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Abstract

We study the propagation of premixed flames in long but finite channels, when the mixture is ignited at
one end and both ends remain open and exposed to atmospheric pressure. Thermal expansion produces a
continuous flow of burned gas directed away from the flame and towards the end of the channel where
ignition took place. Owing to viscous drag, the flow is retarded at the walls and accelerated in the center,
producing a pressure gradient that pushes the unburned gas ahead of the flame towards the other end of
the channel. As a result the flame accelerates when it travels from end to end of the channel. The total tra-
vel time depends on the length of the channel and is proportional to c�1ln(1 + c), where c is the heat release
parameter.
� 2012 Published by Elsevier Inc. on behalf of The Combustion Institute.
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1. Introduction

The problem of flame propagation in long
tubes has attracted interest since the early flame
studies of Mallard and Le Chatelier [1]. A com-
bustible mixture contained in a tube is ignited at
one end and the subsequent motion of the flame
is followed. The problem is of great interest in
safety applications, and it is a precursor for the
transition from deflagration to detonation. More-
over, such a configuration has been often used for
measurements of the laminar burning velocity.

It has been recognized in the early studies of
Mason and Wheeler [2] and Guénoche [3] that
the geometry of the tube and the boundary condi-
tions that it imposes are parameters that affect the
flame propagation. Unlike freely propagating
flames, when restricted by walls the flow induced
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by thermal expansion affects the expansion of
the burned gas and consequently the velocity of
the unburned gas and the propagation of the
flame. Different flame behaviors were observed
when one or both ends of the tube remain closed,
or if both ends were held open. This study is con-
cerned with flame acceleration, observed when the
mixture is ignited at one end and both ends
remain open.

Intrigued by the observation that flames in
channels are always convex towards the unburned
gas, the early theoretical studies of flames in tubes
and channels were concerned with the flame struc-
ture and stability. Several studies have focused on
explaining the observed shape [4], the effects of
tube diameter [5] and stability aspects of the
curved structure [6]. We now understand that
because of the hydrodynamic instability that
results from thermal expansion [7,8] flat flame
cannot be realized except in sufficiently narrow
channels where diffusion exerts stabilizing influ-
ences [9,10].
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Recent studies conducted within the frame-
work of a constant density approximation have
examined the flame response to imposed hydrody-
namic conditions, without accounting for the
effect of the flame on the flow that results from
thermal expansion. Despite the simplification
adopted, various phenomena were captured
including the flame response to a Poiseuille flow
assisting or opposing the flame [11], the effects
of thermally active walls [12] and of heat losses
[13], and the influence of differential diffusion
[14–16]. Numerical studies that properly account
for thermal expansion have re-examined these
issues and extended the research scope to examine
various modes of flame propagation, including
asymmetric and oscillatory flames [17–19], as well
as aspects of flame dynamics in narrow-to-
moderate channels [20]. The problem of a flame
propagating in a tube or channel open at both
ends, which is the focus of the present work, has
not been studied before.

Starting from the general conservation laws we
first derive equations applicable to narrow chan-
nels. We then address the resulting problem, ana-
lytically using a quasi-steady approximation and
numerically by solving the time-dependent prob-
lem with initial conditions that simulate an igni-
tion event. For simplicity, associated mainly
with the numerical calculations, we consider here
the two-dimensional case and comment on the
minor modifications that result in the formulation
of the equivalent problem of flame propagation in
narrow circular tubes. Results and conclusions are
presented in the last sections.
2. Formulation

We consider a channel of length L and width h,
with adiabatic walls. For definiteness, we assume
that the mixture is ignited at the left end, i.e., at
x = 0. Upon ignition, the diaphragms containing
the mixture in the channel are simultaneously
removed, and both ends of the channel remain
open and exposed to atmospheric pressure. Of
Fig. 1. Sketch of the channel configuration, illustrating the va
problem.
interest is to examine the propagation in suffi-
ciently long channels, but of finite length.

