Classical Normal Mode Analysis: Har monic Approximation

The vibrations of a molecule are given by its ndrmades. Each absorption in a vibrational
spectrum corresponds to a normal mode. The founalomodes of carbon dioxide, Figure 1, are
the symmetric stretch, the asymmetric stretch amdtending modes. The two bending modes
have the same energy and differ only in the dioectf the bending motion. Modes that have the
same energy are called degenerate. In the classeinent of molecular vibrations, each
normal mode is treated as a simple harmonic otmilla
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Figure 1. Normal Modes for a linear triatomic malkec In the last bending vibration the motion
of the atoms is in-and-out of the plane of the pape

In general linear molecules have 3N-5 normal @sp@vhere N is the number of atoms. The
five remaining degrees of freedom for a linear roole are three coordinates for the motion of
the center of mass (X, y, z) and two rotational@mgNon-linear molecules have three rotational
angles, hence 3N-6 normal modes.

The characteristics of normal modes are sumea@hzlow.

Characteristics of Normal Modes

1. Each normal mode acts like a simple harmonidlata.

2. A normal mode is a concerted motion of many atom

3. The center of mass doesn’t move.

4. All atoms pass through their equilibrium posisaat the same time.
5. Normal modes are independent; they don't interac

In the asymmetric stretch and the two bending Vitina for CQ, all the atoms move. The
concerted motion of many of the atoms is a comnt@maxcteristic of normal modes. However,
in the symmetric stretch, to keep the center ofsasistant, the center atom is stationary. In
small molecules all or most all of the atoms mava igiven normal mode; however, symmetry
may require that a few atoms remain stationargéomne normal modes. The last characteristic,
that normal modes are independent, means that harates don’t exchange energy. For
example, if the symmetric stretch is excited, thergy stays in the symmetric stretch.

The background spectrum of air, Figure 2, shivwsasymmetric and symmetric stretches and
the bending vibration for water, and the asymmaestietch and bending vibrations for €@he
symmetric stretch for CQdoesn’t appear in the Infrared; a Raman spectsumeéded to
measure the frequency of the symmetric stretchsd&ladsorptions are responsible for the vast
majority of the greenhouse effect. We will also @€& as an example, below.

The normal modes are calculated using Newtaqsgons of motiori* Molecular mechanics
and moslecular orbital programs use the same metihmsnal mode calculations are available
on-line:
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Figure 2. The Infrared spectrum of air. This speutis the background scan from an FT-IR
spectrometer.

Harmonic Oscillator Review
Lets first review the simple harmonic oscillatonr@ider a mass m, supported on a spring with
force constant k. Hooke’s Law for the restoringcéofor an extension, x, is F = -kx. In other
words, if the spring is stretched a distance xh@,restoring force will be negative, which will
act to pull the mass back to its equilibrium pasitiThe potential energy for Hooke’s Law is
obtained by integrating

dv

F = -& = -kX (1)

to give V :% k x° 2)

In molecular mechanics and molecular orbital catiahs, the force constant is not known.
However, the force constant can be calculated ti@rsecond derivative of the potential energy.

Y
k="02 )
The Hooke’s Law force is subs;ituted into Newtoaw:
F=ma or ngy)s = -kx 4)
and solved to obtain the extension as a functian:
X(t) = A sin(2wt) (5)

wherev is the fundamental vibration frequency and A s amplitude of the vibration. Taking
the second derivative of the extension gives

2
%_5 = 412V’ X (6)
Substituting Eq 6 back into Eq 4 gives:
-4Tv% m X = -kx (7)

which is the basis for the classical calculationhaf normal modes of a molecule.
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Normal Mode Analysis
For molecules the x, y, z coordinates of each atarst be specified. The coordinates are:

