 6 have been answered by the example problems. Example 1 demonstrated that the method attains comparable performance levels with current design methods. All four of the example problems show that a practical optimum design is attained regardless of the size of the parametric space. Finally, the differences in the four example problems and the relative ease with which the design vector and constraint set can be set show the flexibility and ease of use of the method.

CONCLUSIONS AND RECOMMENDATIONS

1. Conclusions.

A general method is developed for optimum and automated propellent grain design of a constrained multivariable interior ballistics system. The results obtained in Chapter v indicate that the method is computationally feasible and yields results comparable with current hunt and search design methods.

This automated design process is an aid to the interior ballistician. It is straightforward to implement and does not require heavy computational support. The interior ballistics model can be quickly changed or improved without affecting the optimization scheme. The process does include constraint effects directly and is flexible in that constraint parameters can be changed without difficulty. The method is tested on a specific problem, but the application is not restricted since the example's characteristics are shared by a large class of interior ballistics problems.
2. Recommendations for Future Research.

The software developed in this research should be tested on several more problems with different parametric spaces. The accuracy of the program can be estimated by
solving a variety of actual problems with known solutions. The numerical techniques used in this present work can be improved, both in computational efficiency and convergence speed. A first order method should be integrated into the ALM process to allow greater flexibility.

The integration of both exterior and terminal ballistic models to extend the design capabilities is a long term goal.

REFERENCES

1. Anderson, Ronald D. and Ficke, Kurt D., "IBHVG2 -- A User's Guidel', Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland, January 1987.
2. Baer, Paul G., "MPRGUN, A Multipurpose-Multipropellent Weapon Interior Ballistic Simulator', Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland, 1978 .
3. Baer, Paul B. and Frankle, J.M., "The Simulation of Interior Ballistic Performance of Guns by Digital Computer Programs", Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland, January 1987.
4. Brent, Richard P., "Algorithms for Minimization without Derivatives", Prentice-Hall Inc., 1973.
5. Burley, D.M., "Studies in Optimization", John Wiley \& Sons, 1974 .
6. Burnett, J.R. et al., "Projectile Design and Analysis System (PRODAS) Technical Manual", Armament Systems Department, General Electric Corporation, Burlington, Vermont, April 1987.
7. Corner, John A., "Theory of Interior Ballistics of Guns", Jon Wiley \& Sons Inc., 1950.
8. Fletcher, R., "Practical Methods of Optimization", John Wiley \& Sons, 1980 .
9. Fletcher, R., Editor, "Optimization: Symposium of the Institute of Mathmatics and its Applications", Academic Press, 1969 .
10. Hiriart-Urruly, Jean B., Editor, "Optimzation Theory and Algorithms", Marcel Dekker Inc, 1983.
11. Rrier, Herman and Summerfield, Martin., editors, "Interior Ballistics of Guns", Progress in Astronautics and Aeronautics, Volume 66, American Institute of Aeronautics and Astronautics, 1979.
12. Lavi, Abrehim and Vogl, Thomas P., Editors, "Recent Advances in Optimzation Techniques', Proceedings of Symposium on Recent Advances in Optimzatica Techniques, John Wiley \& Sons, 1966.
13. Papalambros, Panos, Y, and Wilde, Douglas, J., "Principles of Optimal Design", Cambridge University press, 1988.
14. Powell, M.J.D., "A Survey of Numerical Methods for Unconstrained Minimization", pg 43-61, Studies in Optimization 1, Society for Industrial and Applied Mathmatics, 1970 .
15. Robbins, Frederick W. and Raab, Thimothy S., יA Lumped Parameter Interior Ballistic Code Using the TTCP Model", Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland, November 1988.
16. Stiefel, Ludwig, Editor, "Gun Propulsion Technology", Progress in Astronautics and Aeronautics, Volume 109, American Institute of Aeronautics and Astronautics, 1979.
17. Vanderplaats, Garret N., "Numerical Optimization Techniques for Engineering Design: with Applications", McGraw-Hill Book Company, 1984.
18. Course Notes, "Weapon Systems Engineering", Department of Engineering, United States Military Academy, West Point, New York, 1977.
19. Personnal communication with Mr. Fredrick W. Robbins, Interior Ballistics Division, Ballistics Research Laboratory, Aberdeen Proving Grounds, Maryland, February 1990.

APPENDIX I

OPTIMIZATION CODE

This appendix contains the optimization code used in this thesis. The first item is the declaration file followed by the main progam and the appropriate subroutines. Three called subprograms are not included. The objective function 'fun_int.ftn' is Appendix II. The constraint subroutines 'fun_con.ftn' are included with each example problem. The subroutine that reads the input file 'read_data.ftn', although called by the main program, is included in Appendix II. The files are listed below.

1. declaration.ins.f.
2. optimum.ftn.
3. hook_jeeves.ftn.
4. powell.ftn.
5. search.ftn.
6. ugrid_1d.ftn.
7. gold.ftn.
8. quad.ftn.
9. gaussz.ftn.
10. funx.ftn.
11. check_print.ftn.
12. printit.ftn.
13. tol_test.ftn.
14. update.ftn.


```
C READ DATA INPUT SET
    CALL READ_DATA(XINIT,NOVARO
C minImIzATION ROUTINE SELECTION.
90 PRINT*: SELECT MINIMIZATION TECHNIOUE:'
    PRINT*', POWELLS METHOD => 11
    PRINT*', HOOKE-JEEVES => 2'
    READ*, TECHNIQUE
    IF (TECHNIQUE.EQ.1) THEN
        PRINT*,' YOU HAVE SELECTED POWELLS METHOD'
        PRINT*'' ENTER "O" FOR GOLDEN SECTIONS.
        PRINT*,' ENTER "1" FOR QUADRATIC APPROXIMATION.'
        READ*,ITYPE
        ELSE if'(TECHNIOUE.EQ.2) then
        PRINT*,' YOU HAVE SELECTED HOOKE-JEEVES
        PRINT*'' ENTER SEARCH DELTA [<1] AND ACCELERATION FACTOR [>=1]'
        READ* D,AF
        PRINT*,' SEARCH DELTA = ',D
        PRINT*', ACCEL FACTOR = ',AF
    ENC IF
C MINIMIZATION EXECUTION
100 IF (TECHNIQUE.EO.1) THEN
            CALL POWELL(XINIT,EPS,NOVAR,XFINAL, FCOST,ITYPE)
    ELSE IF (TECHNIDUE.EQ.2) THEN
        CALL HOOK_JEEVES(XINIT,EPS,NOVAR,D,AF,XFINAL,FCOST)
        END IF
C DIAGNOSTIC PRINT
    CALL CHECK_PRINT(ITR,XFINAL,FCOST,FCOST_P,NOVAR)
C CHECKING FOR CONVERGENCE
    CALL TOL_TEST(LAM_HP,LAM_GP,TOLERANCE,CONVERGE,FCOST_P,FCOST)
C If CONVERGENCE FAILED CONTINUE (check alm max itr)
    IF ((CONVERGE).EQV.(.FALSE.)) THEN
        IF (ITR.GE.25) THEN
            PR[NT*,' *** MAX iTERATIONS EXCEEDED ***'
            PRINT*,' THE LAST SET OF VALUES ARE:'
            CALL CHECK_PRINT(ITR, XFINAL,FCOST,FCOST_P,NOVAR)
            ELSE
                CALL UPDATE(LAM_HP,LAM_GF,G.GMMA)
                ITR= ITR++
                FCOST P = FCOST
                FUN COSTP = FUN COST
                DO TO1 I = 1,NOV̈AR
101 XINIT(I) =' XFINAL(I)
                COTO 100
            END IF
    END IF
C PRINT RESULTS
1000 CALL PRINTIT(XFINAL,FCOST,NOVAR)
        STOP
    ENO
C END OF USER_MAIN.
```

SUBROUTINE HOOK JEEVES (IX, EPS, NOVAR, DELTA, ALFA, XI, FXI)
C********************末**
C This is the Hook-Jeeves unconstrained minimization algorithm.
C*** WHERE THE FOLLOWING DEFINTIONS APPLY:
NOVAR = NUMBER OF VARIABLES (HEREAFTER REFERED TO AS "N").

CALLS $=$ THE NUMBER OF FUNCTION CALLS.
IX(N) $\quad=$ THE START POINT FOR THE SEARCH.
$X I(N)=$ THE CURRENT X SET.
$X P(N)=$ THE PREVIOUS X SET.
$Y I(N)=$ THE CURRENT Y SET.
YSP(N) = THE CURRENT Y SET + DELTA* DJ(N)
YSM(N) = THE CURRENT Y SET - DELTA* DJ (N)
DJ(N) = THE UNIT DIRECTION VECTOR FOR VARIABLE N.
DELTA = THE STEP SIZE FOR THE SEARCH.
ALFA $=$ THE ACCELERATION FACTOR FOR THE SEARCH
EPS = THE "EPSILON" OR TOLERANCE FOR THE SOLUTION.
TIMES THROUGH = THE NUMBER OF SEARCH SETS FOR THE METHOD.

\%INCLUDE 'declarations.ins.f"
REAL* 4 IX(IMAX), XI(IMAX),YI(IMAX), DJ(IMAX), YSP(IMAX), YSM(IMAX).

+ XP(IMAX),FXI,FYSP,FYSM,FYI,TIMES_THROUGH,ALFA,DELTA
TIMES_THROUGH $=0$
C Assign the working vectors.
DO $100 \mathrm{~N}=1$, NOVAR
$X I(N)=I X(N)$
$Y I(N)=I X(N)$
100 CONTINUE
C Main loop.
70 DO $200 \mathrm{~N}=1$, NOVAR
C Assign the search directions
$150 \quad$ DO $150 \mathrm{M}=1$, NOVAR
DJ $\quad D(M)=0$

DO $160 \mathrm{M}=1$, NOVAR $Y S P(M)=Y I(M)$
$Y S P(N)=Y I(N)+D E L T A^{*} D J(N)$
CALL FUNX (YI, FYI, NOVAR)
CALL FUNX(YSṔ, FYSP, NOVAR)
IF (FYSP.LT.FYI) THEN
FYI $=$ FYSP
ELSE
DO 170 M=1, NOVAR
$Y S M(M)=Y I(M)$
$Y \operatorname{SM}(N)=Y I(N)-D E L T A * O J(N)$
CALL FUNX (YSM, FYSM, NOVAR)
IF (FYSM.LE.FYI) THEN
$Y I(N)=Y S M(N)$
FYI=FYSM
END IF
END IF
200 CONTINUE
C Improvement so accelerate.
CALL FUNX (XI, FXI, NOVAR)
If (FYI.LT.FXI) THEN
DO $250 \mathrm{~N}=1$, NOVAR
$\mathrm{XP}(\mathrm{N})=\mathrm{XI}(\mathrm{N})$
$X 1(N)=Y i(N)$
$Y I(N)=X I(N)+A L F A^{*}(X I(N)-X P(N))$
250
continue
TIMES THROUGH $=$ TIMES_THROUGH +1
GOTO 70
C Max iteration check.
EISE IF (TIMES THROUGH.GT.SOO) THEN
PRINT*, ***'hooke jeeves iterations .GT. 50 ***.
RETURN'
C End of Minimization. ELSE IF (DELTA.LT.EPS) THEN RETURN