The combustible mixture undergoes a chemical
reaction modeled by a global irreversible step
F + O! P, where F denotes the fuel, O the oxi-
dizer and P the products. The fuel consumed per
unit volume, per time, is given by

x0F �
q0Y F

W F

� �
q0Y O

W O

� �
expð�E=RT 0Þ;

where YF, YO are the mass fractions and WF, WO

the molecular weights of the fuel and oxidizer,
respectively, q0 is the density of the mixture, E is
the overall activation energy, R is the universal
gas constant and T0 is the temperature (primes
here and thereafter denote dimensional quanti-
ties). Assuming the mixture is lean in fuel, the oxi-
dizer mass fraction remains nearly constant and
x0F ¼ Bq0

2Y F expð�E=RT 0Þ, where B is a pre-
exponential factor containing YO.

Let x0, y0 be, respectively, the longitudinal and
transverse coordinates (Fig. 1) with u0, v0 the cor-
responding velocity components. If the speed SL

and thermal thickness dT of a planar adiabatic
flame are used as reference, and the ratio of the
channel width to the flame thickness is denoted
by a � h/dT, appropriate dimensionless variables
are x = x0/dT, y = y0/h, t = SLt0/dT, u = u0/SL,
v = v0/aSL. We also introduce q ¼ q0=qu; p ¼
a2p0=quS2

L; h ¼ ðT 0 � T uÞ=ðT a � T uÞ; Y ¼ Y 0=Y F u -
as dimensionless values for the density, pressure
and temperature, where qu; T u Y F u are the values
of density, temperature and fuel mass fraction in
the fresh mixture. Here p0 is the pressure deviation
from the ambient (atmospheric) pressure P0

which, in view of the low Mach number approxi-
mation adopted here, is constant, and T a ¼ T uþ
QY F u

cp is the adiabatic flame temperature where
Q is the total heat release and cp the specific heat
(at constant pressure) of the mixture. The thermal
thickness of the flame is given by dT ¼ DT=SL,
where DT is the thermal diffusivity of the mixture.

The nondimensional equations, describing
conservation of mass, momentum and energy take
the form
rious length scales associated with the flame propagation
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qt þ ðq uÞx þ ðq vÞy ¼ 0; ð1Þ
qðut þ uux þ vuyÞ ¼ a�2ð�px þ Pr uyyÞ

þ Pr
4

3
uxx þ

1

3
uxy

� �
; ð2Þ

qðvt þ uvx þ vvyÞ ¼ �a�4py

þ Pr a�2 4

3
vyy þ

1

3
uxy

� �
þ vxx

� �
; ð3Þ

qðht þ uhx þ vhxÞ � ðhxx þ a�2hyyÞ ¼ x; ð4Þ
qðY t þ uY x þ vY yÞ � Le�1ðY xx þ a�2Y yyÞ ¼ �x; ð5Þ

where q = 1/(1 + ch)is the equation of state, with
c = (Ta � Tu)/Tu the heat release parameter. The
Prandtl number, Pr ¼ m=DT , representing the ratio
of the viscous to thermal diffusivities of the mix-
ture, and the Lewis number, Le ¼ DT=DF , repre-
senting the ratio of the thermal diffusivity of the
mixture to the mass diffusivity of the fuel, were ta-
ken as constants.

In writing the dimensionless expression for the
reaction rate x, it is convenient to introduce the
asymptotic expression for the laminar flame speed

ðSLÞasp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2LeBquDT=b

2
q

ðqb=quÞ e�E=2RT a ;

derived for b� 1, where b ¼ EðT a � T uÞ=RT 2
a is

the Zel’dovich number and qb = quTu/Ta is the
density of the burned gas. Then

xðh; Y Þ ¼ b2

2s2
LLe

1þ c
1þ ch

� �2

Y

� exp
bðh� 1Þ

ð1þ chÞ=ðcþ 1Þ

� �
; ð6Þ

where sL = SL/(SL)asp. For a finite value of the
Zel’dovich number b and given c and Le the lam-
inar flame speed, or equivalently the factor sL,
must be determined numerically as the eigenvalue
of the following boundary-value problem

� hI ¼ hII þ x; �Y I ¼ Le�1Y II � x;

x!1 : h ¼ Y � 1 ¼ 0; x! �1 : hI ¼ Y I ¼ 0;

ð7Þ
where x is given by (6). This problem describes
the structure of a planar adiabatic flame propa-
gating along the positive x-axis at a constant
speed SL, and can be easily solved numerically.
Clearly, the factor sL tends to one when b
!1. For finite b the asymptotic formula over-
or under-estimate the value of SL depending on
the Lewis number Le; the values of sL for b = 10
and Le = 1 are 1.0652, 1.0588 and 1.0548 for
c = 3, 4 and 5, respectively.