Atom 1: X, Y1, Zy, Atom 2: %, Yo, Z5, etc. ......
The extensions are the differences in the positamsthe equilibrium positions for that atom:
Atom 1: % = X; — Xl,eq Y1 = Y- Yl,eq Z1=21—- Zl,eq (8)
Atom 2: % = Xo — Xoeq Yo =Y2—Yoeq 2= 20— Dreq
Atomi: X = X; — Xieq Yi =Yi—Yieq Zi =72 — Zieq

Where Xeq Yieq and Zeqare the equilibrium (energy minimized) positions &tom i. For
example, if %, y1, and z are all zero, then atom 1 is at its equilibriunsigion. Molecular
mechanics or molecular orbital calculations areluedind the potential energy of the molecule
as a function of the position of each atom, VX, z1, X2, Y2, Z, X3, Y3, Z3,++, XN, YN2ZN)-

The second derivative of the potential energy ban be used to calculate the force constants,
Eq 3. However, there are now 3Nx3N possible sectamiyatives and their corresponding force
constants. For example,

v 1
d X12 = kXX (9)
is the change of the force on atom 1 in the x-tim@ovhen you move atom 1 in the x-direction.
Similarly,
v 12
axadys Xy (10)

is thechange of the force on atom 1 in the x-directio®mwkou move atom 2 in the y-direction. The
various types of force constants are shown in Ei@ur

v 11 o A~
X2 Kyx same atom same direction T e
v 11 o :
- |
dyi kyy same atom same direction P e
v 1 _ o
X101 = kxy same atom different directions
v 12 _ o
X105 =Kyx different atom same direction
v 12 _ o
Ox0ys Kxy different atom and direction

Figure 3. Types of second derivatives and forcestaonts

These force constants are not the force constanisdividual bonds, they are force constants
for the motion of a single atom subject to allnsghbors, whether directly bonded or not. The
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complete list of these force constants is calledHkssian, which is a 3Nx3N matrix. Eq 7 is
then applied for each force constant.

IN

11 11 11 12 12
-ATEV Muxs= Ky X - Ky Vi - Ky - KXo = Kopya ... Ky 2y (11)

X

) 11 11 11 12 12 1N
-4TPV? myys= “kyxX1-kyyyi- Ky z1- kKXo -kyyyo-...ky 2

20 21 21 22 22 2N
-ATEV? MpXo= Ky X1 - K1~ KzZ1 = KXo~ Ko Vo =...- Ky y 20

NN

22 ' N1 N1 N1 N2 N2
-4 mMyzZn= -k, X -kzyyl-kzle-kzxxz-kzyyz-...-k ZN

zxX "1 77

In words, the right-hand sides of the above equat@mply state that the total force on atom i is
the sum of the forces of all the atoms on atom addition, we need to keep track of the x, vy,
and z directions for each atom. There are a té6taBNa3N terms on the right. All these terms are
confusing. A simple example will help at this point

For our example consider a symmetrical lingatdmic molecule that can only vibrate along
the x-axis, Figure 4. CQs a good example of a symmetrical linear triatmmi
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Figure 4. A symmetrical triatomic molecule with kations limited along the internuclear axis.

Because we have limited the vibrations to the s,axhich is the internuclear axis, this model
will provide the symmetric and asymmetric stretchimodes, only. Egs 11 then reduce to

-ATPV myxg= -k)lol(xl- k)loz(xz - k)los(xg (12)
) 21 22 23

-ATEV? MpXo= Ko X1 - Kyoy X2 -Kyey X3 (13)
) 31 32 33

-ATCV? MeXa= Ky X1 - Kyy X2 - Koy X3 (14)

since we only need to keep the x-terms. Severaknigal techniques are available to solve
linear sets of simultaneous equations such asGlisventionally, however, the problem is
simplified byconverting to mass weighted coordinates, for exampl

)Zl =My Xy )?z =\/myx; , etc. (15)

and mass weighted force constants:

12
12 Ko (16)

In the new mass weighted coordinates, Eqs 12-1drbec
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11~ T12~ T13~

4TV Xy = KX - Ky X2 - Ky Xa (17)
~ 21~ 22~ 723~

-ATEV? X = -KyyXa - Kyy Xz - Kyy X (18)
~ 31~ 32~ 733~

-ATOV? X3 = -Kyy X1 - KXo = Kyy X3 (19)

For example, we can show that Eq 17 is equivateBigt 11, by substituting Eqs 15 and 16 into
Eq 17.