ELSE

DELTA= DELTA/2
END 1
TIMES_THROUGH $=$ TIMES_THROUGH + 1
GOTO 70
END
C END OF HOOK-JEEVES


```
C A FUNCTION EQUALITY PROBLEM CHECK, IF=1 THEN CAN'T FINO MIN IN SEARCH
C SO RESET SEARCH DIRECTIONS AND START OVER FROM LAST FEASIBLE POINT.
    IF (IFAULT.EQ.i) THEN
        STOP 'RESTART PROCESS'
        END IF
C SAVING THE DIRECTION VECTOR FOR THE CURRENT N.............................
        DO 275 M=1,NOVAR
            HOLO(M,N)=LAM(M)*DJJ(M)
                H(M,N)}=HOLD(m,n
                H(M,N)
        CONTINUE
        FYI = FYM
c THE N+1 SEARCH OIRECTION.
            IF (N.EQ.NOVAR) THEN
                DO 280 M=1,NOVAR
                    H(M, NOVAR+1)=YI(M) - XI(M)
        END IF
300 CONTINUE
C SETTING THE X'S AND Y'S TO THEIR NEW VALUES...................................
        DO 325 M=1,NOVAR
            XP(M)=XII(M)
            XI(M)= YI (M)
325
        continue
        FXI = FYI
        looker = looker + 1
C CALCULATING THE NORM OF THE LAST 2 x POINTS TO CHECK CONVERGANCE.....
        XNS=0
        OO 350 M=1,NOVAR
        XNS = XNS+(XI(M)-XP(M))**2
        NORMX = SORT(XNS)
C IF CONVERGANCE HAS BEEN REACHED, XI, FXI IS RETURNED TO MAIN..........
        IF (NORMX.LT.EPS) then
        RETURN
c iterations exceeding allowable
    ELSE IF (LOOKER.GT.50) then
        PRINT*,'\## POWELL ITERATIONS > 50 ###'
        RETURN
        ELSE
C UPDATING THE SEARCH DIRECTIONS (OJ'S) FOR THE NEXT PASS...............
        DO 410 J=1,NOVAR
            LAMXDJ = 0
            DO 400 M=1,NOVAR
400 LAMXDJ= LAMXDJ+HOLD (J,M)
H10 HOLD(J,NOVAR+1) = LAMXDJ'
c adding the directions together
        DO 420 J=1,NOVAR+1
        DJSUM = 0
                DO 430 K=1, NOVAR
430 D DJSUM = DJSUM+HOLD(k,j)**2
        DJNORM = SQRT(DJSUM)
        DO 440 K=1,NOVAR
C SETTING THE NEW DJ'S TO A UNIT LENGTH TO PREVENT CRAWLING TO A SOLUTION
440 HOLD (k,j) = HOLD(k,j)/DJNORM
420 CONTINUE
C POSITION OF THE REVISED DJIS IN THE H MATRIX FOR USE
        OO 450 n=1,NOVAR
            DO 450 m=1,NOVAR
4 5 0
            H(M,N)=HOLD(M,N+1)
        END IF
        gOTO 200
        END
C END OF POWELL
```



```
    SUBROUTINE UGRID 1D(XS,DJ,NOVAR,XP,XN,DIR)
C*************************************************************************
C This subroutine performs a }1\mathrm{ dimensional uniform step search until
C a interval is found that contains a minimum is found.
C***********************************************************************
c WHERE THE FOLLOWING DEFINITIONS APPLY:
XS(N) = THE CURRENT X VALUE
XP(N) = THE PREVIOUS X VALUE, INTERVAL START
XN(N) = THE NEXT X VALUE, INTERVAL END
DJ = THE UIRECTION VECTOR FOR THE SEARCH
DEL = THE INCREMENT OF THE SEARCH
FXS,
FXN,
FXS = THE FUNCTION VALUES FOR EACH RESPECTIVE X
OIR = IF THE SEARCH IS NEGATIVE THIS SETS A NEGATIVE DISTANCE
COUNT = THE NUMBER OF STEPS TAKEN TO FIND A MINIMUM
*)
%INCLUDE 'declarations.ins.f'
INTEGER*2 count
REAL*4 DJ(IMAX),XS(IMAX),XN(IMAX),XP(IMAX),DEL,FXS,FXN,FXP,DIR
DEL = 0.001
count =0
C ADDING AND SUBTRACTING ThE DEL TO THE INITIAL VALUE
OO 100 N=1,NOVAR
            XN(N)=XS(N)+DEL*DJ(N)
            XP(N)=XS(N)-DEL*DJ(N)
100
TINUE
CALL FUNX(XS,FXS,NOVAR)
CALL FUNX(XN,FXN,NOVAR)
CALL FUNX(XP,FXP,NOVAR)
c CASES LISTED OUT
c case 1.V
IF. FXP.GT.FXS.and.FXN.gt.FXS) THEN
RE ,\dot{N}.
c case 2. 八
ELSE IF (5XP.LT.fXS.and.fXN.lt.FXS) THEN
GOTO 300
c case 3.-1
ELSE IF (FXP.EQ.FXS.AND.FXN.lt.FXS) THEN
GOTO 300
c case 4.
else if (FXP.GT.fXS.AND.FXN.eq.FXS) then
goto 300
c case 5. II
else if (FXP.GT.fxs.AND.FXN.lt.FXS) then
goto }30
c case 6. //
    else if (FXP.LT.fXS.AND.FXN.gt.FXS) then
        goto 290
c case 7. f
    else if (FXP.EQ.fXS.AND.FXN.gt.FXS) then
        goto 290
c case 8. 
    else if (FXP.LT.fxs.AND.FXN.eq.FXS) then
        goto 290
c case 9
    ELSE IF (FXP.EQ.FXS.AND.FXN.EQ.FXS) THEN
        goto 390
        END IF
C IF THE SEARCH IS TO LEFT THEN thIS RESETS THE VALUES TO ALLOW IT....
290 DO 295 N=1,NOVAR
295 XN(N)=XP(N)
    OEL=-DEL
```

```
C THIS IS THE MAIN SEARCH STEP LOOP
300 DO 310 N=1,NOVAR
                XP(N) = XS(N)
                XS(N) = XN(N)
310 XN(N)= XN(N)+DEL*DJ(N)
    FXS=FXN
    FXS=FXN ( CALL FUNX(XN,FXN,NOVAR)
    IF (FXN.LT.FXS) THEN
C STEP CHECK.OMT.EQ.iOO) THEN
                F (COUNT,EQ.100) THEN 
                RETURN
                END IF
                COUNT = COUNT +1
                GOTO 300
C the funCTION VALUES ARE EQUAL AND NO MINImUM IS found, Ifault is set
    ELSE IF (FXN.EQ.FXS) THEN
    390 PRINT* 'THERE MAY BE AN EQUALITY PROBLEM IN THIS EQUATION.'
                IFAULT=1
    END IF
C AN INTERVAL HAS BEEN FOUND
        RETURN
    END
C END OF UNIFORM GRID
```



```
C ONCE THE tOLERANCE IS MET THE lOWESt VALUE IS USED.....................
400 IF (FA.LT.FI.AMDA) THEN
405 do 405 i=1,novar
                    min1(i) = ax(i)
                    mfmin1
    ELSE
do 410 i=1,novar
4 1 0
                                    MIN1(i)= LAMDA(i)
                                    FMIN1 = FLAMDA
    END IF
    IF (FB.LT:FMU) THEN
        do 415 i=1,novar
                                MIN2(i) = 8x(i)
                FMIN2 = fB
    ELSE
        do 420 i=1,novar
        MIN2(i)=MU(i)
        FMIN2 = FMU
    END IF
    IF (FMIN1.LT.FMIN2) THEN
        do 425 i=1, novar
425 ELSEMIN(i)=MIN1(i)
    ELSE
        do 430 i=1, novar
430 XMIN(i) = MIN2(i)
    END IF
    CALL FUNX(XMIN, FXMIN,NOVAR)
    return
    END
c END Of GOLDEN SECTIONS.
```

```
    SUBROUTINE QUAD(AX,BX, XOMIN, FXOMIN,NOVAR)
*)
c this subroutine performs the quadratic approximation of the line
C SEARCH MINIMUM. IT CALLS GAUSSZ.FTN TO SOLVE THE SYSTEM OF
C EQAUTIONS.
NOTE: SEE GOLD fOR ALL OTHER VARIABLE NAMES
C ORIG = THE MATRIX OF THE SYSTEMS OF EQUATION GENERATED FOR
    *)
                EACH OIRECTION TO ESTIMATE THE MINIML
CX = THE MIDPOINT OF THE AX - BX INTERVAL 
************************************************************************
%include 'declarations.ins.f'
REAL*4 AX(IMAX),8X(IMAX),CX(IMAX),XOMIN(IMAX),FXOMIN,ORIG(3,4)
REAL*4 YY(3),FA,FB,FC
C determining the value of c
    DO 100 N=1,NOVAR
100 CX(N)=(AX(N)+BX(N))/2
    CALL FUNX(AX,FA,NOVAR)
    CALL FUNX(BX,FB,NOVAR)
    CALL FUNX(CX,FC,NOVAR)
C MAKING EACH ORIG MATRIX, N NUMBER OF tImES
        DO 200 N=1,NOVAR
            ORIG(1,1)=AX(N)*AX(N)
            ORIG(2,1)=8X(N)*BX(N)
            ORIG(3,1)=CX(N)*CX(N)
        ORIG(1,2)=AX(N)
        ORIG(2,2)=BX(N)
        ORIG(3,2)=CX(N)
DO 150 I=1,3
                ORIG(I,3)=1.0
        ORIG(1,4)=FA
        ORIG(2,4)=FB
        ORIG}(3,4)=F
C THE EQUALITY CHECK IN ANY N DIRECTION FOR A DEFAULT XMIN(N).........
                IF (AX(N).EQ.BX(N)) THEN
                XQMIN(N)=AX(N)
        ELSE
C THE CALL TO THE MATRIX SOLUTION SUBROUTINE TO SOLVE ORIG.............
                CALL GAUSSZ(ORIG,YY,3,4)
                XOMIN(N)=-YY(2)/(2*YY(1))
        END IF
200 CONTINUE
    CALL FUNX(XOMIN,FXQMIN,NOVAR)
    RETURN
    END
c END OF QuAD
```

```
C****************************************************************************
    SUBROUTINE FUNX(X, F ALM,NOVAR)
C*************************************************************************
C This subroutine converts the objective function to the pseudo-
C ojective function of the ALM method.
C**************************************************************************
%INCLUDE 'declarations.ins.f'
REAL*4 X(IMAX),F ALM,SUMFLH,SUMFH2,SUM_PSI,SUM_PSI2,PSI(IMAX)
REAL*& SUM_FH2,SUM_FGGT,FGT(IMAX)
INTRINSIC MAX
flag=0
calls = calls + 1
C CALLING THE COST FUNCTION AND CONSTRAINT FUNCTION EVALUATIONS........
    CALL FUN_INT(X,NOVAR,FCOST,Virgin,flag)
    CALL FUN-CON(X,NOVAR')
C ALM TERM GENERATION
    SUMFLH = O
    SUMFHZ = 0
    OO 100 I=1,NUM_H
        SUMFLH = SUMFLH+LAM H(1)*FH(I)
        SUMFH2 = SUMFH2+FH(T)**2
    DO 110 I=1,NUMG
110 PSI(I) = MAX(FG(1),-LAM_G(1)/(2*RPA))
    SUMPPSI = 0
    SUM-PSI2 = 0
    00 T30 I=1,NUM G
        SUM_PSI = SUM_PSI+LAM_G(I)*PSI(I)
        SUM_PSI2 = SUM_PSI2+RP苂*PSI(I)**2
c THE PSEUDO-OBJECTIVE FUNCTION
    FALM = FCOST+SUM_PSI+SUM_PSI2+SUMFLH+RPA*SUMFh2
    FUN_COST = FCOST
c MAX ITERATION FOR FUNCTION CALLS CHECK
    IF (CALLS.EQ..2000) THEN
        STOP :......max iterations for method reached *.......
    END IF f
    RETURN
    ENO
C END OF ALM FUN
```

```
C**********************************************************************
    SUBROUTINE GAUSSZ(A, X,N,N1)
C*******U8ROUTNE GAUSSZ(A,X,N,N1)
c this subroutine performs gaussian reduction to solve the system of
c EQUATIONS.
INTEGER*2 i,j,K,L,M,N,ji,jJ,N1
REAL*4 AIJ,X(N),A(N,N1),FA,FB,FC,BIG,DUMMY
    00 100 J=1,N
        A!J=A(J,j)
        \{=J+1
        IF (J1.GT.N) GO TO 980
        BIG=ABS(A(J,J))
        M=J
        DO 900 L=J1,N
        IF (ABS(A(L,J)).LE.BIG) GOTO 900
900 CONTINUE
            00 990 JJ=J.N1
                DUMMY = A(M,JJ)
                A(M,JJ) = A(J,JJ)
                A(J,JJ) = DUMMY
990 CONTINUE
980 CONTINUE
    00 200 K=J.N1
200 A(J,K)=A(J,K)/AIJ
    00 300 I=1,N
                IF (I.EQ.J) GO TO }30
                AIJ=A(I, J)
                DO 400 K=J,N1
400 CONTN(I,K)=A(I,K)-AIJ*A(J,K)
100 CONTINN
500 DO 500 [I=1,N N(I) =A(I,N1)
    RETURN
    END
C END OF GAUSSZ
```

SUBROUTINE CHECK PRINT (ITR, XFINAL, FCOST, FCOST P, NOVAR)
 c This subroutine prints the design vector, function value and pseudec objective function value for each complete ALM iteration.
 $\%$ INCLUDE 'declarations.ins.f'

PRINT*,' AT ITERATION NUMBER',ITR,' AND CALL NUMBER',CALLS PRINT*' THE VALUES OF THE VARIABLES ARE:'
c Print the current design vector
do $7 \mathrm{~J}=1$, novar
7 WRITE(*, 10)I, xfinal(I)
$10 \quad$ FORMAT $\left.5 X_{1}^{\prime}, \mathrm{X}(1,12,1)=1,1 F 10.6\right)$ WRITE(*,11)
11 FORMAT (/)
IF (FLAG.EQ.1) PRINT*,' *** NOTE: ALL PROPELLENT EXPENDED ****
c Print the current and last function and ALM values.
PRINT*,' CURRENT FCOST $=1$, fun cost
PRINT*, وREVIOUS FCOST $=$, fun costp
PRINT*', CURRENT ALM $=1$,fcost
PRINT*', PREVIOUS ALM $=1$ 'fcost_p
WRITE(*, 11)
PRINT*, i RP $=1$,rpa
c Print the current lambda and value of the constraint function....... do $20 \quad[=1$, NUM H

WRITE (*, 60) it, fh(i), i, lam_h(i) do $30 I=1$, NUM G

WRITE(*, 50)T, fg(i), i, lamg(i)

 WRITE(*, 11)

RETURN
END
C END OF CHECK PRINT

```
***********************************************************************
    SUBROUTINE PRINTIT(XFINAL,FCOJI,NOVAR)
****************************************************************************)
c This subroutine prints the final design vector, function value and
c number of function calls.
*)
%INCLUDE 'declarations.ins.f'
    PRINT*,' THE FINAL FUNCTION VALUE IS (m/s):', FUN_COST*(-1.0)
    PRINT*,' 'THE ',NOVAR,' VARIABLE VALUES ARE:'
    DO 7 1=1, novar
    WRITE(*,10)1,xfinal(1)
FORMAT(5x': X(',12,')= =1,1F10.6)
    WRITE(*,11)
    FORMAT(/)
    WRITE(*,20)((xfinal(I)*100),I=1,NOVAR)
20 FORMAT(10X,8F12.5)
    PRINT*, ' THE TOTAL NUMBER OF FUNCTION CALLS WAS :', CALLS
    PRINT*', ' THE FINAL ALM FUNCTION VALUE WAS WAS :'', &COST
    RETURN
    END
C END OF PRINT IT
```

```
C****************************************************************************
            SUBROUTINE TOL_TEST(LAM HP,LAM_GP,TOLERANCE,CONVERGE,FCOST_P
            + FCOSTT)
```



```
C This subroutine determines if the convergence has occured for the
ALM method to terminate.
LOCAL DEFINTIONS........
    TOTAL = THE SUM OF THE NUMBER OF INEQUALITY AND EQUALITY
                                    CONSTRAINTS
        DIFFH = THE DIFFERENCE BETWEEN THE CURRENT AND PREVIOUS LAMBDA
                        THE DIFFERENCE BETWEEN THE
        DIFFG = SEE ABOVE, FOR INEQUALITY CONTRAINTS.
        ALM SUM = THE COUNTER FOR THE NUMBER OF CONSTRAINTS IN TOLERANCE.
        DELTA_C = THE CHANGE IN THE COST FUNCTION SINCE LAST ITERATION.
%INCLUDE ideclarations.ins.f
    INTEGER*2 TOTAL,ALM SUM
        REAL*4 DIFFH,DIFFG,DELTA_C
        INTRINSIC SQRT
        ALMSSUM = O
        DELTA_C = ABS(FUN_COST - FUN_COSTP)
```



```
    00 100 I=1,NUM H
    DIFFH = LAM }\overline{H}(1)-LAM HP(I
    IF (DIFFH.LEE.TOLERAN\overline{CE) THEN}
        ALM_SUM = ALM_SUM+1
        END IF
100 CONTINUE
    DO 110 I=1,NUM G
    DIFFG = LAM G(I)-LAM GP(I)
    IF (DIFFG.LE.TOLERAN\overline{CE) THEN}
        ALMSSUM = ALM_SUM+1
    END IF
110 CONTINUE
    IF (DEITA C.LE.TOLERANCE.AND.ALM_SUM.EQ.TOTAL) THEN
    CONVERGE = .TRUE.
    ELSE
    CONVERGE = .FALSE.
        END IF
    RETURN
    END
C END CF TOL TEST
C***************************************************************************
    SUBROUTINE UPDATE (LAM HP,LAM GP,GAMMA)
```



```
C This subroutine updates the lambda's and the rp for the ALM method.
%INCLUDE 'declarations.ins.f'
INTRINSIC MAX
c alm update of lambda's for equality constraints
    OO 200 I=1,NUM H
            LAM_HP(I)=LAM
200 LAM_H(I)=LAM_\overline{H}(1)+2*RPA*FH(1)
c alm update of lambda's for inequality constraints
    DO 210 I=1,NUM G
            LAM GP(1)=LAPG G(I)
L10 LAM_G(I)=LAM_G(I)+2*RPA*MAX(FG(I),-LAM_G(I)/(2*RPA))
c rp update.
```



```
IF (RPA.GE.RP MAX) THEN RPA=RP_MAX
END IF
```


RETURN

```
END
C END OF IJPOATE
```

This appendix contains the interior ballistics code used in this thesis. This is a modified version of IBRGAC (15) to fit the optimization model. The first item is the declaration file followed by the main progam. It is organized by subroutine and includes all of the design vector assignment and return subroutines. The files listed below.