At the channel walls we assume no-slip and
adiabatic conditions, so that

u ¼ v ¼ 0; @h=@y ¼ @Y =@y ¼ 0; at y ¼ 0; 1:

ð8Þ
While premixed flames generally quench when the
channel width is below the quenching distance, for
adiabatic walls a flame will always propagate
through. It is also assumed, for simplicity, that
conditions at both ends remain adiabatic so that

@h=@x ¼ @Y =@x ¼ 0; at x ¼ 0; ‘; ð9Þ
where ‘ = L/dT is the channel length measured in
units of the flame thickness. The temperature and
mass-fraction conditions (9) represent the typical
outlet boundary conditions applied for cases
where the flow velocity is directed outside the
end of the channel. Modifications are required
when the flame is near the ends, more specifically
within a distance O(a) from the ends. Neverthe-
less, these instants are small in sufficiently long
channels compared with the entire propagation
time and considered negligible in the present
study.

Since following ignition the channel remains
open, the pressure at both ends is constant and
equal to the ambient pressure, so that

p ¼ 0 at x ¼ 0; ‘: ð10Þ
These conditions require some clarification, be-
cause the pressure at the immediate exit of the
channel is determined, in general, by the flow
divergence and is therefore a function of the rep-
resentative Reynolds number Re. Navier–Stokes
calculations inside and outside the channel show
that for finite but moderate Re the pressure drop
continues slightly beyond the tube exit and attains
a minimum before reaching the ambient pressure.
In long narrow tubes the pressure drop is very
small and extends only a short distance compara-
ble to the tube radius, which justifies our assertion
of imposing the condition (10) immediately at
x = 0 and x = ‘.
3. Narrow channels

We consider now the case of a narrow channel,
a� 1, corresponding to a channel height much
smaller that the flame thickness. The asymptotic
treatment follows that presented in [11,13].
Accordingly, all variables are expanded in power
series of a2, namely in the form f = f0 + a2f1 + � � �,
where f stands for the temperature h, the mass
fraction Y, the pressure p and the velocity compo-
nents u and v.

To leading order o2Y0/oy2 = 0, o2h0/oy2 = 0
which, when integrated with respect to y and using
the boundary conditions (8), implies that
Y0 = Y0(x, t), h0 = h0(x, t) and q0 = q0(x, t). The
equation of state implies that q0 = (1 + ch0)�1.

The momentum equations, to leading order,
yield

@p0=@y ¼ 0; @p0=@x ¼ Pr @2u0=@y2: ð11Þ
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The first implies p0 = p0(x, t), and permits a direct
integration of the second equation. Using the
boundary conditions (8) one finds

u0 ¼ 6U yð1� yÞ; ð12Þ
where U is the mean axial velocity across the
channel, given by

Uðx; tÞ ¼
Z 1

0

u0 dy ¼ � 1

12Pr

@p0

@x

� �
: ð13Þ

The continuity equation can now be integrated to
give

q0v0 ¼ �
@q0

@t
y þ @ðq0UÞ

@x
ð3y2 � 2y3Þ

� �
;

where v0 = 0 at y = 0 has been satisfied. The sec-
ond boundary condition, v0 = 0 at y = 1, implies

@q0

@t
þ @ðq0UÞ

@x
¼ 0: ð14Þ

Hence, the transverse velocity

v0 ¼
1

q0

@ðq0UÞ
@x

yð2y2 � 3y þ 1Þ: ð15Þ

Integrating Eq. (13) from one end of the channel
to the other and imposing the conditions (10)
yields the following constraint on the mean flow
rateZ ‘

0

Uðx; tÞdx ¼ 0: ð16Þ

At this stage the temperature h0 and mass frac-
tion Y0 remained undetermined, which require
considering the governing equations (4) and (5)
to the next order. These reduce to

@2h1

@y2
¼ q0

@h0

@t
þq0U

@h0

@x
� @

2h0

@x2
�xðh0;Y 0Þ;

1

Le
@2Y 1

@y2
¼ q0

@Y 0

@t
þq0U

@Y 0

@x
� 1

Le
@2Y 0

@x2
þxðh0;Y 0Þ:

Integrating across the channel and using the
boundary conditions (8), the left hand side of each
of these two equations vanishes resulting in equa-
tions for h0 and Y0 as solvability conditions.
Dropping the subscript “0” for simplicity of nota-
tion, the problem to leading order reduces to

qht þ qUhx � hxx ¼ x; ð17Þ
qY t þ qUY x � Le�1Y xx ¼ �x; ð18Þ

where q = (1 + ch)�1, to be solved together with
(14) subject to the constraint (16).

