ENTHALPY OF DILUTION OF ACIDS

The quantity given in this table is $-\Delta_{\text {dii }} H$, the negative of the enthalpy (heat) of dilution to infinite dilution for aqueous solutions of several common acids; i.e., the negative of the enthalphy change when a solution of molality m at a temperature of $25^{\circ} \mathrm{C}$ is diluted with an infinite amount of water. The tabulated numbers thus represent the heat produced (or, if the value is negative, the heat absorbed) when the acid is diluted. The initial molality m is given in the first column. The second column gives the dilution ratio, which is the number of moles of water that must be added
to one mole of the acid to produce a solution of the molality in the first column.

Reference

Parker, V. B., Thermal Properties of Aqueous Uni-Univalent Electrolytes, Natl. Stand. Ref. Data Ser. - Natl. Bur. Stand. (U.S.) 2, U.S. Government Printing Office, 1965.

$-\Delta_{\text {dil }} H$ in kJ/mol at $25^{\circ} \mathrm{C}$									
m	Dil. ratio	HF	HCl	HClO_{4}	HBr	HI	HNO_{3}	$\mathrm{CH}_{2} \mathrm{O} 2$	$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$
55.506	1.0		45.61		48.83		19.73	0.046	2.167
20	2.775	14.88	19.87	13.81	19.92	21.71	9.498	0.038	2.075
15	3.700	14.34	15.40	7.920	14.29	14.02	6.883	0.109	1.962
10	5.551	13.87	10.24	2.013	8.694	7.615	3.933	0.205	1.824
9	6.167	13.81	9.213	1.280	7.719	6.569	3.368	0.230	1.782
8	6.938	13.77	8.201	0.611	6.786	5.607	2.791	0.255	1.724
7	7.929	13.73	7.217	0.046	5.925	4.728	2.251	0.272	1.648
6	9.251	13.69	6.268	-0.351	5.004	3.975	1.749	0.280	1.540
5.5506	10	13.66	5.841	-0.490	4.590	3.577	1.540	0.285	1.477
5	11.10	13.62	5.318	-0.628	4.113	3.197	1.310	0.289	1.393
4.5	12.33	13.58	4.899	-0.732	3.711	2.828	1.109	0.289	1.310
4	13.88	13.53	4.402	-0.787	3.330	2.460	0.958	0.289	1.218
3.5	15.86	13.47	3.958	-0.820	2.966	2.105	0.791	0.289	1.121
3	18.50	13.45	3.506	-0.782	2.611	1.787	0.665	0.289	1.025
2.5	22.20	13.43	3.063	-0.724	2.301	1.527	0.582	0.285	0.912
2	27.75	13.40	2.623	-0.623	1.996	1.318	0.527	0.276	0.803
1.5	37.00	13.36	2.167	-0.431	1.665	1.125	0.506	0.259	0.678
1	55.51	13.30	1.695	-0.201	1.314	0.933	0.506	0.226	0.544
0.5551	100	13.22	1.234	0.050	0.983	0.736	0.502	0.184	0.423
0.5	111.0	13.20	1.172	0.075	0.941	0.711	0.498	0.176	0.406
0.2	277.5	13.09	0.761	0.247	0.649	0.536	0.439	0.146	0.331
0.1	555.1	12.80	0.556	0.272	0.498	0.439	0.372	0.134	0.289
0.0925	600	12.79	0.540	0.272	0.481	0.427	0.368	0.134	0.285
0.0793	700	12.70	0.502	0.272	0.452	0.402	0.351	0.134	0.285
0.0694	800	12.61	0.473	0.268	0.427	0.385	0.339	0.130	0.280
0.0617	900	12.50	0.448	0.264	0.406	0.368	0.326	0.126	0.276
0.05551	1000	12.42	0.427	0.259	0.385	0.351	0.318	0.121	0.272
0.05	1110	12.24	0.406	0.259	0.372	0.339	0.305	0.121	0.272
0.02775	2000	11.29	0.310	0.226	0.285	0.264	0.247	0.117	0.264
0.01850	3000	10.66	0.251	0.197	0.234	0.218	0.213	0.117	0.259
0.01388	4000	10.25	0.226	0.180	0.205	0.192	0.192	0.113	0.259
0.01110	5000	9.874	0.197	0.167	0.184	0.172	0.176	0.109	0.255
0.00555	10000	8.912	0.142	0.126	0.130	0.121	0.130	0.105	0.243
0.00278	20000	7.531	0.105	0.092	0.092	0.084	0.096	0.096	0.230
0.00111	50000	5.439	0.067	0.059	0.054	0.050	0.063	0.084	0.222
0.000555	100000	3.766	0.042	0.042	0.038	0.038	0.046	0.054	0.209
0.000111	500000	1.255	0.021	0.021	0.021	0.021	0.021	0.038	0.167
0	∞	0	0	0	0	0	0	0	0