1. intball.ins.f.
2. fun_int.ftn.
3. prfol7.ftn.
4. read_data.ftn.
5. reset_data.ftn.
6. mass_check.ftn.
7. var_in.ftn (Example 1-4).
8. var_out.ftn (Example 1-4).

c Record 7
REAL 4 forcp(10), $\operatorname{tempp(10),\operatorname {covp}(i0),\operatorname {chwp}(10),\text {rhop}(10),~}$
$+\quad \operatorname{gamap}(10), g l e m p(10), p d p i(10), p d p o(10), g d i a p(10)$.
$+\quad$ dbpcp(10)
INTEGER*2 nprop,nperfs(10)
REAL*4 $\left.s_{\text {_forcp }} 10\right), s_{-t e m p p}(10), s_{-c o v p}(10), s_{-c h w p(10)}$,
$+\quad s^{-r h o p}(10), s_{-}$gamap (10), s_glenp(10), s_pdpi(10),
s_pdpo(10), s_gdiap(10), s_dbpcp(10)
INTEGER*2 s_nprop,s_nperfs(10)
Record 8.
REAL*4 $3($ pha $(10,10)$, beta $(10,10)$, pres $(10,10)$
INTEGER*2 nbr(10)
REAL*4 $s_{-} a\left(p h a(10,10), s_{-} b e t a(10,10), s_{\text {_ }}\right.$ pres $(10,10)$
INTEGER*2 s_nbr(10)
REAL* ${ }_{4}$ deltat, deltap, istop
$\begin{array}{ll}\text { REAL*4 } & \text { deltat,deltap, tstop } \\ \text { REAL*4 } & \text { s_deltat,s_deltap,s_tstop }\end{array}$
c end of record declarations
Lagrange chamber volume values
REAL*4 bore,b1,b2,b3,b4,2z,bint(ij),bvol, rí, ri, diam, area, temp.

+ chmlen
REAL*4 s_bint(4),s_bvol,s_chmlen,s_bore
c
local use declarations.
REAL*4 step, tmpi, lambda, pmaxm, pmaxba, tpmaxm, tpmaxbr, pmaxbr,
- tpmaxba,tpmax,as(4),bs(4),ak(4),vp0,tr0,tcw, ibo(10).
$+\quad$ volgi, pmean, volg,wallt,ptime,z(20),y(20)
REAL*4 dpmaxba, dpmaxbr,max_mass, l_d,p_f,m_r,total_vol_prop, + cham_vol

INTEGER*2 ibrp,nde,isw1,i1,i,j,k,l,m,y_axis,x_axis
REAL*4 velocity, values $(20,20)$
REAL*4 resp,elpt,elpr,pt,vzp,j4zp,elgpm,elbr,elrc, areaw, avcp.
$+\quad$ +
$+$ resp, elpt, elpr,pt,vzp, j4zp, elgpm, elbr, elrc, areaw, avcp,
avc,avden,z18,z19,avvel,htns, elht, air, elar, rfor, areab, eprop, rprop, tenergy, tgas, v1, cov1, pbase, pbrch, j1zp, j22p, j32p, a2t, alf, a1t, bt, bata, gamma, delta, ds(20), p(20), t, rmvelo, tmvelo, disto, dfract, efi, efp, tenerg, tengas frac (10), surf(10), points, rmvel, tmvel, u
c COMMON BLOCKS
COMMON/RECORDS /cham, grve, aland,glr,twst,travp,igrad, chdist, + chdiam, nchpts, prwt,htfr,pgas,iair,br,trav,npts,rcwt,rp, + tr,nrp,ho,tshl,cshl, twal,hl,rhocs,forcig,covi,tempi,chwi, gamai, forcp, tempp, covp, chwp, rhop, gamap, nperfs, glenp, pdpi, pdpo, gdiap,dbpcp, nprop, al pha, pres,nbr, deltat, deltap, tstop, beta

c end of intball.ins.f

```
C***********************************************************************
    SUBROUTINE FUN INT (X,NOVAR, FX,BURNED UP)
*)
    This subroutine is called from ifunx.ftn'. lt is a modified
    version of the lumped parameter interior ballistics code IBRGAC,
    from the Interior Ballistics Laboratory, Maryland. It has been
    modified to accept iterative changes the input data. The following
    changes have been made:
        1. The input file is now read by an external subroutine,
        'read data.ftn'
        2. The data is initialized by an external subroutine,
            'reset data.ftn'
        3. Subroutine 'mass_check.ftn' checks the volume of propellent to
            see if it will-fit into the chamber.
    See 'intball.ins.f' for variable definitions. In addition the following
    defintions apply:
        burned up = the propellent is all burned up flag.
        bad we5 = the flag for a web violation.
***###市*******************************************************************
%INCLUDE 'intball.ins.f'
INTEGER*2 NOVAR, BURNED UP
REAL*4 X(NOVAR),FX,BAD_WEB
BAD WEB = 0.0
BURNED_UP = 0
FX = =0.0
C RESET VARIABLES FOR RUN CALL reset_data
c VARAIBLE ASSIGNMENT CALL VAR IN(X,NOVAR,FX) IF (FX.LT.O.O) RETURN
c CHECK MASS OF PROPELLENT CALL MASS_CHECK
c START INTERIOR BALLISTICS CALCULATIONS
c Calculate total mass of propellent and igniter tmpi \(=0.0\) do \(20 i=1\), nprop
tmpi \(=\) tmpi \(+\operatorname{chwp}(i)\)
tmpi \(=\) tmpi + chwi
c Use Chambrage
if(igrad.gt.1) then
go to 131
else
c Calculate the diameter of the bore [eq 1.3]
bore \(=\left(g\left(r^{*} g r v e * * 2+a l a n d * * 2\right) /(g \mid r+1.0)\right.\)
bore \(=\) sqrt(bore)
end if
C Calculate the area of the bore
131 areab \(=\) pi*bore \(^{\star * 2 / 4.0}\)
c Calculate the Nordheim Friction Factor [eq 7.15] (ambda \(=1.0 /((13.2+4.0 * \log 10(100.0 *\) bore \()) * * 2)\)
c Initialization of Runge-Kutta values
as(1) \(=0.5\)
as \((2)=1 .-\operatorname{sqrt}(2) /\).2 .
\(\operatorname{as}(3)=1 .+\operatorname{sqrt}(2) /\).2 .
\(\operatorname{as}(4)=1.0 / 6.0\)
\(b s(1)=2.0\)
\(b s(2)=1.0\)
\(b s(3)=1.0\)
\(b s(4)=2.0\)
\(a k(1)=0.5\)
\(a k(2)=a s(2)\)
\(\operatorname{ak}(3)=\operatorname{as}(3)\)
ak(4) \(=0.5\)
do 5 i = 1, nprop
vp0 \(=\operatorname{chwp}(i) / r h o p(i)+v p 0\)
5
```



```
c ENERGY LOSS DUE TO PROJECIILE ROTATION (eq 7-S)
    elpr=pi**2*prwt*y(1)**2*twst**2/4.0
c ENERGY LOSS DUE TO GAS AND PROPELLANT MOTION
c Chambrage
        if(igrad.eq.2) then
c net projectile travel
        pt = y(2)+y(7)
c total current volume behind projectile
            vzp = bvol+areab*pt
c J4 determined at zp
j4zp= bint(4)+((bvol+areab*pt)**3-bvol**3)/(3.0*areab**2)
elgpm = tmpi*y(1)**2*areab**2*j4zp/(2.0*vzp**3)
c Lagrange [eq 7.6]
        else
        elgpm= tmpi*y(1)**2/6.0
        end if
c ENERGY LOSS FROM BORE RESISTANCE
        elbr = y(4)
        z(4) = areab*resp*y(1)
c ENERGY LOSS DUE TO RECOIL [eq 7.9]
    elrc = rcwt*y(6)**2/2.
c ENERGY LOSS DUE TO HEAT LOSS
c (eq 7.13)
        areaw = cham/areab*pi*bore+2.0*areab+pi*bore*(y(2)+y(7))
        avden = 0.0
        avc = 0.0
        avep = 0.0
        z18=0
        do 213 k=1,nprop
c z18 is the left hand numerator term in eq 7.19
            z18= forcp(k)\stargamap(k)*chwp(k)*frac(k)/(gamap(k)-1.)
                    /tempp(k)+z18
c 219 is the left hand denominator term in eq 7.19
            z19= chwp(k)*frac(k)+z19
c the top left numerator term in eq 7.17
            avden = avden+chwp(k)*frac(k)
213 continue
c [eq 7.19] specific heat at constant pressure of propellent gasses
    avcp = (z18+forcig*gamai*chwi/(gamai-1.)/tempi)/(z19+chwi)
c [eq 7.17] mean gas density
    avden = (avden+chwi)/(volg+covi)
c [eq 7.16] mean gas velocity
    avvel = .5*y(1)
c [eq 7.14] Nordheim heat transfer coefficient
    htns = lambda*avcp*avden*avvel+ho
c [eq 7.12] Q dot
    z(5) = areaw*htns*(tgas-wallt)*hl
c [eq 7.11] heat loss
        elht = y(5)
c wall temperature
    wallt = (elht+htfr*elbr)/(cshl*rhocs*areaw*tsh()+twal
c ENERGY loss due to alr resistance
    air=isir
    z(8)=y(1)*pgas*air
    elar=areab*y(8)
c RECOIL.
z(6)=0.0
if(pbrch.le.rp(1)/areab) then
go to 221
end if
rfor=rp(2)
if(y(3)-tr0.ge.tr(2)) then
go to }22
end if
rfor = (tr(2)-(y(3)-tr0))/(tr(2)-tr(1))
rfor = rp(2)-rfor*(rp(2)-rp(1))
z(6) = areab/rcut*(pbrch-rfor/areab-resp)
if(y(6).(t.0.0) then
    y(6) = 0.0
else
```

```
            z(7) = y(6)
            end if
            goto 223
    221 trO = y(3)
223
continue
c CALCULATE GAS TEMPERATURE
            `prop = n. }
            rprop = 0.0
            do 231 k=1,nprop
                eprop = eprop+forcp(k)*chwp(k)*frac(k)/(gamap(k)-1.)
31
                            rprop = rprop+forcp (k)*chwp(k)\starfrac(k)/(gamap(k)-1.)/tempp(k)
            tenergy = elpt+elpr+elgpm+elbr+elrc+elht+elar
            tgas = (eprop + forcig*ehwi/(gamai-1.0) - tenergy)/
                (rprop + forcig*chwi/((gamai-i.0)*tempi))
c FIND FREE VOLUME
    v1 =0.0
    cov1 = 0.0
    do 241k=1, nprop
        v1 = chwp(k)*(1.-frac(k))/rhop(k)+v1
                cov1 = cov1+chwp(k)*covp(k)*frac(k)
241 continue
            cont inue volgi+areab*(y(2)+y(7))-v1-cov1
c CALCULATE MEAN PRESSURE
            r1 = 0.0
            do 251k=1,nprop
251 do r1 = r1+forcp(k)*chwp(k)*frac(k)/tempp(k)
    pmean = tgas/volg*(r1+forcig*chwi/tempi)
            resp = resp+pgas*air
            if(igrad.eq.2) then
                if(isw1.ne.0) then
                    go to }25
            end if
            pbase = pmean
            pbrch = pmean
            if (pbase.gt.resp+1.0) then
                isw1 = 1
            end if
            go to 257
c USE CHAMBRAGE PRESSURE GRADIENT EQUATION
253 j1zp= bint(1)+(bvol*pt+areab/2.*pt**2j/areab
    j1zp = bint(1)+(bvol*pt+areab/2.*pt
    j32p = bint(3)+areab*bint(1)*pt+bvol*pt**2/2.0+areab*pt**3/6.
    a2t = -tmpi*areab**2/prwt/vzp**2
    alf = 1.0-a2t*j1zp
    a1t = tmpi*areab*(areab*y(1)**2/vzp+areab*resp/prwt)/vzp**2
    bt = -tmpi*y(1)**2*areab**2/(2.0*v2p**3)
    bata = -a1t**12p-bt*j2zp
    gamma = alf+a2t*j32p/vzp
    delta = bata+a1t*j3zp/vzp+bt*j4zp/vzp
c CALCULATE bASE PRESSURE
    pbase = (pmean-de(ta)/gamma
    c CALCULATE BREECH PRESSURE
    pbrch = alf*pbase+bata
    else
c USE LAGRANGE PRESSURE GRADIENT EQUATION
252 if(isw1.ne.0)go to 256
c CALCULATE BASE PRESSURE
256 pbase=(pmean+tmpi*resp/3./prwt)/(i.+tmpi/3./prwi)
    pbase=(pmean+tmpi*resp/3./
                isul=1
            end if
c CALCULATE bREECH PESSURE
    pbrch = pbase+tmpi*(pbase-resp)/(2.0*prwt)
    end if
```

```
c CALCULATE PROJECTILE &こCELERATICN
            z(1) = areab*(pbase-resp)/prwt
            if(z(1).1t.0.0) :-en
            go to 257
            else
                go to 258
                    end if
            if(isw1.eq.0)
            if(isw1.eq.0)
            z(2)=y(1)
c GET BURNING RATE
            do ¿64 m=1,nprop
                z(ibrp+m)=0.0
                if(ibo(m).eq.1) then
                goto 264
            end if
            do 262k=1,nbr(m)
                    if(pmean.gt.pres(m,k)) then
                    go to 262
                    end if
                    go to 263
                    262 continue
                    262 continue
c [eq 5.2] linear burning rate....................................................
                    z(ibrp+m)=beta(m,k)*(pmean*1.e-6)**a(pha(m,k)
            continue
c 4th order Runge-Kutta integration.
            do 21 i=1,nde
            ds(i) = (z(i)-bs(j)*p(i))*as(j)
            y(i)}=\mp@subsup{d}{eltat*ds(i)+y(i)}{*
                p(i) = 3.*ds(i)-ak(j)*2(i)+p(i)
21 continue
11 continue
    t = t+deltat
c set max mean pressure
    if(pmaxm. le.pmean) then
        pmaxm = pmean
        tpmaxm = y(3)
    end if
c set max base pressure......................................................................
    if(pmaxba.le.pbase) then
        pmaxba = poase
        tpmaxba = y(3)
        dpmaxba = y(2)
    end if
c set max breech pressure.................................................................
    if(pmaxbr.le.porch) then
        pmaxbr = porch
        tpmaxbr = y(3)
        dpmaxbr = y(2)
    end if
    if(y(3).ge.ptime) then
        ptime = ptime+deltap
c write(0,7)y(3),z(1),y(1),y(2),pmean,pbase,pbrch
c write(6,7)y(3),z(1),y(1),y(2),pmean,pbase,pbrch
    end if
c STOP CRITERIA: time is up or tube length is met
    if(t.gt.tstop.or.y(2).ge.travp) then
        go to 200
    else
            rmvelo = y(1)
            disto = Y(2)
            tavelo = Y(3)
            goto 19
        end if
```

```
C END OF CALCULATION OUTPUT
200 write(6,311)t,y(3)
311 format(1x,' deltat t', e14.6, ' intg t',e14.6)
    write(6,312) pmaxm, tpmaxm
    format(ix,'PMAXMEAN Pa ',e14.6,' time at PMAXMEAN sec ',e14.6)
    write(6,313)pmaxba, tpmaxiua
    formar(ix,'PMAXBASE Pa ', e14.6,' time 3t PMAXBASE sec ',e14.6)
    write(6,314) pmaxbr, tpmaxbr
    format(ix,'PMAXBRCH Pa ',e14.6,' time at PMAXBRCH sec ',e14.6)
316 format(1x)
```



```
    if(y(2).le.travp) then
        write(6,327)y(1),y(3),y(2)-travp, l_d
327 format(1x,'proj VELOCITY m/s ', e14.6,' at time sec ',e14.6,
    +
velocity check.
        fx = - y(1)
        go to }31
    else
        dfract = (travp-disto)/(y(2)-disto)
        rmvel = (y(1)-rmvelo)*diract+rmvelo
        tmvel = (y(3)-tmvel0)*diract+tmvelo
c vrite(6,318)rmvel,tmvel,y(2)-travp,l_d
c318 format(ix,'muzzle veLOCiTY m/s :,ei4-6,' at time sec ', ei4.6.
    +
        fx = - rmvel
    end if
c Energy calculations
319 efi = chwi*forcig/(gamai-1.)
    efp = 0.0
    do }315\textrm{i}=1\mathrm{ , nprop
        efp = efp + chwp(i) * forcp(i) / (gamap(i)-1.0)
        continue
        tenerg = efi+efp
        urite(6,317)tenerg
317 format(1x,'total initial energy available J = ', e14.6)
    tengas = chwi*forcig*tgas/(gamai-1.)/tempi
    do }135\textrm{i}=1\mathrm{ , nprop
        tengas=(frac(i)* chwp(i)* forcp(i)*tgas/tempp(i)/(gamap(i)-1.))
    + + tengas
        write(6,328)i, frac(i)
328 format(' FOR PROPELLANT ',12,' MASSFRACT BURNT IS ', e14.6)
135 continue
c variable return.
    CALL VAR OUT(X,NOVAR`
    if (frac(1).ge.1.0) burned_up = 1
    return
    end
c End of fun_int.ftn.
```