Hence, in narrow channels the flame remains
nearly planar but is subjected to a mean flow that
varies in time and is constrained by friction forces
at the walls or, equivalently, by the pressure condi-
tions at the two ends. In the following we first
examine the problem by adopting a quasi-steady
approximation valid for long channels and then
address the time-dependent problem numerically
for finite values of ‘. It should be noted that Eqs.
(14) and (17,18) equally applies to flame propaga-
tion in narrow circular tubes, when the mean veloc-
ity U is properly defined. The expressions (12)–(15)
for u0 and v0 are slightly modified to accommodate
for the circular geometry, but the constraint (16),
and hence the results of the quasi-steady approxi-
mation presented next, remain valid.
4. Quasi-steady approximation

The propagation of the flame is characterized
by the time dT/SL required for the flame to travel
a distance comparable to the flame thickness. In
long channels (‘� 1), this time is much shorter
that the time required for the flame to propagate
throughout the entire channel L/SL = ‘(dT/SL)
and affected by the slow variations in the mean
flow rate U. The flame may then be treated as
propagating quasi-steadily, an assumption that
remains valid throughout the entire time except
for two short instances. The first corresponds to
the short time interval during which the flame sep-
arates from the ignition end, and the second the
time interval when the flame is sufficiently close
to the far end of the channel.

It is convenient to introduce a coordinate
n = x � xf(t) attached to the flame front, defined
as the position xf(t) where the reaction rate x
reaches its maximum value. Then @=@t !
� _xf @=@n where the “dot” corresponds to differ-
entiation with respect to t. Equations (14)–(18)
reduce to

@

@n
½qðU � _xf Þ	 ¼ 0; ð19Þ

½qðU � _xf Þ	
@h
@n
� @

2h

@n2
¼ x; ð20Þ

½qðU � _xf Þ	
@Y
@n
� 1

Le
@2Y

@n2
¼ �x: ð21Þ

Equation (19) implies that qðU � _xf Þ ¼ C, with
C = �1 obtained by direct comparison with (7).
The mean flow velocity in the channel is thus gi-
ven by

U ¼ _xf � ð1þ chÞ: ð22Þ
Analytical solution of Eqs. (20) and (21) can be

obtained in the asymptotic limit b!1 and the
reaction zone is then confined to a region of thick-
ness b�1 near n = 0. With the exception of short
instants when the flame is near the ends of the
channel, the solution outside of the reaction zone
becomes

h ¼
1

e�n

�
; Y ¼

0 n < 0

1� e�Len n > 0

�
;
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where the exponentially small terms were ne-
glected. The discontinuity in slopes at n = 0 is
smoothed-out in the thin reaction zone. Substitut-
ing into (16) one obtains

_xf �
c
‘

xf ¼ 1þ c
‘
� c
‘

exf�‘: ð23Þ

For large ‘, the last term is exponentially small
and may be neglected. The resulting equation
can be solved subject to the initial condition
xf(0) = 0 to provide an expression for the history
of the flame position

xf ¼
‘

c
þ 1

� �
exp

ct
‘

	 

� 1

h i
: ð24Þ

When c! 0, this relation reduces to xf = t imply-
ing that the flame propagates steadily at a con-
stant speed. In long but finite channels and
when the heat release is substantial, the flame
accelerates through the channel. The total time re-
quired for the flame to travel the entire channel is

ttot ¼
‘

c
ln 1þ c‘

‘þ c

� �

 ‘

c
lnð1þ cÞ: ð25Þ

Note that the results (24) and (25) are independent
of the Lewis number Le. The dimensional coun-
terpart, however, depends on Le through dT or
SL. This result is consistent with the conclusions
drawn in [21] where it was shown that variations
in Lewis number have a pronounced effect on thin
flames, or flames in relatively wider channels, but
has practically no effect on thick flames, or flame
in narrow channels.