11 12 13
k k k
NN PO\ SN el o S reu W . S ey
4 X N L M Amp/m; me X \mafm; Ma X3 (20)

Canceling mass terms and multiplying both sides/lTy gives Eq 11.
Eq 17-19 are most easily written in the equintilgatrix form:

11 12 13
/ kXX kXX kXX \

mafmy Amnfme Afmafms | N
X1 X1

21 22 23

- kXX kXX kXX )’(" :'4Tl2V2 )’(" (21)

Vmafm Afmafme Amafmg || ’

k31 k32 k33

\ Vmam Vmam,  Vmeyms /

The mass weighted force constants give a symnmaatax. In other words, the corresponding
off diagonal elements are equal. Eq 21 is an eigeleveigenvector equation. The eigenvalues
are the negative of the squared normal mode freme®nlhe eigenvectors are the mass
weighted normal coordinate displacements (see AgigerMany efficient algorithms exist for
solving eigenvalue equatiofis.

The Hessian and Energy Minimization The matrix of force constants is the matrix of the
second derivatives of the potential energy. Thitrisnas also called the Hessian. The Hessian
also plays a central role in energy minimizatiochtéques. The use of the Hessian is necessary
to minimize the energy of all the atoms in the male.

Numerical Example for Carbon Dioxide
The CQ example will provide some insight for understaigditg 21. First, we need to discuss
units. The fundamental vibration frequency for ent@nic oscillator is
Vo :%T % or 4'[2V2:% (22)
with k in N mi* an m in kg molecul& Normally, vibrational spectra are plotted verses
wavenumber, instead of frequency. To convert toemambersy :
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V= or v=y=o (23)

> =
>0

[

If v is in cm', ¢ should be given in cm'sUsingv in cmi* and m in g mot, Eq 22 becomes:
4k
1000 g/kg M "~ m
or solving for the frequency squared in wavenumigerss a convenient conversion factor
~ k/m
2

V =5 .8921x10 (25)

(24)

Now for our example. The G@tretches are experimentally measured to be 13%(ar the
symmetric stretch and 2349 &for the asymmetric stretch, Fig. 2. Lets roughly Save can
calculate these values through a normal mode asalgsg our simplified one-dimensional
model. First we will need all the force constaktewever, some force constants are related by
symmetry, since the left and right hand sides efrtiolecule are the same.

1 33 12 23
By symmetry : kx = Ky Ky = Kex (26)

The terms that exchange the atom labels are alsgadgnt, since atom 1 interacting with atom 2
gives the same result as atom 2 interacting wiamat. In matrix terms, these corresponding off-
diagonal terms are equivalent for a symmetric matri

_ 1221 23 32
Symmetric matrix: K =K.y Ko = Kex (27)

These equivalences leave four force constantssateed to guess. First focus on atom 1. By

trial an error, a good guess for

11 )
Ky = 1600 N nit (28)

This force constant gives the restoring force amat is moved. The resorting force, F = -kx,
will be negative, pulling the atom back to its dduium position. Another way to state this is if
atom 1 is moved forward to shorten the bond letiggin atom 1 will try to move back to keep
the bond length constant. A reasonable guess for
12 11
k —_

xx"k

- (29)

Here the 12-force constant is negative, and thteniag force, F = -kx, is positive. This positive
force results because as you move atom 1's neighbmn 1 will try to follow along in the same
direction to keep the bond length constant. Thelabs value of the two force constants is the
same since moving either atom 1 or atom 2 hasame ®ffect on the bond length and, therefore,
the force on atom 1. Now focus on atom 2. Lets gtiest it is twice as hard to move atom 2 as it

is to move atom 1, since moving atom 2 effectsIvods:
22 11

Kyy = 2 Ky = 3200 N it (30)
Finally, we will assume that
13
Kyy = 0. (31)
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We assume that atom 3 doesn’t affect atom 1 saamifly because the two atoms aren’t directly
bonded. Substituting Eqs 26-31 into Eq 21 givestihss weighted force constant matrix. The
row and columns correspond to the three differtang, Q, C,, and Q, respectively.