ELSE IF (NP.EQ.7) THEN
C SEVEN PERF PROPELLENT ACCEPTASLE DIMENSIONS CHECK
C OUIER PERFORATION MIOPOIKI GURNED THROUGH GY INNER PERF CHECK
 bad web $=(P+D 1 *(S Q R i 3-1))-P 1$
C OUTER PERFOR̄ATION MIDPOINT BURNED THROUGH BY OUTER DIAMETER CHECK.
ELSE IF (D.LT, D1*(SSRT3+1.)-P) THEN BAD_WEB $=0-\left(01^{*}\left(\operatorname{SQRT3}+i_{.}\right)-P\right)$
END IF
\subset WEG DIMENSION CALCULATIONS
$W=01-P$
$W O=(D-P-2 . * D 1) / 2$.
$W 1=(2, * D 1-P-P 1) / 2$.
C WEB BETWEEN OUTER PERF CHECK
IF (W.LT.O) THEN
bad web $=$
C OUTER WEB C̄HECK
ELSE IF (WO.LT.O.) THEN bad_web $=$ w

C INNER WEB CHECK
ELSE IF(W1.LT.O.) THEN bad web $=w 1$
END IF
C UNACCPETABLE GRANULATION CHECK
IF (BAD_WEB.LT.O.O) GOTO 60
P1SQ $=$ P1*P1
D1S0 $=D 1 * D 1$
$01503=$ D1*SORT3
D2SQ3 $=$ D1SQ*SQRT3
$X 1=\left(P 1 S O-P S Q+4 . * 01 S O-2 .{ }^{*} P 1 * 01 S Q 3\right) / 4 . /(D 1 S Q 3+P-P 1)$
$X_{2}=(4 . * 01 S Q+0 * 0-2 . * 0 * 01 S Q 3-P S Q) / 4 . /(-01 S O 3+P+0)$
$A=P I * L *(D+P 1+6 . * P)+H A F P I *(D S Q-P 1 S Q-6 . * P S Q)$
$U=P I * L / 4 . *(D S Q-P 1 S Q-6 . * P S Q)$
$W 4=\operatorname{AMIN1}(W, W 0, W 1)$
MASSF $=0.0$
TWOX $=X+X$
XSQ $=x * x$
P1P2X $=$ P1+TWOX
PP2X $=P+$ TWOX
DM2X $=$ D-TWOX
LM2X $=$ L-TWOX
P12XSO $=$ P1P2X*P1P2X
PP2XSQ $=P P 2 X * P P 2 X$
DM2XSQ $=$ DM2X*OM2X
C SEVEN PERF CALCULATIONS START HERE
C IF LENGTH IS NOT ALL BURNED UP \qquad IF (LMZX.GT. O) THEN
$S 0=P I * L M 2 X *(D+P 1+6 . * P+12 . * X)+H A F P I *(D M 2 X * D M 2 X$

+ -P1P2x*P1P2x-6.*PP2X*PP2X)
$V D=P 1 F O R * L M 2 X *(D M 2 X * D M 2 X-P 1 P 2 X * P 1 P 2 X-6$.*PP2X*PP2X)
SMALLEST WEB IS BURNED THROUGH.
IF (X.GT.W4/2.) THEN
C IF SO CHECX THE WEBS, ONE $8 Y$ ONE
C FIRST CHECK INNER WEB..........
C IT IS BURNED UP

$B 3=\left((P 1-P)^{*}(P 1+P+4 . * X)+4 . * D 1 S Q\right) / 4 . / D 1 / P 1 P 2 X$
$A 3=\operatorname{ATAN}(\operatorname{SQRT}(1 .-83 * B 3) / B 3)$
$B 4=((P-P 1) *(P+P 1+4, * X)+4 . * D 1 S Q) / 4 . / D 1 / P P 2 X$
$A 4=\operatorname{ATAN}(\operatorname{SQRT}(1 .-84 * 84) / B 4)$
$F 2=A 3 / 4 . * P 12 X S Q+A 4 / 4 . * P P 2 X S Q-S Q R T\left(Z^{*}(Z-D 1) *(2 . * Z-P-T W O X)\right.$
*(2.*Z-P1-TWOX)
$L 2=L M 2 X *\left(A 4^{* P P} 2 X+A 3 * P 1 P 2 X\right)$
ELSE
$F 2=0.0$
$L 2=0.0$
A3 $=0.0$
$A 4=0.0$
END $1 F$

C NEXT CHECK WEB SETWEEN OUTER PERFORATIONS
$B 5=D 1 / P P 2 X$
$A 5=A T A N(S O R T(i .-B 5 * B 5) / B 5)$
$F 3=(A 5 * P P 2 X S O-D 1 * S Q R T(P P 2 X S O-D 150)) / 2$.
L3 $=2 . * A 5 * L M 2 X * P P 2 X$
ELSE
$F 3=0.0$
$13=0.0$
$A 5=0.0$
END IF
C NEXT CHECK OUTER WEB.
IF (X.GT.HO/2.) THEN
$Y=(2 . * D 1+P+D) / 4$.
$81=((D+P) *(D-P-4 . * X)-4 . * D 1 S Q) / 4 . / D 1 / P P 2 X$
A1 $=\operatorname{ATAN}(\operatorname{SORT}(1 .-B 1 * B 1) / 81)$
IF (A1.LE.O.) Ai = Pi+AI
$B 2=\left((D+P)^{*}(D \cdot P-4 . * X)+4 . * D 1 S O\right) / 4 . / D 1 / D M 2 X$
$A 2=\operatorname{ATAN}(\operatorname{SQRT}(1 .-82 * 82) / B 2)$
$F 1=A 1 / 4 . * P P 2 X S Q-A 2 / 4 . * D M 2 X S O+S C R T(Y *(Y-D 1) *(2 . \pi Y-P-T W O X)$ *(2.*Y-D+TNOX))
$L 1=L M 2 X *(A 1 * F P 2 X+A 2 * D M 2 X)$
ELSE
$\mathrm{Fj}=0$.
$L 1=0$.
$A 1=0$.
$A 2=$
$E N D$ I F
C ALL three webs have been checked
C DETERMINE SLIVERING EQUATIONS
IF (X.LE.W/2.) THEN
SURF $=$ SO 0 12.* $(F 1+F 2+F 3)-6 . *(L 1+L 2+L 3)$
$V=V 0+6 . *(F 1+F 2+F 3) * L M 2 X$
GO TO 850
END IF
IF (X.LT.X1) THEN
Si = 3.*D2SQ3-PI*PP2XSQ-HAFPI*P12XSQ+6.*F3+12.*F2
$\$ 1=S 1+L M 2 X^{*}\left(2 . *(P I-3 . * A 5-3 . * A 4) * P P 2 X+\left(P I-6 .{ }^{*} A 3\right) * P 1 P 2 X\right)$
$V 1=L M 2 X / 2 . *(3 . * O 2 S Q 3-P I * P P 2 X S Q-H A F P I * P 12 X S Q+6 . * F 3$ +12.*F2)
ELSE
$S 1=0.0$
$V 1=0.0$
END IF
IF (X.LT.X2) THEN
S2. HAFPI*DM2XSQ-3.*D2SQ3-TWOPI*PP2XSQ+12.*F1+6.*F3
S2 = S2+LM2X*((PI-6.*A2)*DM2X+2.*(TWOPI-3.*A1-3.*AS) *PP2X)
$V 2=\underset{* F 1+6 . * F 3)}{\text { LM2X } 2 . *(H A F P I * D M 2 X S O-3 . * D 2 S O 3-T W O P I * P P 2 X S O+12 . ~}$
ELSE
$s 2=0.0$
$V 2=0.0$
END if
SURF $=\mathbf{S 1 + S 2}$

C the propellent has no web violations
ELSE
MASSF $=-$ TWOX/L/(DSO-P1SQ-6.*PSQ)
MASSF $=$ MASSF* $(24 . * \times S Q+(24 . * P+4 . * P 1+4 . * D-12 . * L) * X+P 1 S Q$ +6.*PSO-2.*L*D-2.*P1*L-12.*L*P-DSO)
SURF RETURN
END IF

C THE PROPELLENT HAS BEEN ALL BURNED UP ELSE SURF $=0.0$
END IF
$850 \quad$ MASSF $=1 .-V / U$
RETURN
C THE NUMBER OF PERFORATIONS DOES NOT EQUAL 0,1 RO 7.......................... ELSE
60 WRITE 6,90$)$
90 GORMAT(1X,'UNACCEPTABLE GRANULATION') END IF RETURN ENO
c end of prf017