We note parenthetically that the position of a
flame propagating from a closed end, or towards
a closed end of a channel, can be easily deduced
from Eq. (22). When the flame propagates from
the closed ignition end, the volume expansion rate
is proportional to the distance traveled. In this
case U = 0 at x = 0, which together with the con-
dition h = 1 implies that _xf ¼ 1þ c. When the
flame propagates to the closed end, there is no
gas motion far ahead of the flame. Then U = 0
at x = ‘, while h = 0 there, implying that _xf ¼ 1.
In both cases the flame propagates steadily
throughout the channel.

Considering ‘� 1 in Eq. (24) shows that early
in the development of flame propagation, as long
as 1� t� ttot, the flame motion is similar to the
propagation to the closed end, namely _xf 
 1.
Nevertheless at a considerable distance from the
ignition end, as t � ttot, the finite length of the
channel has its impact being intrinsically included
in the propagation velocity.
0 10 20 30 40 50x

Fig. 2. The mean flow rate U along the channel (shown
as a dashed curve) at different times, calculated for a
channel of length ‘ = 50; the reaction rate x represented
by a solid curve marks the location of the reaction zone
5. Numerical methodology

The numerical solution of the time-dependent
equations (14) and (17)–(18) was obtained using
an explicit time marching procedure. Because of
the presence of the highly nonlinear reaction rate
term, a sufficiently small time step Dt was found
necessary in order to ensure numerical stability;
typically Dt 
 10�5 was used in the calculations.
Spatial derivatives were discretized using a sec-
ond-order, three-point central difference scheme
on the uniform grid with a resolution of
Dx = 0.05. In some cases the number of grid
points was doubled to test the independence of
the solution to the selected grid. The independence
of the solution to the selected time step was veri-
fied by comparing time histories of xf(t) calculated
with different Dt.

The following observation was found useful
and facilitated the computations. By adding Eqs.
(14) and (17) after multiplying the latter by c,
and using q(1 + ch) = 1 one finds that oU/o x
= c(o2h/ox2 + x). Integrating with respect to x
and using the constraint (16) to determine the con-
stant of integration (which here depends on t),
yields

Uðx; tÞ ¼ eU ðx; tÞ � 1

‘

Z ‘

0

eU ðx; tÞdx; ð26Þ

where

eU ðx; tÞ ¼ c
Z x

0

@2h
@x2
þ x

� �
dx:
.
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At each time step the mean flow velocity U(x, t)
may therefore be calculated from (26), and one
only need to integrate Eqs. (17) and (18).

The initial conditions imposed were in the
form of a hot spot located near the left end of
the channel. Specifically, h was specified to be lar-
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Fig. 3. The pressure distribution along the channel at differen
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Fig. 4. The flow field in the vicinity of the flame; the two color
the channel.
ger than zero in a small region close to the end
and Y was assumed to be uniformly distributed
throughout the entire channel. In all cases, it
was verified that xf(t), after a short transient suffi-
ciently smaller that ttot, becomes independent on
the specified initial conditions. For the smaller
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value of ‘ = 50 considered, variations in xf(t) due
to different initial conditions were found to be
within 0.1%.

The numerical results presented below were
carried out for b = 10, which is a representative
value for hydrocarbon flames.
6. Results

Figure 2 shows the variations of the mean axial
velocity U along the channel for several values of
0 0.1 0.2 0.3 0.4 0.50

0.2

0.4

0.6

0.8

111

xf /l

t/l

xf /l

t/l

=4

=5

Fig. 5. History of flame position xf, for different value
of c. The symbols M, �, O correspond to ‘ = 50, 100, 500
respectively, and the solid curve corresponds to the
quasi-steady analytical approximation.