O G Q
/ 1600 . 1600 0 \
O [ V1816 16/12 100 11547 0

1600 3200 1600
0 115.47 -100

O3 1600 1600 )

N0 iz Vieyie

The “eigen” Web applet is available to solve thgeeivalue problethComputer algebra
programs like Maple and Mathematica are also hémdsolving eigenvalue problems. The
output of the “eigen” applet is shown below. Thgesivalues are listed with “E=." The normal
mode frequencies are easily calculated using tite conversion factor from Eq 25.

Eigenvector 1: E=-0.0009769630

0.603024

0.522229

0.603024 Symmetric stretch:
Eigenvector 2: E=-100 100

-0.707107 V=1 [Eassors = 1303 cnit
0 5.892x10°

0.707107 Asymmetric stretch:
Eigenvector 3: E=-366.669 366.67

-0.369272 V= : = it
0.852805 Y =\/Bgo2ad ~ 2495 e
-0.369272

(for about 5% errors)

The three numbers below each eigenvalue anedimal coordinates. For example, the normal
coordinates for the second eigenvector show at¢®.207) moving in the opposite direction as
atom 3 (0.707), while atom 2 remains stationary @y the CQexample we have motion only
in the x-direction, so there are only three coaatks listed, one for each atom. In general to
display the motion of the atoms during the vibnatithe atom coordinates are calculated for
atom i as:

% ; 7
X=Xt 0 V=Yt o0 A= Zet (0 (33)

where q = sin(vt). For example, for the asymmetric stretch for,@® the first O atom,
X1 = X1,eq+ -0.369 sin(2wvt) (34)
Y= Yl,eq+ 0.853 Sln(ﬁ\)t)
Z1= Zl,eq+ -0.369 Sln(ﬁ.\)t)
The first eigenvalue is zero, because it comrdp to the motion of the center of mass of the
molecule in the x-direction. You can also tell thia first eigenvector is for the motion of the
molecule as a whole because all the normal coaesBirfeave the same sign, that is all the atoms
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are traveling in the same direction. For fully #gw@imensional problems, the first 5 eigenvalues,
for linear molecules, or 6 eigenvalues, for nordinmolecules, will correspond to translation and
rotation. (Spartan, however, doesn’t show you tlieseeigenvalues, but other programs do.)

You can tell that eigenvalue 2 is for the symmmedtretch, since the normal coordinates for the
oxygen atoms are opposite to each other (i.e —@AA7.707 respectively) and the carbon atom
doesn’t move. In the asymmetric stretch, eigenvalube oxygen atoms move backward while
the carbon atom moves forward.

How well did our simplified model work? The syratric stretch is a little low and the
asymmetric stretch is a little too high for a conga error of about 5%. It doesn’t make sense to
try to get the results to agree any better. We megtected the bending vibration in our
treatment, and using a molecular mechanics or mil@eorbital program is much more accurate.
However, you should try changing the force constamisses a little to see the effects of each
force constant. If you make a change that is nosistent with the force field in a real molecule,
then the first eigenvalue will increase. Bettessdtguesses give a smaller first eigenvalue.

Normal Mode Analysisand Molecular Mechanics and Molecular Orbital Calculations

Our simple example of CQOs not representative of the accuracy availabigfedicting normal
mode frequencies. Molecular mechanics and molecouhital calculations can quite accurately
predict the frequencies for the vibrations of coempinolecules. Results for G@re given in
Table I. If you haven’t gotten to molecular orbitéory yet, suffice it to say that you can
calculate normal mode frequencies quite accurétely.