SUGROUTINE READ DATA (X , NOVAR)	
	This subroutine is called by
	records for 'fun int.ftn'. It saves all record
	variables. At the end of this subroutine the inital design vector
	assigned. See 'intball.ins.f' for variable definitions.
	Clude 'intball.ins.f'
INTEGER*2 NOVAR	
c Input..................................	
Input data file, and open file.. wite(*, 15)	
	format('Enter name of data input file (10 characters max):') read(*,10)bdfile
10	format (a10)
open(unit=2,err=30,file=bdfile,status='old',iostat=ios) rewind 2	
Ourout data file, and open file. write(*, 25)	
25	```format('Enter name of data output file (10 characters max):') read(*,10)outfil open(unit=6, err=30, file=outfil) write(6,16)bodfile```
```c Read Record 1........................................................................ 16 format(' The data input file is ', a10,/) read(2,*,end=20,err=30)s_cham, s_grve,s_aland,s_glr,s_twst, + s_travp,s_igrad```	
Using chambrage gradient equation............................ if (s igrad.gt.1) then write $(6,47$, err $=30)$	
47	format(ix,' Using chambrage pressure gradient')
Read and echo print Record 1 a (for chambrage on(y)........................ read(2,*, end=20, err=30) s_nchpts,(s_chdist(1), s_chdiam(1), l=1,s_nchpts)	
53	write( 0,53, err $=30$ ) (s_chdist( 1$), s_{n}$ chdiam( 1 ), $l=1, s_{\text {nachpts) }}$ format (///,' chamber distance cm chamber diamēter $\mathrm{cm}^{\prime}$, , $+\quad(5 x, e 14.6,5 x, e 14.6)\rangle$
	convert units........... do $54 I=1, s$ nchpts
54	s_chdist $(1)=0.01 *$ s_chdist(1) s_chdiam(I)
	calculate chamber integrals and volume. if (s_nchpts.gt.5) then s_nchpts $=5$
	write(6,44, err=30)
	format(ix, use first 5 points') end if
c set bore to largest distance............................................................ bore $=$ s_chdiam(s_nchpts)	
```if(s_chdist(1).ne.0.0) then write(6,45, err=30) format(ix,' # points ? ') end if s_chdist(1) = 0.0```	
initialization.$\begin{aligned} & b 1=0.0 \\ & b 2=0.0 \\ & b 3=0.0 \\ & b 4=0.0 \end{aligned}$	
56	setting the initial number of integration points.......................... points $=25.0$ points = points + points
	setting the step size................... step $=$ s_chdist(s_nchpts)/points

```
c increment through breech/bore distance
    zz=0.0
C initialize the bint's
        bint(1) = 0.0
        bint(3)=0.0
        bint(4) = 0.0
        bvol =0.0
c radius of the start of current interval.
    r2 = 0.5*s_chdiam(1)
    k = 1
    j = int(points+0.5)
c going through the breech/bore travel
    do }57\textrm{I}=1,
        zz= zz+step
```



```
c looking for current interval in breech/bore
        do 58 I1=k, s_nchpts-1
            ir (z2.gt.s_chdist(11).and. zz.lt.s_chdist(11+1)) go to 59
        continue
        !1=s nchpts-1
        k}=1
c diam is first the ratio of the distance into the interval
46 diam = (zz-s_chdist(k))/(s_chdist(k+1)-s_chdist(k))
c diam is then the diameter of the current location in the inrerval.
    diam = s_chdiam(k)+diam*(s_chdiam(k+1)-s_chdiam(k))
c raduis at current location.
c intermediate area of selected interval & step location.
        area = pi*(r1+r2)**2/4.
c the current net volume of the chamber
        bvol = bvol+step*(pi/3.0)*(r1**2+ri*r2+ri***2j
c calculating the current }J(1),J(3),&J(4) values through numerica
c integration.................................
        bint(1) = bint(1) + step * bvol / area
        bint(3) = bint(3) + step * area * bint(1)
        bint(4)=bint(4) + step * bvol**2 / r.rea
c
57 r2 = ri
c determing if convergence has been reached
    temp = abs(1.0-b1/bint(1))
    if(abs(1.0.63/bint(3)).gt.temp) then
        temp = abs(1.0-b3/bint(3))
    end if
    if(abs(1.0-b4/bint(4)).gt.temp) then
        temp = abs(1.0-b4/bint(4))
    end if
c if converged set values and exit
        if(temp.le.0.001) then
        go to 41
    eise
        bl = bint(1)
        b3 = oint(3)
        b4 = bint(4)
\(c\) or go back and close interval and try again. go to 56
    end if
```

```
c convert units and save...
\begin{tabular}{|c|c|}
\hline am & \[
=\text { bvol*1.eb }
\] \\
\hline s_chmlen & = s_chdist(s_nchpts) \\
\hline s_bint (1) & \(=\operatorname{bint}(1)\) \\
\hline s_bint (3) & \(=\operatorname{bint}(3)\) \\
\hline s_bint (4) & \(=\operatorname{bint}(4)\) \\
\hline s-bvol & = bvol \\
\hline s_bore & = bore \\
\hline
\end{tabular}
c Use LaGrange Pressure Gradient else
            write(6,55)
            format(1x,' Using Lagrange pressure gradient')
        end if
        write(6,40,err=30) s_cham,s_grve,s_al and,s_glr,s_twst,s_travp
```



```
        +e14.6,/'' land diam cm ', e{4.6,/i groove/land ratio cm,ef
        +4.6./i twist turns/caliber', ei4.6./' projectile travel cm',e14.
        +6/)
c convert units
        s_cham = s_cham *i.0e-6
        s_grve = sgrve * 1.0e.2
        s_aland = s_aland * 1.0e-2
        s_travp = s_travp * 1.0e-2
c Read and echo print Record
        read(2,*,end=20,err=30) s_prwt,s_iair,s_htfr,s_pgas
        write(6,50,err=30) s_prwt,s_iair,s_htfr,s_pgas
50 format(1x,' projectile mass kg',e14.6,/' switch to calculate en
    +ergy lost to air resistance J',i3,/' fraction of work against bor
    +e used to heat the tube',e14.6/1x,' gas pressure Pa',5x , e14.6)
c Read and echo print Record 3.
        read(2,*,end=20,err=30) s_npts,(s_br(i),s_trav(i), i=i, s_npts)
            write(6,60,err=30) s-npts,(s_br(i),s_trav(i),i=1,s-npts)
            format(ix,' number barreT resistänce poiñts',i2,/' borere resistan
        +ce MPa - travel cm'/(6x,e14.6,3x,e14.6))
        write(6,65)
        format(1x)
c convert units
        do 62 i=1, s_npts 
        continue
c Read and echo print Record 4.
        read(2,* end=20 err=30) s rcut s nrp (s rp(i) s tri(i) i=1 s nrp)
        ead(2,', end=20,err=30) s_rewt,s_nrp,(s_rp(i),s_tr(i),i=1,s_nrp)
        write(6,70,err=30) s_rcwt,s,nrp,(s_rp(i),s mtr(i),i=1,smnrp)
        +recoil point pairs',6x,i2,/, recoil force'N',1 recoil time sec
        +1/(1x,e14.6,3x, e14.6))
        write(6,65)
c Read and echo print Record 5
        read(2,*,end=20,err=30) s_ho,s_tshi,s_cshi,i_twal,s_hi,s_rhocs
            write(6,75,err=30) sho,s-tshl, s_cshl, s-twal, s-hl, s-rhocs
                format(1x,' free convectīve hēat transfer cöefficiēnt w/ cm*2 x 1
    +, e14.6,/' chamber wall thickness cm', 27x, e14.6,/! heat capacity
    +of steel of chamber wall J/g K',8x,e14.6,/' initiat temperature o
    +f chamber wall K',15x,e14.6,/' heat loss coefficient',31x,e14.6./
        +' density of chamber wall steel g/cm'3',16x,e14.6,//)
c convert units
            s_ho =s_ho /1.0e-4
c Read and echo print Record 6.........................................................
    read(2,*,end=20,err=30) s_forcig,s_covi,s_tempi,s_chwi,s_gamai
            write(6,85,err=30) s_forcig,s_covi,s_tempi,s chwi,s-gamai
            format(ix, i impetus of igniter propellanm J/g',19x,e14.6,/' covo
    +lume of igniter cm**3/g',25x,e14.6./' adiabatic flame temperature
    + of igniter propellant K'1, e14.6,/i initial mass of igniter kg',2
    +6x,e14.6,/' ratio of specific heats for igniter',17x,e14.6//)
```

```
convert unit
s_forcig = s_forcig*i.e+3
s_forcig = s_forcig*1.e+3
c Read and echo print Record 7
read(2,*, end=20,err=30) s nprcp, (s forcp(i), s_tempp(i), s covp(i). \(+s^{c h w p(i), s} \operatorname{rhop}(i), s \_g a m a p(i), s\) ñperfs(i),s_glenp(i),s_pdpi(i). + s_pdpo(i),s_gdiap(i), \(\mathbf{s}^{\left.\text {d dbpcp( } i), i=1, s \_n p r o p\right) ~}\)
```



``` + s_rhop(i),s_gamap(i),s n̄perfs(i),s_glenp(i), s_pdpi(i), s_pdpo(i), + s_gdiap(i), \(\bar{s}_{-}\)dbpcp(i), \(T=1, s \_n p r o p\) )
95 format( \(\left(^{\prime}\right.\) FOR PROPELLENT NUMBER',i2,/' impetus of prope! lant \(\mathrm{J} / \mathrm{g}\) \(+1.27 x, e^{14.6 . / 1}\) adiabatic temperature of propellant K',16xe14.6./' + covolume of propellant \(c m^{\star * 3 / g^{\prime}}, 23 x\), e14.6/' initial mass of pro +pellant \(\mathrm{kg}^{\prime}, 24 \mathrm{x}\), e14.6/' density of propellant \(\mathrm{g} / \mathrm{cm}^{* * 3 ', 24 x, e 14.6 /}\) +1 ratio of specific heats for propellant', 15x, e14.6/' number of +perforations of propellant \(1,18 \mathrm{x}, \mathrm{i} \mathrm{I}^{\prime \prime}\) length of propellant grain c \(+m^{\prime}, 24 x, e^{14.6 / \prime}\) diameter of inner perforation in propellant grains \(+c m^{\prime}\) e14.6/1 diameter of outer perforation of propellant grains \(c\) \(+m^{\prime}, e^{14.6 / '}\) outside diameter of propellant grain \(\mathrm{cm}^{\prime}, 14 \mathrm{x}, \mathrm{e} 14.6 /^{\prime}\) +distance between perf centers \(\mathrm{cm}^{\prime}, 21 \mathrm{x}, \mathrm{e} 14.6\) )//)
c convert units
do 96 i=1,s nprop
\begin{tabular}{|c|c|}
\hline \(s^{\text {s forcp( }}\) (i) \(=s^{\text {cforcp( }}\) (i) & 6/1.0e-3 \\
\hline \(s_{-c o v p}^{\text {c }}\) (i) \(=s_{\text {c }}\) covp(i) & *1.0e-6/1.0e-3 \\
\hline s_rhop(i) = s_rhop(i) & *1.0e-3/1.0e-6 \\
\hline s_glenp(i) = s_glenp(i) & *0.01 \\
\hline s_pdpi(i) \(=\) s_pdpi(i) & *0.01 \\
\hline s_pdpo(i) = s_pdpo(i) & *0.01 \\
\hline s gdiap(i) = s gdiap(i) & *0.01 \\
\hline s_dbpcp(i) = s_dbpcp(i) & *0.01 \\
\hline ontinue & \\
\hline
\end{tabular}
continue
```

```
Read and echo print Record 8.
```

Read and echo print Record 8.
do }97\textrm{j}=1,\textrm{s}\mathrm{ _nprop
do }97\textrm{j}=1,\textrm{s}\mathrm{ _nprop
read(2,*,-end=20, err=30) s_nbr(j),(s_alpha(j,i), s_beta(j,i),
read(2,*,-end=20, err=30) s_nbr(j),(s_alpha(j,i), s_beta(j,i),
s pres(j,i),i=1,s_nbr(jJ)
s pres(j,i),i=1,s_nbr(jJ)
wri\overline{te(6,110, err=30) s_nbr(j),(s_alpha(j,i),s_beta(j,i),}
wri\overline{te(6,110, err=30) s_nbr(j),(s_alpha(j,i),s_beta(j,i),}
+ s_pres(j,i),i=1,s nbr(j))
+ s_pres(j,i),i=1,s nbr(j))
110 format(1x,i no. of Eurning rate points',i2/3x,' exponent',5x,
110 format(1x,i no. of Eurning rate points',i2/3x,' exponent',5x,
coefficient',17x,' pressure'/5x,1-1,16x,'cm/sec-MPa**ai',12x,
coefficient',17x,' pressure'/5x,1-1,16x,'cm/sec-MPa**ai',12x,
+ MPa',}/(\9,e14.6,5x,e14.6,15x, e14.6))
+ MPa',}/(\9,e14.6,5x,e14.6,15x, e14.6))
c convert units
c convert units
do 112 i=1, s nbor(j)
do 112 i=1, s nbor(j)
s_beta(j,i) = s_beta(j,i)*1.e-2
s_beta(j,i) = s_beta(j,i)*1.e-2
s_pres(j,i) = s_pres(j,i)*1.e6
s_pres(j,i) = s_pres(j,i)*1.e6
97 continue
97 continue
write(6,65)
write(6,65)
c Read and echo print Record S
c Read and echo print Record S
read(2,*,end=20,err=30) s_deltat,s_deltap, s_tstop
read(2,*,end=20,err=30) s_deltat,s_deltap, s_tstop
write(6,120,err=30) s_deltat, s_deltap,s-tstop
write(6,120,err=30) s_deltat, s_deltap,s-tstop
20 format(2x'time increment - msec',el\.6/2x,'print increment
20 format(2x'time increment - msec',el\.6/2x,'print increment
+ msec',e14.6/2x,'time to stop calculation msec',e14.6)
+ msec',e14.6/2x,'time to stop calculation msec',e14.6)
c convert units
c convert units
s_deltat = s_deltat *0.001
s_deltat = s_deltat *0.001
s_deltap = s_deltap *0.001
s_deltap = s_deltap *0.001
s_tstop = s_tstop *0.001
s_tstop = s_tstop *0.001
c Design vector assigned here, each is problem specific
c Design vector assigned here, each is problem specific
c. Format is: x(1) = s_glenp(1) etc.
c. Format is: x(1) = s_glenp(1) etc.
c.
c.
29 write(0,130)
29 write(0,130)
130 format(1x,' ENO INPUT DATA ")
130 format(1x,' ENO INPUT DATA ")
return
return
20 write(*,140)
20 write(*,140)
140 format(ix,'end of file encounter')
140 format(ix,'end of file encounter')
return
return
30 write(*,150)
30 write(*,150)
150 format(ix,'read or write error')
150 format(ix,'read or write error')
return
return
end
end
c end of data read

```
```