Fig. 6. Position of a methane–air flame propagating in a
long tube open at both ends for different mixture
strength; reproduced from [2].
s
,

t. The reaction rate x is plotted on the same figure
to mark the instantaneous position of the reaction
zone. Immediately upon ignition a premixed flame
propagates to the right, and a flow of burned
gases is produced as a result of thermal expansion
moving towards the end of the channel where igni-
tion took place. As a result of viscous drag the
flow is retarded at the walls and accelerates in
the center of the channel, creating a thrust that
pushes the unburned gas towards the other end
of the channel. Figure 3 shows the pressure distri-
bution along the channel at various times that
support this description. The two-dimensional
flow field in the vicinity of the flame, as described
by (12) and (15), is shown in Fig. 4. Elsewhere, U
is practically constant but has opposing signs,
which implies that v 
 0 and Poiseuille flows
develop moving to the left or to the right.

Figure 5 shows the time history of the flame
position xf in channels of length ‘ = 50, 100, 500
(distinguished by different symbols) for two dis-
tinct values of c. The analytical quasi-steady
approximation (24) is shown as a solid curve.
The ordinate xf/‘ is the (dimensional) flame posi-
tion in units of the channel length L, and the
abscissa t/‘ is the (dimensional) time in units of
SL/L. Using these scales we see that for a given
c the curve representing the flame position as a
function of time become universal for large ‘.
Furthermore, the quasi-steady approximation
represents the time-dependent solution extremely
well in this limit, implying that the approximate
(dimensional) relation

x0f ¼
L
c

� �
exp

cSLt0

L

� �
� 1

� �
ð27Þ

is sufficient accurate. The total travel time in long
tubes (L� dT) is given by

t0tot 

lnð1þ cÞ

c
L
SL
: ð28Þ

Note that these relations are independent of the
Lewis number Le and the activation energy b, ex-
cept for their effect on SL. Thus, for flames prop-
agating in narrow channels, chemistry and
differential diffusion manifest themselves solely
through variations in the laminar flame speed SL.

The experimental results of Mason and
Wheeler [2] reproduced in Fig. 6 show the flame
position of methane–air mixtures ignited at one
end of a tube open at both ends. Although the
experiments were carried out in a relatively wide
tube, 5 cm in diameter, the observations clearly
show the acceleration of the flame traveling down
the tube. The different curves in the figure corre-
spond to increasing values of the mixture strength
and, since the parameter that mostly affect the
equivalence ratio is the heat release, they also cor-
respond to increasing values of c and thus show a
similar trend as our predictions depicted in Fig. 5.
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The total propagation time in the 500 cm-long
tube estimated from the experimental results is
within the range 2 � 5.5 s, which compares sur-
prising well with the predicted value of 4.3 s
obtained from (28) with c = 6.36 and
SL = 36.2 cm/s, as appropriate for methane–air
mixtures.
7. Conclusions

The objective of this study has been to examine
the nature of flame propagation in long tubes
open at both ends and, in particular, the physical
mechanism causing the flame to accelerate as it
travels down the tube. The mathematical problem
involves, in general, solving the unsteady two-
dimensional equations governing mass, momen-
tum and energy, which must be carried out for a
whole range of parameters, including the length
and aspect ratio of the tube and the mixture prop-
erties, which is clearly a nontrivial task. In this
work, the narrow channel assumption was
adopted in order to simplify the mathematical
problem and gain fundamental understanding
that would have otherwise require lengthy numer-
ical simulations. Such calculations are seldom
done for an entire range of parameters and are
usually carried out for a specified set of parameter
values. Moreover, the adopted simplifications in
this work enabled extracting simple results such
as Eqs. (26) and (27) for the flame position and
total travel time, and graphs such as Fig. 5 where
these expressions were further validated. It is also
well known that asymptotic methods provide
approximations that could very well extend
beyond their strict limit of validity. It is very unli-
kely that the flow field will change dramatically
from a Poiseuille flow unless the channel is suffi-
ciently wide and that the flame will no longer
accelerate if it were slightly curved. The evidence
that the approximation adopted is useful is that
it produces results that agree qualitatively, and
to some extent also quantitatively, with the exper-
imental results reported in Fig. 6 even though the
channel width in these experiments was quite
moderate. Finally, we note that we have addressed
here flame propagation in sufficiently long chan-
nels, where the flame is remote and not affected
by the two ends; the modifications required when
the flame is near the ignition end (x = 0) and near
the end of the tube (x = ‘), do not affect the main
result associated with the acceleration observed
during “almost” the entire propagation time.
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