Table I. Molecular Mechanics and Molecular OrbBalsed Normal Mode Analysis for GO

HF/ MP2/ B3LYP/
Literature MMFF AM1 PM3 6-31G*  6-311G** pBP/DN* BP/DN*  6-311G(d)
667 538 526 522 744 656 637 638 666
667 538 526 523 744 656 637 638 666
1340 912 1480 1408 1518 1344 1323 1319 1377
2349 1746 2565 2387 2585 2461 2363 2349 2438
error % 24.1% 15.5% 12.5% 11.6% 2.1% 2.7% 2.5% 1.7%

The MMFF molecular mechanics calculation pooegresents the accuracy for molecular
mechanics in general, since the force field paramsetren’t optimized for the unusual C=0
bonds in CQ. Molecular mechanics calculations are common amg useful for large
biomolecules. Semi-empirical calculations at the JAtdM PM3 level are more accurate. Hartree-
Foch, HF, calculations are even better, especidign MP2 electron-electron correlations are
taken into account. Density functional methods pi®, BP or B3LYP are now the best choice
for careful analysis. Molecular orbital calculatsoare indispensable for helping to assign the
vibration bands in Infrared and Raman spectroscopy.

Anharmonicity

The proceeding discussions assume all the vibraaoa purely harmonic. Our treatment of
molecular mechanics force fields showed that anbarocorrections are often important for
real molecules. What is the effect of anharmonioityvibrational spectra and normal mode
calculations? For weak anharmonicity, vibration@@cra also show overtones and sum and
difference bands. Overtones are at integer mustipfehe fundamental frequencys Sum and
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difference bands occur @i+ Vg , andva- Vg, respectively. Frequencies frah initio molecular
orbital calculations are normally multiplied by @®correct for anharmonicity. In Table I, if the
HF/6-31G* values are multiplied by 0.9, the averdgeiation drops to 1%. Frequencies from
molecular mechanics are usually too approximateaiwant anharmonicity corrections when
comparing with vibrational spectra.

For strong anharmonicity, such as occurs foy \@vse and floppy vibrations, a more refined
treatment is necessatySuch vibrations include bond torsions that havedaergy barriers,
ring vibrations in large ring systems, and vibraian hydrogen-bonded systems and molecular
complexes. Unfortunately, such vibrations are oftenmost interesting, especially in studies of
proteins and nucleic acids. Treating very flexilddey energy vibrations in biomolecules is an
active area of current study*°

Vibrations and Ther modynamics

Vibrations increase the Gibbs Free Energy of atamios. Vibrational enthalpy and entropy
calculations are very useful in drug discoverydesessing the Gibbs Free Energy of bindfng.
Vibrations also play a central role in protein falgland protein flexibility:**> The contribution
of a vibration to the enthalpy and entropy of assahce is given By

o = 2 Nahyg + Ao e Mol 35

vib 2 AlIVQ 1-e_hV0/kT ( )
) Nahvy €hvoikr

Sib =R In(1-€MVoik ) + 22— (36)

T (1-ehvoikr)
where N is Avogadro’s numben, is the frequency of the normal mode, h is Planckisstant,
and k is Boltzmann’s constant = R{NI'he %2 Nhvg term in the enthalpy is the zero-point
vibrational energy, which is the energy of the ativn at absolute zero temperaturey(d). Eqs
35 and 36 are summed for each normal mode vibrafolfowing a normal mode analysis, then,
it is very easy to calculate the Gibbs Free Enefgy substance.