C**)
SUBROUTINE RESET DATA
c This subroutine resets the variables for and is called by
c 'fun int.ftn'. It transfers all initial values from their 's_'
c prefixed variable to the variable that is used in the calling-
c}\mathrm{ subroutine. See 'intball.ins.f' for variable definitions.
C***
%InCluDE 'intball.ins.f'
Record Initialization
Record 1.
cham = s cham
grve = s-grve
aland = s-aland
glr = s_glr
twst = s_twst
travp = s_travp
igrad = s_igrad
c Record 1a.
do }10\textrm{i}=1,\textrm{s}\mathrm{ nchpts
chdist(i)= s_chdist(i)
chdiam(i) = s_chdiam(i)
nchpts = s_nchp\overline{s}
c
Record 2
prwt = s_prwt
htfr = s_htfr
pgas = s_pgas
iair = s_iair
do }30\mathrm{ i=1,s npts
br(i) =-s_br(i)
trav(i) = s-trav(i)
npts = s_npts
Record 4
do 40 i=1,s_nrp
rp(i) = s_rp(i)
tr(i) = s_tr(i)
rcwt = s_rcw̃t
nrp = s_nrp
Record 5.
ho = s ho
tshl = s_tshl
cshl = s_cshl
twal = s-twal
hl = s_hl
rhocs = s_rhocs
forcig=s_forcig
covi = s-covi
tempi = stempi
chwi = s_chwi
gamai = s_gamai
Record }7
do }70\mathrm{ i=1,s nprop
forcp(i) \#s_forcp(i)
tempp(i) = s_tempp(i)
covp(i) = scovp(i)
chwp(i) = s-chwp(i)
rhop(i) = S_rhop(i)
gamap(i)=s_gamap(i)
nperfs(i)= s-nperfs(i)
glenp(i) = s_glenp(i)
pdpi(i) = s_pdpi(i)
pdpo(i) = s_pdpo(i)
gdiap(i) = s-gdiap(i)
oopcp(i) = s dbpep(i)
nprop = s_nprop

```
c Record 8
\[
\begin{aligned}
& \text { cord } 8 \\
& \text { do } 80 \text { i }=1,10 \\
& \text { nor }(i)=s \text { nor }(i) \\
& \text { do } 80 j=1, j 0 \\
& \text { alpha }(i, j)=\text { s_alpha }(i, j) \\
& \operatorname{beta}(i, j)=s) \\
& \operatorname{pres}(i, j)=s)
\end{aligned}
\]

80
c Record 9
        deltat = s_deltat
        deltap \(=s_{-}^{-}\)deltap
        tstop \(=\) s_tstop \(^{-}\)
c Lacrange Chamber volume resets.......................................................... bint(1) = s_bint(1) \(\operatorname{bint}(3)=s_{-} \operatorname{bint}(3)\) bint(4) \(=\) s_bint (4)
ovol = s_bvol
chmien \(=\) s_chmlen
bore \(=\) s_bore
c End of Record resets
c Local use initialization
\(r i=0.0\)
\(r 2=0.0\)
areab \(=0.0\)
tmpi \(=0.0\)
limboda \(=0.0\)
pmaxm \(=0.0\)
pmaxbr \(=0.0\)
pmaxba \(=0.0\)
tpmaxm \(=0.0\)
tpmaxbr \(=0.0\)
tpmaxba \(=0.0\)
\(t\) pmax \(=0.0\)
air \(=0.0\)
do \(100 i=1.4\)
as \((i)=0.0\)
as \((i)=0.0\)
bs \((i)=0.0\)
100
\(\mathrm{vpO}=0.0\)
\(\operatorname{tro}=0.0\)
tcw \(=0.0\)
volgi \(=0.0\)
pmean \(=0.0\)
volg \(=0.0\)
wallt \(=0.0\)
ptime \(=0.0\)
do \(110 \quad i=1,20\)
\(2(i)=0.0\)
\(y(i)=\)
\(d s(i)=0\)
\(p(i)=0.0\)
\(\begin{aligned} \text { points } & =0 \\ \text { ibrp } & =0 \\ \text { nde } & =0 \\ \text { isw1 } & =0\end{aligned}\)
```

resp	0.0
elpt	0.0
elpr	0.0
pr	$=0.0$
vzp	0.0
j4zp	$=0.0$
elgpm	$=0.0$
elbr	$=0.0$
elre	$=0.0$
areaw	$=0.0$
avep	$=0.0$
ave	$=0.0$
avden	$=0.0$
218	$=0.0$
219	$=0.0$
avvel	$=0.0$
htns	$=0.0$
etht	$=0.0$
elar	$=0.0$
rfor	0.0
eprop	$=0.0$
rprop	$=0.0$
tenergy	$=0.0$
tgas	$=0.0$
pt	$=0.0$
$v 1$	$=0.0$
cov1	$=0.0$
piose	$=0.0$
pbrch	$=0.0$
j12p	$=0.0$
j2zp	$=0.0$
j32p	$=0.0$
a2t	$=0.0$
alf	$=0.0$
a1t	$=0.0$
bt	$=0.0$
bata	$=0.0$
gamma	$=0.0$
delta	$=0.0$
t	$=0.0$
rmvelo	$=0.0$
tmvelo	$=0.0$
disto	$=0.0$
dfract	$=0.0$
efi	$=0.0$
efp	$=0.0$
tenerg	$=0.0$
tengas	= ${ }_{i=1} 0.0$
do 120	$i=1,10$
frac	$\begin{aligned} & (i)=0 \\ & (i)=0 \end{aligned}$
ibo(i)	
RETURN END	

```

```

C***\pi**m***************
subroutine mass check

```

```

C THIS SUBROUTINE DETERMINES THE LOADING DENSITY ANO CHECKS THE MAXMIMUM
C MASS ALLOWED FOR MULTIPLE PROPELLENTS

```

```

%INCLUDE 'intball.jns.f'
REAL*4 vol_grain(10),vol_ideal(10),mas_grain(10),num_grain(10),
intrinsic sart
c check for propellent type
do }100\quadi=1,npro
c for 0 perf propellent
if (nperfs(i).eq.0) then
c determine }1\mathrm{ grain volume, actual \& ideal
vol_grain(i) = pi*glenp(i)*(gdiap(i)**2)/4
vol-ideal(i) = pi*glenp(i)*(gdiap(i)**2)/4.
c determine the mass of 1 grain of propellent
mas_grain(i) = rhop(i)*vol_grain(i)
c determine the number of grains of-propellent present
num grain(i) = chwp(i)/mas grain(i)
c determine the pure volume of propellent present.
vol_prop(i) = vol_ideal(i)*num_grain(i)
c ior }1\mathrm{ perf propellent
else if (nperfs(i).eq.i) then
vol_grain(i) = pi*glenp(i)*(gdiap(i)**2-pdpi(i)**2)/4.
vol_ideal(i) = pi*glenp(i)*(gdiap(i)**2)/4.
mas_grain(i) = rhop(i)*vol_grain(i)
numgrain(i) = chwp(i)/mas-grain(i)
vol_prop(i) = vol_ideal(i)*num_grain(i)
mas_prop(i) = mas_grain(i)*num_grain(i)
c for }7\mathrm{ perf propellent
else if (nperfs(i).eq.7) then
vol_grain(i) = pi*glenp(i)*(gdiap(i)**2-pdpi(i)**2-pdpo(i)**2)
vol_ideal(i) = pi*glenp(i)*(gdiap(i)**2)/4.
mas_grain(i) = rhop(i)*vol_grain(i)
num}\mp@subsup{\mp@code{grain(i) = chwp(i)/mas-grain(i)}}{}{-
vol_prop(i) = vol_ideal(i)*num_grain(i)
mas_prop(i) = mas_grain(i)*num_grain(i)
end if
100 continue
c the total volume the propellents occupy if ideally packed \& mass....
total_mas_prop = 0.0
total vol prop = 0.0
do 200 i=T, nprop
total_mas_prop = total_mas_prob + chwp(i)
200 total-vol-prop = total-vol_prop + vol_prop(i)
c the chamber votume (m`3) and loading density (}\textrm{g}/\textrm{cm}3
cham vol = cham
d_l \equiv(total_mas_prop*1000.0)/(cham_vol*1eb)
return
end
c end of check mass

```

```

 SUBROUTINE VAR IN(x, novar, fx)
 c********\#***********「**
c Example 1 variable conversion for Interior Ballistics Calculation
c*****************\#\#\#**
%INCLUDE 'intball.ins.f'
INTEGER*2 NOVAR
REAL*4 X(NOVAR),FX
c Negative dimension check. To ensure no negative values are sent...
do 15 l=1,novar
if (x(i).(e.0.0) fx = fx + x(i)
if (fx.lt.0) then
fx = -1000.0*fx
return
end if
c variable assignment
c }7\mathrm{ perforation propellent
glenp(1) = x(1)
pdpi(1) = x(2)
pdpo(1) = x(3)
gdiap(1) = x(4)
dbpcp(1) = x(5)
chwp(1) = x(6)
return
end
c END OF VAR IN

```
```

**

```
************************************************************************
    SUBROUTINE VAR OUT(x,novar)
    SUBROUTINE VAR OUT(x,novar)
c*************************************************************************
c*************************************************************************
c Example 1 variable return for Interior Ballistics Calculation
c Example 1 variable return for Interior Ballistics Calculation
***********************************************************************
***********************************************************************
%INCLUDE 'intball.ins.ft
%INCLUDE 'intball.ins.ft
    INTEGER*2 NOVAR
    INTEGER*2 NOVAR
    REAL*4 X(NOVAR)
    REAL*4 X(NOVAR)
c variable return.
c variable return.
    x(1) = glenp(i)
    x(1) = glenp(i)
    x(2) = pdpi(1)
    x(2) = pdpi(1)
    x(3) = pdpo(1)
    x(3) = pdpo(1)
    x(4) = gdiap(1)
    x(4) = gdiap(1)
    x(5) = dbpcp(1)
    x(5) = dbpcp(1)
    x(6) = chwp(1)
    x(6) = chwp(1)
    RETURN
    RETURN
    END
    END
c END OF VAR OUT
```

c END OF VAR OUT

```
```

C***
SUBROUTINE VAR IN(x, novar, fx)
c********************玉***
c Example 2. This subroutine is called from 'fun_int.ftn' and sends
c the design vector from the minimization process into the variables
c used in the interior ballistics code.
c***
%iNCLUDE 'intball.ins.f'
INTEGER*2 NOVAR
REAL*4 X(NOVAR),FX
c Negative dimension value check
do }15\textrm{l}=1\mathrm{ , novar
15 if (x(i).le.0.0) fx = fx + x(i)
if (fx.lt.0) then
fx = -1000.0*fx
return
end if
c variable assigmment
c }7\mathrm{ perforation propellent
g(enp(1) = x(1)
pdpi(1) = x(2)
pdpo(1) = x(3)
gdiap(1)=x(4)
dbpcp(1) = x(5)
chwp(1) = x(9)
c 1 perforation propellent
g!enp(2) = x(6)
pdpi(2) = x(7)
gdiap(z) = x(8)
chwp(2) = x(10)
*eturn
end
C END OF VAR IN

```

    SUBROUTINE VAR OUT ( \(x\), novar, \(f x\) )

    c Example 2. This subroutine is called from 'fun_int.ftn' and returns
    c the variables used in the interior ballistics code back into the
    \(c\) design vector format for the minimization process.

\%INCLUDE 'intball.ins.f'
INTEGER*2 NOVAR
REAL*4 X(NOVAR)
c variable return
c perf \(=7\)
    \(x(1)=\operatorname{glenp}(1)\)
    \(x(2)=\operatorname{pdpi}(1)\)
    \(x(3)=p d p o(1)\)
    \(x(4)=\operatorname{gdiap}(1)\)
    \(\mathrm{x}(5)=\mathrm{dbpcp}(1)\)
    \(x(9)=\operatorname{chwp}(1)\)
c perf \(=1\)
    \(x(6)=g l e n p(2)\)
    \(x(7)=\operatorname{pdpi}(2)\)
    \(x(8)=\operatorname{gdiap}(2)\)
    \(x(10)=\) chwp \((2)\)
        RETURN
    END
c END OF VAR OUT
```

C*************\#***
SUBROUTINE VAR IN(x, novar,fx)
c********************\pi***
c Example 3. This subroutine is called from 'fun_int.ftn' and sends
c the design vector from the minimization process into the variables
c used in the interior ballistics code
c**
%INCLUDE 'intball.ins.f'
INTEGER*2 NOVAR
C Negative dimension value check
do 15 I=1,novar (if (x(i).(e.0.0) fx = fx + x(i)
if (fx.lt.0) then
fx = -1000.0**x
return
end if
c variable assigmment
c 0 perforation propelient
glenp(1) = x(1)
gdiap(1) = x(2)
chwp(1) = x(11)
c 1 perforation propellent
glenp(2) = x(3)
pdpi(2) = x(4)
gdiap(2) = x(5)
chwp(2) = x(12)
c }7\mathrm{ perforation propellent
glenp(3) = x(6)
pdpi(3) = x(7)
pdpo(3)=x(8)
gdiap(3) = x(9)
dbpcp(3) =x(10)
chwp(3) = x(13)
return
end
c end of var in

```

``` SUBROUTINE VAR OUT ( \(x\), novar)
```



```
c Example 3. This subroutine is called from 'fun int.ftn' and returns \(c\) the variables used in the interior ballistics code back into che \(c\) design vector format for the minimization process.
```



```
\%INCLUDE 'intball.ins.f'
INTEGER*2 NOVAR
REAL*4 X(NOVAR)
c design vector reassignment
```



```
\(x(1)=g i e n p(i)\)
\(x(2)=\) gdiap(1)
\(x(11)=\operatorname{chwp}(1)\)
c perf \(\begin{aligned} x(3) & \cdots \cdots(\operatorname{enp}(2)\end{aligned}\)
\(x(3)=\) gdenp(2)
\(x(4)=p d i(2)\)
\(x(5)=\operatorname{gdiap}(2)\)
\(x(12)=\operatorname{chwp}(2)\)
c perf \(=7 \ldots \ldots \ldots(3)\)
\(x(6)=\) glenp(3)
\(x(7)=\) pdpi(3)
\(x(8)=\mathrm{pdpo}(3)\)
\(x(9)=\operatorname{gdiap}(3)\)
\(x(10)=\operatorname{dbpcp(3)}\)
\(x(13)=\operatorname{chwp}(3)\)
RETURN
END
```

c End of var out

SUBROUT INE VAR IN $(x$, novar, $f x)$

c Example 4. This subroutine is called from 'fun int.ftn' and sends $c$ the design vector from the minimization process into the variables c used in the interior ballistics code.

\%INCLUDE intball.ins.f'
INTEGER*2 NOVAR
REAL* 4 X (NOVAR) , FX
c Negative dimension value check
do $151=1$, novar
15 if (x(i).le.0.0) $f x=f x+x(i)$
if ( $f x .1 t .0$ ) then
$f x=-1000.0^{*} f x$
return
end if
c variable assignment
c 7 perforation propellent
$g(\operatorname{enp}(1)=x(1)$
pdpi(1) $=x(2)$
pdpo(1) $=\times(3)$
gdiap(1) $=x(4)$
$\operatorname{dbpcp}(1)=x(5)$
chwp(1) $=\times(11)$
c M8 7 perforation propellent
$g$ lenp $(2)=x(6)$
pdpi(2) $=x(7)$
pdpo(2) $=x(8)$
gdiap $(2)=x(9)$
$\operatorname{dbpcp}(2)=x(10)$
$\operatorname{chwp}(2)=x(12)$

## return

end
c END OF VAR IN

SUBROUTINE VAR OUT $(x$, novar, $f x)$

$c$ Example 4. This subroutine is called from 'fun_int.ftn' and returns
$c$ the variables used in the interior ballistics code back into the
$c$ design vector format for the minimization process

\%INCLUDE 'intball.ins.f'
$\begin{array}{ll}\text { INTEGER*2 } & \text { NOVAR } \\ \text { REAL*4 } & \text { X(NOVAR) }\end{array}$
c variable return
$c$ perf $=7$
$x(1)=g l \operatorname{enp}(1)$
$x(2)=$ pdpi(1)
$x(3)=p d p o(1)$
$x(4)=\operatorname{gdiap}(1)$
$x(5)=\operatorname{dbpcp}(1)$
$x(11)=\operatorname{chwp}(1)$
c $M$
$x(6)=$ glenp(2)
$x(7)=\operatorname{pdpi}(2)$
$x(8)=p d p o(2)$
$x(9)=\operatorname{gdiap}(2)$
$x(10)=d b p c p(2)$
$x(12)=\operatorname{chwp}(2)$
RETURN
ENO
c END OF VAR OUT

## APPENDIX III

INPUT FILES AND SAMPLE OUTPUT

This appendix contains a copy of the input file for each example and a example copy of the interior ballistic output file. $A$ format guide is included after the input files to describe each entry. Each line in the input file corresponds to a record input.

Input file for problem 1a. 7 -perforation propellent, sample

```
9832.2384 12.7 12.7 1.0 0.0 457.2 1
9.796 0 0.0 0.0
5 0.0 0.0 0.0 . 6 0.0 1.3 0.0 300. 0. 457.
 1.e20 2 3.0e+4 0.0 8.0e+5 0.2
 .001135 .01143 .46028 273. 1.7.8612
 84.5535 . 9755 294. . 004712 1.4
1 1135.99 3141. .9755 8.7 1.6605 1. 23 7 3.175 .0508 .0508 1.0721 . 2807
1.0 .1105187689.476
 .005 .05 30.
Input file for problem 1b. 7-perforation propellent, sample
 9832.2384 12.7 12.7 1.0 0.0 457.2 1
 9.79600.00.0
5 0.0 0.0 0.0.6 0.0 1.3 0.0 300. C. 457.
 1.e20 2 3.0e+4 0.0 8.0e+5 0.2
 .001135 .01143 .46028 273. 1. 7.8612
 84.5535 . 9755 294. .004712 1.4
1 1135.99 3141. .9755 8.9 1.6605 1.23 7 4.00 .02 .04 2.0000 .400
1 1.0.1105187 689.476
 .005.05 30.
```

Input file for problem 2. 7-perforation propellent, sample 1-perforation propellent, sample

```
 9832.2384 12.7 12.7 1.0 0.0 457.2 1
 9.796 0 0.00.0
5 0.0 0.0 0.0.0 0.0 1.3 0.0 300.0. 457.
 1.e20 2 3.0e+4 0.0 8.0e+5 0.2
 .001135 .01143 .46028 273. 1. 7.8612
```