A specific example will help to clarify the imgiance of normal mode analysis in
thermodynamic considerations. Consider two diffecemformations of a molecule, A and B:

A- B (37)

Examples include the trans and gauche isomerstahbwor two conformations of a large
protein. For low frequency vibrations Eq 36 simipfand the entropy difference reduceés to

_ _ 2TlVA1 2TlVA2 2TlVA3 j
AS\“b’COM_ R In(ZTl\}Bl 2TlVBz 2Tl\153 (38)

This entropy difference is called the configuratibentropy difference. The numerator is the
product of the low frequency normal modes for Ad #me denominator is the product of the low
frequency normal modes for B. Therefore, if B lasdr frequency modes, the entropy of B will
be larger and the entropy difference will favor®Bother words, the lower the mode
frequencies, the more the conformation can rattbarad, and the more that conformation is
favored.

In molecular mechanics the enthalpy of formatba molecule is given as:

AfH° =°LRT +°LRT + RT + bond energy + steric energy + vibratiarmitributions (42)
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Normal mode analysis gives us the tools to caleula vibrational contributions directly using
Eq 35. For MM2 calculations a series of approxioradiare made for Eq 41. The zero point
energy is often neglected in classical simulatiteesying the temperature dependent contribution
from the second term of the vibrational enthalpy,35. This contribution to the enthalpy is
plotted as a function of vibrational frequency igu¥e 5.
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Figure 5. Contribution of a vibration to the Enghabf formation of a molecule above the zero
point energy.

The contribution of vibrations becomes negligille frequencies greater than about 500'cm
Therefore, only low frequency vibrations contribateongly. Torsional motions around freely
rotating bonds are often the lowest frequency nbmuales in molecules. Other low frequency
vibrations are often ignored. The vibrational cimitions can then be approximated by torsional
increments for each freely rotating bond:

AfHe =3L,RT +°LRT + RT + bond energy + steric energy + torsionatéments (42)

Our treatment of normal modes now will allow ugliscuss these approximations in detail.
Examples of low frequency vibrations are bendirigations and ring vibrations as well as freely
rotating bond torsions. Clearly for careful caltcidas more contributions than just the torsional
increments for freely rotating bonds are necesdargddition, Eq 42 completely neglects the
zero point energies. Molecular orbital and molecaiachanics programs readily provide these
thermodynamic contributions when normal mode amalyse done, so we don’t need to make
the extreme approximations inherent in Eq 42.

Molecular Dynamics and Normal Mode Analysis
Molecular dynamics and normal mode analysis aréyrgaite similar. Both include the kinetic
and potential energy for the molecule. The foreddlfis the same. They both calculate the
Hessian and then integrate Newton’s Laws of mofi¢re motions that you see in molecular
dynamics simulations are in fact the normal modeéke@molecule. The fluctuations of the atom
positions in a molecular dynamics run can be usexktract the normal mode frequencié¥®

The difference between molecular dynamics amtchabmode analysis is that the equations of
motion are integrated numerically in dynamics satiohs, but sinusoidal solutions are assumed
for normal mode analysis. In addition, in molecudgnamics the motions of all the normal
modes are studied simultaneously, while in normadlenanalysis one mode is studied at a time.
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The techniques have their strengths and weakndsges.35 and 36 show that the link between
normal mode analysis and thermodynamics is dimedtstraightforward. Thermodynamic
properties can be calculated from dynamics runispariicular care must be taken to ensure
adequate statistical sampling (i.e. using long tamneulations). On the other hand, molecular
dynamics more easily handles anharmonicity andi@kpblvation.

Valence For ce Field Solutions
Normal mode analysis is particularly important inletular spectroscopy. As a consequence,
valence force field solutions have been workedf@umany small molecule geometries. These
solutions take a different approach to the probl€he force constants that are used are the force
constants for individual bonds, rather than thedaronstants for moving atoms, e.g. Eq 9.
Focussing on the bond force constants more clasghgsponds to our “chemical intuition.”
Another advantage of valence force field calculadits that algebraic solutions can be written.
For example, for a symmetric triatomic molecule evehm = m, the internal coordinates are
defined as

Qu=ri2—1r (43)