```
 1135.99 3141. .9755 4.35 1.6605 1.23 1 3.175 .0000 .0508 1.0721 .0000
 1 1.0.1105187 689.476
 1 1.0.1105187 689.476
 .005 .05 30.
```

input file for problem 2.
0 -perforation propellent, sample
1-perforation propellent, sample
$9832.238412 .712 .71 .00 .0 \quad 457.21$
9.79600 .00 .0
$5 \quad 0.0 \quad 0.00 .0 .60 .01 .30 .0300$. 0. 457.
$1 . \mathrm{e} 2023.0 \mathrm{e}+40.08 .0 \mathrm{e}+5 \quad 0.2$
$.001135 \quad .01143 .46028273,1.7 .8612$
 1135.993141 . . 9755 3.00 1.66051 .2313 .175 . 00000.05081 .0721 . 0000 1135.993141 . . 97553.001 .66051 .2373 .175 . 0508 . 05081.0721 .2807

1 1.0.1105187689.476
11.0 .1105187689 .476

1 1.0. 1105187689.476 .005 .0530 .

Input file for problem 4. 7-perforation propellent, sample 7-perforation propellent, M8
$9832.238412 .7 \quad 12.71 .0 \quad 0.0 \quad 457.21$
9.79600 .00 .0
$5 \quad 0.0 \quad 0.00 .0 .60 .01 .30 .0300 .0 .457$. $1 . e 2023.0 \mathrm{e}+4 \quad 0.08 .0 \mathrm{e}+5 \quad 0.2$
.001135 .01143 .46028 273. 1. 7.8612
84.5535 . 9755 294. . 0047121.4
21135.99 3141. . 97554.351 .66051 .2373 .175 . 0508 . 05081.0721 . 2807 1168.903768 . .95504 .351 .21191 .6273 .175 . 0508 . 05081.0721 . 2807
1.0 .1105187689 .476

1 1.0.1105187 689.476 .005 .0530.
Format for input files. Each line in file is 1 record. Record la is read
only if $I G R A D=2$ in Record 1 . only if IGRAD $=2$ in Record 1


For $I=1$, nehp ts
CHDIST(1) REAL*L
CHDIAM(I) REAL*
$\begin{array}{lll}\text { CHDIST(1) } & \text { REAL*4 } & \text { INITIAL DISTANCE FROM BREECH } \\ \text { CHDIAM(I) } & \text { REAL* } 4 & \text { DIAMETER AT CHDIST(I) }\end{array}$
DIAMETER AT CHDIST(I) CT






NPTS
For $I=1$, npts
BR(1) REAL*4 BORE RESISTANCE
TRAV(1) REAL*4 TRAVEL
ma



RP(I) REAL*4 RECOIL FORCE N
RP(I) REAL*4 RECOIL FORCE N
Record 5 ......... REAL* 4 RECOIL TIME

$\begin{array}{lll}\text { TSHL } & \text { REAL } & 4 \\ \text { CSHL } & \text { CHAMBER WALL THICKNESS }\end{array}$
$\begin{array}{lll}\text { CSHL } & \text { REAL*4 } & \text { HEAT CAPACITY OF STEEL OF CHAMBER WALL } \\ \text { THAL } & \text { REAL*4 } & \text { INITIAL TEMPERATURE OF CHAMBER WALL }\end{array}$
HL REAL*4 HEAT LOSS COEFFICIENT HAMBER WALL none
RCHOS REAL*4 DENSITY OF CHAMBER WALL STEEL g/cm*3

$\begin{array}{lll}\text { COVI } & \text { REAL*4 } & \text { COVOLUME OF IGNITER } \\ \text { TEMPI } & \text { REAL* } & \text { ADIABATIC FLAME TEMP OF IGNITER }\end{array}$
adIabatic flame temp of IGNITER $k$
$\begin{array}{llll}\text { CHWI } & \text { REAL*4 } & \text { INITIAL MASS OF IGNITER } & \mathrm{kg} \\ \text { GAMAI } & \text { REAL*4 } & \text { RATIO OF SPECIFIC HEAT FOR IGNITER } & \text { none }\end{array}$


FORCP(I) REAL*4 IMPETUS OF PROPELLENT
TEMPP(1) REAL
COVP (I) REAL* $\angle$
COVOLUME OF PROPELLENT
INITIAL MASS OF PROPELLENT
CHWP(I) REAL*4 $\quad$ INITIAL MASS OF PROPELLENT
RATIO OF SPECIFIC HEATS, PROPELLENT
NUMBER OF PERFORATIONS ON PROPELLENT
RATIO OF SPECIFIC HEATS, PROPELLENT
NUMBER OF PERFORATIONS ON PROPELLENT
LENGTH OF PROPELLENT GRAIN
NUMBER OF PERFORATIONS ON PROPELLENT
LENGTH OF PROPELLENT GRAIN
PDPI(I) REAL*4 DIAMETFR OF INNER PERFORATIONS
PDFO(I) REAL*4 DINPROPELLENT GRAIN
IN PROPELLENT GRAIN
DIAMETER OF OUTER PERFORATIONS
POFO(I) REAL*4 DIAMETER OF OUTER PERF
IN PROPELLENT GRAIN
ts
cm
CALCULATE ENERGY LOST TO AIR

kg


none
REAL*L GROOVE DIAMETER
LAND DIAMETER
CHAM REAL* 4 CHAMBER VOLUME
cm
GRVE
$\begin{array}{lll}\text { ALAND } & \text { REAL* } & \text { GRNDVEAKAND RATIO } \\ \text { GLR } & \text { REAL* } & \text { GROOVE LAND }\end{array}$
none
$\begin{array}{ll}\text { REAL*4 } & \text { GROOVE/LAND RAT:O } \\ \text { REAL*4 } & \text { TWIST }\end{array}$
PROJECTILE TRAVEL
turns/caliber
TWST
TRAVP
IGRAD INTEGER*2
GRADIENT FLAG
cm
none
Record 1 A.
NCHPTS
NTEGER*2
NMBER POINTS TO DESCRIBE CHAMBER
Reco



REAL*
TRAVEL
none

Record 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .


$\begin{array}{cll}\text { RP(I) } & \text { REAL*4 } & \text { RECOIL RORCE } \\ \text { TR(I) } & \text { REAL* } & \text { RECOIL TIME }\end{array}$

$c m$
TWAL REAL*\& INITIAL TEMPERATURE OF CHAMBER WALL
ML REAL*4 HEAT LOSS COEFFICIENT none

J/g
$\mathrm{cm}^{-3} 3$
${ }_{k}$ cm
j/g
RHOP (I) REAL*4 DENSITY OF PROPELLENT
$\begin{array}{ll}\text { GAMAP(I) } & \text { REAL* } \\ \text { NPERFS(I) } & \text { INTEGER*2 }\end{array}$

GLENP(1)
INTEGER*2
REAL*4
J/9
cm
$\mathrm{cm} \cdot 3 / \mathrm{g}$
$\begin{array}{lll} & & \text { IN PROPELLENT GRAIN } \\ \text { COIAP (1) } & \text { REAL*4 } & \text { OUTSIDE DIAMETER OF PROPELLENT GRAIN } \\ \text { OAPCP(1) } & \text { REAL* } & \text { OISIANCE BETWEEN PERFORATION CENTERS }\end{array}$

PDPI(I) REAL*4
kg
kg
$\mathrm{g} / \mathrm{cm}-3$
$\mathrm{g} / \mathrm{cm}$
none
none
cm

Record 8.......

NBR ( $J$ )
For $I=1$, nbr ( $j$ )
ALPGAA $J, 1)$ REAL*
NBR( $j$ ) INTEGE
FOr $I=1, \operatorname{nbr}(j)$
ALPHA( $J, 1)$ REAL* 4
BETA (J, 1$)$ REAL*
BETA (J, i) REAL*4
PRESS(J)
NUMBER OF BURNING POINTS

        PDFO(I) REAL*4
                    ADIABATIC TEMPERATURE OF PROPELLENT
    
Format for input files. Each line in file is 1 record. Record la is read
only if IGRAD $=2$ in Record 1.
INITIAL DISTANCE FROM BREECH
cm
cm

NUMBER OF RECOIL PAIR POINTS
none
ECOIL FORCE N
N

FORCP( I)	REAL*4
TEMPP(1)	REAL* 4
COVP (I)	REAL*4
CHWP (1)	REAL*4
RHOP (I)	REAL*4
GAMAP (1)	REAL* 4
NPERFS(1)	INTEGER*2
GLENP (1)	REAL* 4
PDPI (1)	REAL*4
PDPO(1)	REAL*4

                            cm
        PRESS(J, I) REAL*4
    
## EXPONENT

                    EXPONENT none
        \(\begin{array}{lll}\text { ALPHA } \\ \text { BETA }(J, i) & \text { REAL*4 } & \text { EXPONENT } \\ \text { PRESS }(J, I) & \text { REAL*4 } & \text { PREFFICIENT }\end{array}\)
    Record $9 . . . . . . . . .$.
none


$\begin{array}{llll}\text { DELTAP REAL*4 PRINTINCREMENT } & \text { REA } & \text { ms } \\ \text { TSTOP } & \text { PEAL*4 } & \text { STOP }\end{array}$
TSTOP REAL*4 STOP TIME FOR CALCULATIONS
0

The data input file is p3final.in
Using Lagrange pressure gradient
chamber volume cm- 3 0.983224E+04
groove diam cm 0.127000E+02
land diam cm 0.127000E+02
groove/land ratio $\quad 0.100000 \mathrm{E}+01$
twist turns/caliber $0.000000 \mathrm{E}+00$
projectile travel cm $0.457200 \mathrm{E}+03$
projectile mass kg $0.979600 \mathrm{E}+01$
switch to calculate energy lost to air resistance J 0
fraction of work aoainst bore used to heat the tube 0.000000E+00
gas pressure Pa $0.000000 \mathrm{E}+00$
number barrel resistance points 5
bore resistance MPa - travel cm
$0.000000 \mathrm{E}+00 \quad 0.000000 \mathrm{E}+00$
$0.000000 E+00 \quad 0.600000 E+00$
$0.000000 E+00 \quad 0.130000 E+01$
$0.000000 E+00 \quad 0.300000 E+03$
$0.00000 C E+00 \quad 0.457000 E+03$
mass of recoiling parts $\mathrm{kg} \quad 0.100000 \mathrm{E}+21$
number of recoil point pairs 2
recoil force $N$ recoil time sec
$0.300000 \mathrm{E}+05 \quad 0.000000 \mathrm{E}+00$
$0.800000 E+06 \quad 0.200000 E+00$
. 113500E-02
iree convective heat transfer coefficient $w / \mathrm{cm}^{-2} \mathrm{k}$
chamber wall thickness cm
0.114300E-01
heat capacity of steel of chamber wall $\mathrm{J} / \mathrm{g} \mathrm{K}$
$0.460280 E+00$
initial temperature of chamber wall $\mathrm{K} \quad 0.273000 \mathrm{E}+03$
heat loss coefficient
$0.100000 E+01$
density of chamber wall steel $\mathrm{g} / \mathrm{cm}^{-3} \quad 0.786120 \mathrm{E}+01$
impetus of igniter propellant $\mathrm{J} / \mathrm{g}$
covolume of igniter $\mathrm{cm**} 3 / \mathrm{s}$
adiabatic flame temperature of igniter propellant $K$
initial mass of igniter kg
ratio of specific heats for igniter
$0.845535 E+02$
$0.975500 E+00$
$0.294000 E+03$
0.471200E-02
$0.140000 \mathrm{E}+01$

FOR PROPELLENT NUMBER 1
impetus of propellant $\mathrm{J} / \mathrm{g} \quad 0.113599 \mathrm{E}+04$
adiabatic temperature of propellant K $\quad 0.314100 \mathrm{E}+04$
$\begin{array}{ll}\text { covolume of propellant } \mathrm{cm} * * 3 / \mathrm{g} & 0.975500 \mathrm{E}+00\end{array}$
initial mass of propellant kg $\quad 0.992000 \mathrm{E}+00$
density of propellant $\mathrm{g} / \mathrm{cm} \mathrm{m}^{\star \star} 3$
$0.166050 \mathrm{E}+01$
ratio of specific heats for propellant $0.12300^{\prime}, E+01$
number of perforations of propellant
length of propellant grain cm
diameter of inner perforation in propellant grains cm
diameter of outer perforation of propellant grains cm
outside diameter of propellant grain cm
distance between perf centers cm
$0.249350 E+01$ $0.000000 E+00$ $0.000000 E+00$ $0.000000 \mathrm{E}+00$
$0.128500 \mathrm{E}+01$ $0.000000 E+00$

FOR PROPELLENT NUMBER 2
impetus of propellant $\mathrm{J} / \mathrm{g} \quad 0.113599 \mathrm{E}+04$
adiabatic temperature of propellant K $0.314100 \mathrm{E}+04$
covolume of propellant cm**3l $0.975500 \mathrm{E}+00$
initial mass of propellant kg
$0.362600 E+01$
density of propellant $\mathrm{g} / \mathrm{cm**} 3$
ratio of specific heats for propellant
number of perforations of propellant
length of propellant grain cm
diameter of inellant grainion in propellant
diameter of mer perforation propellant grains cm $0.000000 \mathrm{E}+00$
perforation of propellant grains cm
outside diameter of propellant grain cm
$0.000000 E+00$
distance between perf centers cm
$0.579800 E+00$
$0.000000 E+00$

FOR PROPELLENT NUMBER 3
impetus of propellant J/g 0.113599E+04
adiabatic temperature of propellant $K$ covolume of propellant $\mathrm{cm}^{*} * 3 / \mathrm{g}$
initial mass of propellant kg
density of propellant $\mathrm{g} / \mathrm{cm}^{\star * 3}$
ratio of specific heats for propellant
number of perforations of propellant
length of propellant grain cm
diameter of inner perforation in propellant grains cm diameter of outer perforation of propellant grains cm outside diameter of propellant grain cm distance between perf centers cm
$0.314100 \mathrm{E}+04$ $0.975500 E+00$ $0.413000 E+01$ $0.166050 E+01$ $0.123000 \mathrm{E}+01$ 7
$0.599600 \mathrm{E}+01$ $0.180000 \mathrm{E}-02$ 0.180000E-02 $0.861300 \mathrm{E}+00$ $0.217000 E+00$
no. of burning rate points 1
exponent coefficient
$\mathrm{cm} / \mathrm{sec}-\mathrm{MPa}{ }^{* *} \mathrm{ai}$
pressure MPa
$0.100000 \mathrm{E}+01$
$0.110519 \mathrm{E}+00$
no. of burning rate points 1 exponent coefficient
$0.100000 \mathrm{E}+010.110519 \mathrm{E}+00$
no. of burning rate points 1
exponent coefficient
$0.100000 \mathrm{E}+01$
cm/sec-MPa**ai
$0.110519 \mathrm{E}+00$
$0.689476 E+03$
pressure
MPa
$0.689476 E+03$

## pressure

MPa
$0.689476 E+03$

$0.6100 \mathrm{E}-020.2823 \mathrm{E}+06 \quad 0.3606 \mathrm{E}+030.3453 \mathrm{E}+000.2834 \mathrm{E}+09 \quad 0.2183 \mathrm{E}+09 \quad 0.3159 \mathrm{E}+09$ $\begin{array}{llllllll}0.6250 E-02 & 0.2935 E+06 & 0.4038 E+03 & 0.4026 E+00 & 0.2946 E+09 & 0.2270 E+09 & 0.3284 E+09\end{array}$ $\begin{array}{llllllll}0.6400 \mathrm{E}-02 & 0.3016 \mathrm{E}+06 & 0.4485 \mathrm{E}+03 & 0.4663 \mathrm{E}+00 & 0.3027 \mathrm{E}+09 & 0.2332 \mathrm{E}+09 & 0.3374 \mathrm{E}+09\end{array}$ $\begin{array}{llllllll}0.6550 E-02 & 0.3067 E+06 & 0.4942 E+03 & 0.5372 E+00 & 0.3078 E+09 & 0.2372 E+09 & 0.3432 E+09\end{array}$ $\begin{array}{llllllll}0.6700 E-02 & 0.3090 E+06 & 0.5404 E+03 & 0.6148 E+00 & 0.3102 E+09 & 0.2390 E+09 & 0.3457 E+09\end{array}$ $\begin{array}{llllllll}0.6850 E-02 & 0.3089 E+06 & 0.5867 E+03 & 0.6993 E+00 & 0.3100 E+09 & 0.2388 E+09 & 0.3455 E+09\end{array}$ $\begin{array}{llllllll}0.7000 E-02 & 0.3066 E+06 & 0.6329 E+03 & 0.7908 E+00 & 0.3077 E+09 & 0.2371 E+09 & 0.3430 E+09\end{array}$ $0.7150 \mathrm{E}-02 \quad 0.3025 \mathrm{E}+06 \quad 0.6786 \mathrm{E}+03 \quad 0.8892 \mathrm{E}+0000.3036 \mathrm{E}+09 \quad 0.2339 \mathrm{E}+09 \quad 0.3384 \mathrm{E}+09$ $\begin{array}{lllllllll}0.7300 E-02 & 0.2970 E+06 & 0.7236 E+03 & 0.9943 E+00 & 0.2981 E+09 & 0.2297 E+09 & 0.3323 E+09\end{array}$ $\begin{array}{llllllll}0.7450 E-02 & 0.2905 E+06 & 0.7677 E+03 & 0.1106 E+01 & 0.2916 E+09 & 0.2247 E+09 & 0.3250 E+09\end{array}$ $\begin{array}{lllllll}0.7600 E-02 & 0.2832 E+06 & 0.8107 E+03 & 0.1225 E+01 & 0.2843 E+09 & 0.2190 E+09 & 0.3169 E+09\end{array}$ $\begin{array}{lllllll}0.7750 \mathrm{E}-02 & 0.2754 \mathrm{E}+06 & 0.8526 \mathrm{E}+03 & 0.1349 \mathrm{E}+01 & 0.2764 \mathrm{E}+09 & 0.2130 \mathrm{E}+09 & 0.3081 \mathrm{E}+09\end{array}$ $\begin{array}{llllll}0.7900 E-02 & 0.2673 E+06 & 0.8933 E+03 & 0.1480 E+01 & 0.2683 E+09 & 0.2067 E+09\end{array} \quad 0.2990 E+09$ $\begin{array}{llllllll}0.8050 E-02 & 0.2590 E+06 & 0.9328 E+03 & 0.1617 E+01 & 0.2600 E+09 & 0.2003 E+09 & 0.2898 E+09\end{array}$ $\begin{array}{lllllll}0.8200 \mathrm{E}-02 & 0.2505 \mathrm{E}+06 & 0.9710 \mathrm{E}+03 & 0.1760 \mathrm{E}+01 & 0.2514 \mathrm{E}+09 & 0.1937 \mathrm{E}+09 & 0.2802 \mathrm{E}+09\end{array}$ $0.8350 \mathrm{E}-02 \quad 0.2395 \mathrm{E}+06 \quad 0.1008 \mathrm{E}+04 \quad 0.1909 \mathrm{E}+01 \quad 0.2403 \mathrm{E}+09 \quad 0.1852 \mathrm{E}+09 \quad 0.2679 \mathrm{E}+09$ $\begin{array}{lllllll}0.8500 \mathrm{E}-02 & 0.2274 \mathrm{E}+06 & 0.1043 \mathrm{E}+04 & 0.2062 \mathrm{E}+01 & 0.2282 \mathrm{E}+09 & 0.1759 \mathrm{E}+09 & 0.2544 \mathrm{E}+09\end{array}$ $\begin{array}{llllllll}0.8650 E-02 & 0.2152 E+06 & 0.1076 E+04 & 0.2221 E+01 & 0.2160 E+09 & 0.1664 E+09 & 0.2408 E+09\end{array}$ $\begin{array}{lllllll}0.8800 E-02 & 0.2033 E+06 & 0.1107 E+04 & 0.2385 E+01 & 0.2040 E+09 & 0.1572 E+09 & 0.2274 E+09\end{array}$ $\begin{array}{lllllll}0.8950 \mathrm{E}-02 & 0.1918 \mathrm{E}+06 & 0.1137 \mathrm{E}+04 & 0.2553 \mathrm{E}+01 & 0.1925 \mathrm{E}+09 & 0.1483 \mathrm{E}+09 & 0.2146 \mathrm{E}+09\end{array}$ $\begin{array}{lllllll}0.9105 E-02 & 0.1807 E+06 & 0.1166 E+04 & 0.2732 E+01 & 0.1813 E+09 & 0.1397 E+09 & 0.2021 E+09\end{array}$ $\begin{array}{llllllll}0.9255 \mathrm{E}-02 & 0.1706 \mathrm{E}+06 & 0.1192 \mathrm{E}+04 & 0.2909 \mathrm{E}+01 & 0.1712 \mathrm{E}+09 & 0.1319 \mathrm{E}+09 & 0.1909 \mathrm{E}+09\end{array}$ $\begin{array}{llllllll}0.9405 E-02 & 0.1612 E+06 & 0.1217 E+04 & 0.3090 E+01 & 0.1618 E+09 & 0.1247 E+09 & 0.1804 E+09\end{array}$ $\begin{array}{lllllll}0.9555 \mathrm{E}-02 & 0.1525 \mathrm{E}+06 & 0.1241 \mathrm{E}+04 & 0.3274 \mathrm{E}+01 & 0.1531 \mathrm{E}+09 & 0.1179 \mathrm{E}+09 & 0.1706 \mathrm{E}+09\end{array}$ $\begin{array}{llllllll}0.9705 \mathrm{E}-02 & 0.1444 \mathrm{E}+06 & 0.1263 \mathrm{E}+04 & 0.3462 \mathrm{E}+01 & 0.1450 \mathrm{E}+09 & 0.1117 \mathrm{E}+09 & 0.1616 \mathrm{E}+09\end{array}$ $\begin{array}{lllllll}0.9855 E-02 & 0.1369 E+06 & 0.1284 \mathrm{E}+04 & 0.3653 \mathrm{E}+01 & 0.1374 \mathrm{E}+09 & 0.1059 \mathrm{E}+09 & 0.1532 \mathrm{E}+09\end{array}$ $\begin{array}{llllllll}0.1000 E-01 & 0.1299 E+06 & 0.1304 E+04 & 0.3847 E+01 & 0.1304 E+09 & 0.1005 E+09 & 0.1454 E+09\end{array}$ $\begin{array}{lllllll}0.1015 \mathrm{E}-01 & 0.1225 \mathrm{E}+06 & 0.1323 \mathrm{E}+04 & 0.4044 \mathrm{E}+01 & 0.1230 \mathrm{E}+09 & 0.9475 \mathrm{E}+08 & 0.1371 \mathrm{E}+09\end{array}$ $0.1030 \mathrm{E}-01 \quad 0.1156 \mathrm{E}+06 \quad 0.1341 \mathrm{E}+04 \quad 0.4244 \mathrm{E}+01 \quad 0.1160 \mathrm{E}+09 \quad 0.8939 \mathrm{E}+08 \quad 0.1293 \mathrm{E}+09$ $0.1045 \mathrm{E}-01 \quad 0.1093 \mathrm{E}+06 \quad 0.1358 \mathrm{E}+04 \quad 0.4446 \mathrm{E}+01 \quad 0.1097 \mathrm{E}+09 \quad 0.8449 \mathrm{E}+08 \quad 0.1222 \mathrm{E}+09$

| deltat time | $0.105500 \mathrm{E}-01$ | intg time | $0.105498 \mathrm{E}-01$ |
| :--- | :--- | :--- | :--- | :--- |
| PMAXMEAN Pa | $0.310367 \mathrm{E}+09$ | time at PMAXMEAN sec | $0.676509 \mathrm{E}-02$ |
| PMAXBASE Pa | $0.239143 \mathrm{E}+09$ | time at PMAXBASE sec | $0.676509 \mathrm{E}-02$ |
| PMAXBRCH Pa | $0.345980 \mathrm{E}+09$ | time at PMAXBRCH sec | $0.676509 \mathrm{E}-02$ |
| MuZZle VELOCITY $(\mathrm{m} / \mathrm{s})$ | $0.136756 \mathrm{E}+04$ at time sec | $0.105473 \mathrm{E}-01$ |  |

Total Initial Energy Available $J=$ FOR PROPELLANT 1 MASSFRACT BURNT = FOR PROPELLANT 2 MASSFRACT BURNT = FOR PROPELLANT 3 MASSFRACT BURNT =
$0.432081 E+08$
$0.487515 E+00$
$0.100000 E+01$
$0.100000 E+01$