CG=r23—1

0=0-6,
The g’s are bond stretching terms @nd the bond bending termgis the distance between
atoms 1 and 2,1is the equilibrium bond lengt®,is the bond angle, artj is the equilibrium
bond angle. The potential energy is chosen as:

1 1
V:§k1Q12+§k1Q22+k552 (44)

The k force constant is for stretching the 1-2 or 2-Bdad-or CQthis is the C=0 stretch. The
force constant for bond bending is Khe Hessian second derivatives can be obtainealkiryg
explicitgerivatives of Eq 44. For this potentialegy form the normal mode frequencies are
given by

2m . 500) kg
2 _ < 2o AL
ATV oy’ = (1 e sirf 2) o (45)
2my 0,) ki 2( 2my, . Go)kes
2 2\ — il Yo | ALl < L Yo
AT Vo +Vbnd)_(1 e cog 2) m T L, sir? >) 12 (46)
2m) ki Ks
161t (Vg Vond) = 2(1 +—m21) Py (47)

Eqgs 46 and 47 show that the frequency of the synrsttetch depends on the bending force
constant. As mentioned above, our example for omeasional CQdidn't include this effect.

The disadvantage of algebraic solutions istthey depend critically on the details of the
potential energy function, e.g. Eq 44. If a strebeimd interaction or Van der Waals terms are
included, as in many molecular mechanics forcel$ielhen Eqs 45-47 are no longer valid. In the
early decades of vibrational spectroscopy, it wgseld that solutions to the normal mode
problem could be used to determine the force catstar individual bonds, as in Eq 44.
However, the dependence of the force constantsidnaver-simplified potential energy
functions causes large errors. The attempt to méerbond force constants directly from
spectra has therefore been abandoned. Equationsasus-47 can still be useful in building our
intuition about bond strengths, however the derfegde constants must be treated as very
approximate and can sometimes be misleading.
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Appendix
We wish to show more clearly the relationship betmvEqgs 17-19 and the normal coordinates,
for the curious. First note that substituting Eiqte Eq 7 gives:

-41%v% m A sin(2wt) = -k A sin(2wt) (48)
Dividing both sides by the sin gives
AP mA = -k A (49)

In other words, the equation applies to the timgedelence of the vibration and also to the
amplitude of the vibration separately. Therefors Eg-14 and 17-19 allow us to solve for the
amplitudes of the vibrations, whergyx, z can be read as the amplitudes of the waves ir,the

y, and z directions for atom i. Similarly,,; ,z can be considered to be the corresponding mass
weighted amplitudes. The time dependent valuethare

Xi(t) = X sin(2vt) v = i sin(2vt)  Z() =z sin(2vt) (50)

Dropping the “(t)” for convenience and convertireck into non-mass weighted coordinates
gives:

X :ﬁ sin@wt)  yi= —\/yﬁ sin2vt) 7 =\/% sin(2wt) (51)

Converting from extensions into final coordinatesg Eq 8 gives Eq 33.

Now you may have noted that Eqs 17-19 involwe fmknowns\, X , Vi , and z ) but only
three equations. So to obtain unique solutions esaore information is necessary. We must add
the requirement that the center of mass can’'t move:
MyX1 +MaXo2 + MeXz = 0 (52)
or equivalently in mass weighted coordinates:

JmiX; AlmaXz ++/mgXs =0 (53)
As we solve for each successive normal mode weraded to ensure that the vibrations don’t
interact. Mathematically this requires that themnak modes are orthogonal. For each pair of
normal rpers A~ang B, v!ith~normal coordinatgsandxig , respectively:

X1A X1B + Xoa XoB +X3a X3 = 0 (54)
Taken together, Egs 17-19 and Eq 53 and 54 prdkiglenique set of normal modes satisfying
the desired characteristics set out in the intradncSolving these equations as a linear set of
simultaneous equations is difficult. Luckily, salgithe problem as an eigenvalue-eigenvector
equation using Eq 21 automatically satisfies tlygirement for orthogonality.
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